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Abstract. Laminated sediments in the Shaban Deep, a brine-
filled basin in the northern Red Sea, were analyzed with
backscattered electron imagery. Here we present possible
mechanisms involved in the formation of laminae of var-
ious types and homogenous intervals arising from the de-
tailed investigation of multicore GeoB 7805-1 (26◦13.9′ N
and 35◦22.6′ E; water depth 1447 m) and gravity core GeoB
5836-2 (26◦12.61′ N, 35◦21.56′ E; water depth 1475 m).
Sediment makeup includes six types: a) a laminated structure
with alternating light (mainly coccoliths) and dark (diatom
frustules) layers, where the diatom component is indicative
of the intra-annual variability between stratification and mix-
ing events; b) a pocket-like structure attributed to the sinking
of particles within fecal pellets and aggregates; c) a matrix
of tightly packed diatoms that relates to extended stratifica-
tion/mixing periods of the water column; d) homogenous in-
tervals that result from turbidity deposition; e) silt accumula-
tions which origin may lie in agglutinated foraminifers; and
f) pyrite layers with pyrite formation initiated at the seawater-
brine interface.

1 Introduction

The Shaban Deep, a brine-filled basin in the central axis of
the northern Red Sea, has been the focus of our previous re-
search on laminated sediments as recorders of abrupt changes
in productivity and circulation for this region (Seeberg-
Elverfeldt et al., 2004a). The deep itself consists of four
basins with near equal brine levels at about 1325 m water
depth (Hartmann et al., 1998).
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Previous work has dealt with the detailed composition
of mid-Holocene to Last Glacial Maximum (LGM) lami-
nated sediments from the southern basin of the Shaban Deep
(core GeoB 5836-2; 26◦12.61′ N, 35◦21.56′ E; 1475 m wa-
ter depth) (Seeberg-Elverfeldt et al., 2004a). We showed
that sediments encompassing the period 4–15 ka have a light
and dark alternating pattern where light layers are mainly
composed of coccoliths, terrigenous material of eolian ori-
gin and diatom fragments, and dark layers consist of almost
exclusively diatom frustules (monospecific or mixed assem-
blage). It was further proposed that different diatom assem-
blages reflect changing conditions in stratification/mixing in
the northern Red Sea (Seeberg-Elverfeldt et al., 2004a). This
was discussed against the background of already existing
paleoceanographic data from an oxic core from the north-
ernmost Red Sea (GeoB 5844-2; 27◦42.81′ N; 34◦40.90′ E;
963 m water depth) (Arz et al., 2003). It was concluded
that brine sediments from the Shaban Deep can be used for
reconstructing paleoceanographic and paleoclimatic changes
in the region at high resolution. Based on our detailed stud-
ies, schematic models of paleoflux scenarios for laminae for-
mation at different time-slices were proposed.

In this study, we extend our previous records into the late
Holocene and move one step further in our understanding of
laminae formation within brine sediments. Very few stud-
ies exist that investigated the mechanism of sediment forma-
tion within brine environments. Erba et al. (1987) and Erba
(1991) focused their work on laminated sediments from vari-
ous anoxic brine-filled depressions in the Eastern Mediter-
ranean Sea and discovered that “deep mid-water bacterial
mats” are responsible for the formation of laminated sedi-
ments.

© 2005 Author(s). This work is licensed under a Creative Commons License.
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Seeberg-Elverfeldt et al., Figure 1
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Fig. 1. Location of the Shaban Deep in the northern Red Sea (left panel) and of coring sites GeoB 7805-1 (asterisk) in the eastern basin and
GeoB 5836-2 (filled circle) in the southern basin (right panel). Dark contour line on the right-hand panel indicates the depth of the modern
brine surface.

We summarize within this study the different types of sed-
iment structure preserved in Shaban Deep sediments of late
Holocene through LGM age, and deliver possible mecha-
nisms involved in their genesis.

2 Study area

As it is known from the literature, the Red Sea is a very
unique environment. There are no permanent river inflows,
rainfall is sparse and evaporation largely exceeds precipita-
tion. The seawater exchange with the Arabian Sea in the
south is limited due to the very shallow sill (137 m) of the
Strait of Bab el Mandab (e.g. Edwards, 1987). The circu-
lation is mostly driven by thermohaline forcing while wind
forcing is only of minor importance. A description of the
anti-estuarine circulation pattern of the Red Sea can be found
in Eshel et al. (1994) and Eshel and Naik (1997).

The Red Sea plankton is characterized by the dominance
of autotrophic picoplankton while larger cells are scarce in
this region (Lindell and Post, 1995; Shaikh et al., 1986).
Four different groups of phytoplankton are important in
the annual cycle of the Red Sea (Shaikh et al., 1986):
diatoms are present most of the year and are the predominant
group in winter; blue-green algae (Trichodesmiumspp.)
and nanoplankton dominate in late spring and summer,
and dinoflagellates in the fall. The diatom winter peak
(December–February) is clearly dominated byBacterias-
trum, Chaetoceros, Nitzschiaand Rhizosolenia(Shaikh et
al., 1986). While the plankton is dominated by fragile forms
(e.g.Nitzschia bicapitatagroup), surface sediments of oxic
settings are enriched in robust taxa (e.g.Alveus marinus,
Azpeitia neocrenulata, A. noduliferaandRoperia tesselata),

and only anoxic brine sediments preserve the fragile diatoms
to some extend (up to 26% of the assemblage; Seeberg-
Elverfeldt et al., 2004b).

The Shaban Deep

About 25 brine-filled deeps are found along the central
axis of the Red Sea. The Shaban Deep (formerly named
Jean Charcot Deep, Pautot et al., 1984) is one of these
axial depressions in the northern Red Sea. It consists of
four small basins (southern, eastern, northern and western;
Fig. 1) that are separated by two ridges running N-S and
W-E, respectively (Hartmann et al., 1998; Pautot et al.,
1984). The basins have the seawater-brine interface (SBI),
which has a thickness of only∼2 m, at nearly the same
water depth (∼1325 m; Hartmann et al., 1998) and a salinity
of about 260 psu. The high salinities are due to leaching
of sub-bottom Miocene evaporites (Manheim, 1974). The
top of Miocene evaporites (so called S-reflector) crops
out within the brine basin at the modern level of the SBI
(Pätzold et al., 2003; Pautot et al., 1984). The temperature
within the brine is only slightly higher (∼3◦C) than the
surrounding seawater (Hartmann et al., 1998). The density
of the brine is about 1.2 g cm−3 (Millero et al., 1982). There
is only minimal exchange (diffusion and convection) at the
SBI (Hartmann et al., 1998). The brine body itself has a
thickness of up to 200 m, is almost depleted in dissolved
oxygen (<0.3 mg L−1), and sulphide is absent (Hartmann et
al., 1998). Methane concentrations increase sharply at the
SBI and are several orders of magnitude higher within the
brine than in the overlying seawater (Faber et al., 1998). No
evidence for benthic life has been found, although a rich
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Fig. 2. General lithology of multicore GeoB 7805-1 (core photograph; 48 cm long) and gravity core GeoB 5836-2 (videologger data; 790 cm
long) showing the distribution of laminated and non-laminated sediments. Phases I (4–6 ka), II (14–22 ka) and III (older than∼34 ka) are
indicated. Multicore GeoB 7805-1 encompasses the late Holocene.

prokaryotic community has been described to thrive at the
SBI (Antunes et al., 2003; Eder et al., 2002). The Shaban
Deep has been described as being hydrothermally active
(e.g. Pautot et al., 1984), and Stoffers et al. (1990) found
diagenetically-formed dolomite and rhodochrosite within
organic rich layers in the sediments.

3 Material and methods

Two cores from the Shaban Deep were used in this study
(Fig. 1): Gravity core GeoB 5836-2 was retrieved from
the southern basin (26◦12.61′ N, 35◦21.56′ E; 1475 m water
depth; total length of core = 790 cm) duringRV Meteorcruise
M 44/3 in 1999 (P̈atzold et al., 2000). This core was used in
a previous investigation (Seeberg-Elverfeldt et al., 2004a),
and results are re-analyzed here. Multicore GeoB 7805-
1 from the eastern basin of the Shaban Deep (26◦13.9′ N
and 35◦22.6′ E; 1447 m water depth; total length of core =
60 cm) was collected duringRV Meteorcruise M 52/3 in
2002 (P̈atzold et al., 2003). Because of its high water con-
tent and soupy texture, the multicore was left in cold storage
(4◦C) for ∼12 months. After this period, it had compacted
down to 48 cm in length.

Both cores were logged with a Multi Sensor-Core-Logger
(MSCL) with 3 Linescan CCD’s Digital Imaging for deter-
mination of the color scale (Fig. 2). In addition, Fe was mea-
sured every 0.2 cm with an X-ray fluorescence (XRF) scan-
ner on multicore GeoB 7805-1 (Fig. 3).

A general overview of sediment composition and texture
was gained through smear slide analysis which followed
standard ODP procedures.

The working halves of both cores were first sampled with
“cookie cutters” of 15 cm (L)×1 cm (W)×5 cm (D) follow-
ing the method described by Schimmelmann et al. (1990)
and Dean et al. (1999). X-radiographs of slabs were taken to
record differences in sediment density and structure. In this
study, the X-radiograph negatives were scanned to establish
a direct relationship with the thin sections that are described
below. In the scanned negatives, light bands represent lay-
ers of very dense material and dark bands indicate layers of
lower density.

Polished thin sections of resin-embedded sediment for
gravity core GeoB 5836-2 were prepared from the cookie
cutter slabs at the Cardiff University, Wales, following the
methodology of Pike and Kemp (1996a) with one small mod-
ification: the samples were first soaked in deionized water to
remove the salt before they were embedded. Details can be
found in Seeberg-Elverfeldt et al. (2004a).

Polished thin sections of resin-embedded sediments
from multicore GeoB 7805-1 were prepared at the
GeoForschungsZentrum Potsdam, Germany (pers. comm.,
Köhler and Berger). There, 7 cm long samples were taken
with a 3 cm overlap to the adjacent samples, shock-frozen
with liquid nitrogen and freeze-dried for 48 h. Afterward
these sediment blocks were embedded stepwise under vac-
uum in Araldit 2020, a two-component epoxy resin.

All polished thin sections were carbon coated and studied
using scanning electron microscopy (SEM). A Leo (Cam-
bridge Instruments) S360 SEM with an Oxford Instruments
INCA Wave elemental analysis system was used at Cardiff
University and a Philips XL 30 ESEM was used at the
Alfred-Wegener-Institute for Polar and Marine Research in
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Fig. 3. Correlation between general lithology (left), X-radiography
(middle) and Fe-intensities measured by XRF-scanner on multicore
GeoB 7805-1. Pyrite layers (pyr) are located within prominent
white layers (left) and are light in X-radiography (middle). H =
homogenous intervals within the late Holocene.

Bremerhaven, Germany, both equipped with a backscatter
detector. BSEI (backscattered electron imagery) mosaics
were produced for every thin section. These photomosaics
may be considered as porosity maps where porous diatoma-
ceous sediment appears darker while terrigenous and calcare-
ous sediment is less porous and therefore brighter. After first
producing low magnification (30X for GeoB 5836-2 and 80X
for GeoB 7805-1) BSEI photomosaics that act as basemaps
of each sample, high resolution pictures at higher magnifica-
tions (up to 3500X) were taken to study the composition of
individual lamina in detail and to identify the species present.

4 Results

4.1 General characteristics of Shaban Deep sediments

Brine sediments from the Shaban Deep are “diatom-bearing
nannofossil ooze, partly laminated, olive-gray to black, with
varying contents of carbonate, opal, and terrigenous ma-
terial, and with a very high content of hypersaline pore
water” (P̈atzold et al., 2000). Smear slide analysis reveal
that sediments of both cores mainly consist of varying con-
tents of coccoliths (sometimes coccospheres), diatoms, and
terrigenous material. Foraminifers, pteropods, silicoflag-
ellates and radiolarians are also present. Dominant coc-
colith species areEmiliania huxleyi, Gephyrocapsa ocean-
ica and Aligosphaera robusta, while Umbilicosphaera si-
bogae, Helicosphaera sellii(?), Calcidiscus leptoporusand
Florisphaera profundaare also present. The genusAmau-
rolithus is spread throughout the sediments, always sparse.
The diatom assemblage is dominated by the generaAzpeitia,
Bacteriastrum, Chaetoceros, Coscinodiscus, Nitzschia, Rhi-
zosolenia, andThalassionema.

Analyzed sediments of gravity core GeoB 5836-2 cover
the time interval between 4 and 22 ka (Seeberg-Elverfeldt et
al., 2004a) while multicore GeoB 7805-1 encompasses the
time interval between about 200 and 1700 yr BP (Seeberg-
Elverfeldt et al., 2005).

Multicore GeoB 7805-1 is laminated with two prominent
homogenous intervals between 7.6–9.5 cm and 10.9–18.4 cm
(Fig. 3). Both homogenous intervals are bound at the top by a
distinct bright layer and a slightly darker interval directly be-
neath it; the rest of each homogenous interval is lighter (grey-
ish) than the laminated intervals in the core. Several promi-
nent, very bright white layers of variable thickness are ob-
served at 18.4–18.7 cm, 21.7–22.1 cm, 22.7–22.9 cm, 26.5–
26.7 cm, 31.7–32.3 cm, 32.7–33 cm and 42.2–43 cm. Most
of them contain a blue/black layer which is located directly
in the middle of the white layer or shifted towards the top.
These blue/black layers show up white in the X-radiographs
and correspond well with Fe-intensities measured with XRF
(Fig. 3). It was previously established (Seeberg-Elverfeldt et
al., 2004a) that these layers (dark within the sediment and
light in X-radiograph and BSEI) are composed of coccoliths
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and framboidal pyrite. In addition, there are several yellow-
ish layers present. The core ends with another homogenous
interval starting at 46.2 cm. This one also carries a bright
layer at the top and a pyrite layer directly beneath it.

Core GeoB 5836-2 has three main laminated sections: 1)
Phase I, from 21 to 65 cm, representing 4–6 ka; 2) Phase
II, from 417–525 cm, representing 13–22 ka; and 3) Phase
III, from 572 to 785 cm, encompassing sediments older
than∼34 ka. In addition, two small laminated intervals are
present in the early Holocene (at 260–267 cm and 312.5–
327.5 cm). The laminated sections are separated by homoge-
nous intervals of variable length. Moreover, several smaller
homogenous layers are found within laminated Phase II (13
and 22 ka) (Fig. 2). In general, laminations are clearly visible
in the mid-Holocene while they are fainter in Phases II and
III (Fig. 2).

Pyrite layers are observed throughout the cores and their
occurrence is more frequent in younger sediments. Also,
some layers of Ca-rhodochrosite are seen in Lower Phase II
sediments (18–19 ka) (Seeberg-Elverfeldt et al., 2004a).

4.2 Detailed composition of Shaban Deep sediments

4.2.1 Biogenic components

Dark and light layers/pocket structure/matrix

Thin section analysis revealed that the laminated (faint-
prominent) sediments of the Shaban Deep present three basic
structures: a) alternating light and dark continuous layers
(Fig. 4); b) a pocket-like structure where dark, discontinuous
“layers” are embedded within the light material (Fig. 5); and
c) a matrix of tightly packed diatoms (Seeberg-Elverfeldt
et al., 2004a). The first two types are found in sediments
younger than 15 ka while the matrix type is characteristic of
sediments dated 18–22 ka.

Large foraminifers, pteropods and radiolaria are em-
bedded in late and mid-Holocene sediments disturbing the
lamina fabric. Foraminifers decrease in number and size
downcore and are absent from the matrix type sediments of
18 ka to LGM age.

a) Type alternating light and dark continuous layers (Fig. 4)

Light layers are comprised of coccoliths (sometimes coc-
cospheres), terrigenous particles and diatom fragments
(Fig. 6a). Dark layers on the other hand are comprised
of either Proboscia/Rhizosolenia mats (Fig. 6b), ag-
gregates of vegetative cells and setae from different
species ofChaetocerosand Bacteriastrum, or a mixed
Chaetoceros/Nitzschia/Thalassiosiraassemblage (Fig. 6c)
(Seeberg-Elverfeldt et al., 2004a).

b) Type pocket-like structure (Fig. 5)

Dark pockets are intermingled within the light material.

These pockets contain either a mixed diatom assemblage or
an assemblage that is clearly dominated byChaetoceros.
The species that define the mixed assemblage are mostly
delicate forms and are often hard to distinguish within the
BSEI photomosaic (Fig. 6c).

Some dark pockets, especially within sediments from the
late Holocene, are filled with material of unknown origin. At
least in two cases that could be properly photographed, struc-
tures that resembled copepod remains could be recognized.
Figure 6d shows this kind of material where part of a leg
or maybe an antenna is observed. We therefore define these
structures as chitinous copepod remains.

In addition to the diatom-dominated dark pockets or
layers mentioned above there are others which appear light
gray in the BSEI photomosaics; they are filled with well
preserved coccospheres and coccolith plates as well as some
diatoms (Fig. 6e).

c) Type matrix

Sediments are characterized by a matrix of tightly packed
Rhizosoleniafrustules (18–19 ka) or by a matrix dominated
by resting spores ofChaetoceros(LGM) within which thick
non-continuous layers of large centric diatoms (Coscin-
odiscus, Azpeitia, Stellarima, and Thalassiosira) and/or
light pockets of coccoliths, terrigenous material, and diatom
fragments are embedded (Seeberg-Elverfeldt et al., 2004a).

Fecal pellets

Light layers or pockets (coccolith/terrigenous) of all
time intervals carry various amounts of fecal pellets (“fp” in
Figs. 4 and 5). They are most abundant within late Holocene
sediments where they sometimes appear in clusters (Fig. 7a);
their number decreases sharply within Lower Phase II and
LGM sediments. Two morphological types of fecal pellets
can be distinguished: elliptical and small spheroids (Figs. 7a,
b). Elliptical pellets are the most common type and they
vary from circular/oval to elongate in cross section. They
are mainly composed of coccolith plates, diatom fragments
and small amounts of terrigenous particles (Fig. 7c).

We observed elliptical pellets in different stages of dis-
integration; while their shape and outline is clearly defined
within younger sediments (Fig. 7d) they become quite diffuse
in the older sections (Fig. 7e). Finally, when their structure
breaks apart, they seem to blend into the light background
(Fig. 7f).

The second type of pellet (spherical) contains more
densely packed material. Again coccoliths and diatom frag-
ments can be found within these pellets but also some mate-
rial of unknown origin (Fig. 7b). Spheroids occur individu-
ally in all time intervals but most frequently in younger sedi-
ments.

Although we are not able to assign an origin to the
pellets (they could have been produced by copepods and

www.ocean-science.net/os/1/113/ Ocean Science, 1, 113–126, 2005
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Fig. 4. BSEI photomosaic of thin section at 23.5 cm in multicore
GeoB 7805-1. Alternating dark/light layers are shown which con-
sist ofProboscia/Rhizosolenia(P/R), coccoliths, terrigenous mate-
rial and diatom fragments (C). Note that P/R layers are continuous
while “layers” with a mixed assemblage (M) are not. Fecal pellets
(fp) and foraminifers (F) are present as well. White arrows indicate
cracks.

Appendicularia (H. Gonzalez, pers. comm.)), the fact that
copepod remains were found within our sediments supports
our hypothesis of their pelagic origin.

Homogenous intervals

As stated above, several homogenous intervals are present
within laminated sections (Fig. 2). In general, we distinguish
two types of homogenous intervals. One type contains a
mixture of coccoliths, terrigenous material, large centric
diatoms and small foraminifers without sorting. The other
type shows a gradation from coarser material at the bottom
to finer grains at the top. One such example from the late
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Fig. 5. BSEI photomosaic of thin section at 43.5 cm in multicore
GeoB 7805-1, demonstrating pocket-like structure of the sediment.
Dark pockets with a mixed assemblage (M),Chaetocerosvegetative
cells (Ch) or setae (S) can be easily distinguished and are embedded
within a light background (C) composed of coccoliths, terrigenous
material and diatom fragments. Fecal pellets (fp), foraminifers (F)
and one small cluster of Rhizosolenia (R) are also observed.

Holocene is given in Fig. 8. Here, we observe that large
particles (foraminifers and pteropods) concentrate at the
bottom of the homogenous interval. This is followed by
a mixture of coccoliths, diatoms, terrigenous material and
small foraminifers which occupies the largest part of the
homogenous section. Above the mixed interval many large
centric diatoms (e.g.Coscinodiscusspp.), coccoliths and
terrigenous material occur; this has a darker appearance in
the BSEI photomosaics. The homogenous interval ends with
very fine grained material that consists of almost exclusively
coccolith plates. This represents the distinct bright top
boundary of the homogenous interval.

Ocean Science, 1, 113–126, 2005 www.ocean-science.net/os/1/113/



I. A. Seeberg-Elverfeldt et al.: Formation of laminated sediments in the Shaban Deep, northern Red Sea 119

Seeberg-Elverfeldt et al., Figure 6

20 µm

b

d

20 µm

f

200 µm

c

50 µm

e

20 µm

a

20 µm

Fig. 6. BSEI photographs of selected laminae of multicore GeoB
7805-1 (a–e) and gravity core GeoB 5836-2 (f) showing examples
of: (a) Coccoliths (arrowheads), terrigenous particles and diatom
fragments within a light layer.(b) Proboscia, dark layer. (c) Ex-
ample of mixed assemblage.(d) Chitinous remains of copepods.
Small arrowhead points to antennae (or leg).(e) Coccospheres of
Aligosphaera robustawithin a “gray” pocket.(f) Silt accumulation.

4.2.2 Abiogenic components

Silt accumulations

A type of particle accumulation that is also present
throughout the analyzed cores consists of clusters of larger
silt grains, without developing the character of a lamina.
Boundaries of these types are seldom sharp but they are eas-
ily distinguishable from the background material (Fig. 6f).
These accumulations are composed of either a wide range of
particle sizes (unsorted) or all the particles belong more or
less to the same size fraction (sorted).

Pyrite layers

Episodic, up to 1 mm thick pyrite layers are present at
all times except in the LGM. They are most frequent in
younger sediments. Thin section analysis confirms the asso-
ciation of pyrite with BSEI light layers (Seeberg-Elverfeldt
et al., 2004a). Pyrite grains can be positioned in the middle
of a light layer or shifted towards the top of it (as in Holocene
and Upper Phase II (13–15 ka) sediments), or they can be

200 µm

Seeberg-Elverfeldt et al., Figure 7
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Fig. 7. BSEI photographs of fecal pellet types and composition in
multicore GeoB 7805-1.(a) Cluster of elliptical fecal pellets.(b)
Densely packed spheroid fecal pellet, composed of coccoliths, ter-
rigenous particles and diatom fragments, as well as some material
of unknown origin. (c) Detail of composition of elliptical pellet
(coccoliths, terrigenous material and diatom fragments). (d–f) Se-
quence of disintegration of fecal pellets proposed as the mechanism
to generate light layers.(d) Intact elliptical fecal pellet.(e)Disinte-
grating pellet.(f) Resulting light layer where the original shape of
fecal pellet can still be recognized (arrowheads).

distributed randomly over the whole light material (as in
Lower Phase II (18–19 ka) sediments). The amount and size
of framboidal pyrite grains varies within these layers.

5 Discussion

In our previous study (Seeberg-Elverfeldt et al., 2004a) we
were able to develop annual sedimentation models for Sha-
ban Deep sediments of age 4-15 ka. We proposed that
for the past∼15 000 years, the laminations represent two-
season annual varves with light, coccolith-rich layers rep-
resenting the summer flux and dark diatomaceous layers
corresponding to late fall and winter production. Further-
more, it was suggested thatRhizosolenia-dominated lay-
ers are related to stratification of the water column while
Chaetoceros-dominated layers account for mixing events.
The frequency with which the pattern coccolith/Rhizosolenia
couplets would be replaced by coccolith/Chaetoceroscou-
plets was further used as indicative of the variability between
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Fig. 8. BSEI photographs of homogenous interval in the late
Holocene (10.9–18.4 cm, multicore GeoB 7805-1). Left-hand panel
shows the four different sequences discussed in the text (from bot-
tom to top): coarse material (large foraminifers and pteropods) at
the bottom, a mixture of coccoliths, diatoms, terrigenous material
and small foraminifers on top of it, followed by a darker layer en-
riched in large centric diatoms. A pure coccolith layer bounds the
homogenous interval at the top. High magnification photographs
revealing detailed composition of the coccolith, diatom and mixed
sequences are given on right-hand panel.

stratification and mixing events (Seeberg-Elverfeldt et al.,
2004a). The new results for the late Holocene included here
also suggest that an annual signal is preserved, and point to
prevailing mixed conditions during this time. The dominant
pattern in the late Holocene is that of dark pockets with a
mixed diatom assemblage or aChaetoceros-dominated as-
semblage being interrupted by short periods of stratification
(Proboscia/Rhizosolenialayers).

For older sediments, where the carbonate signal is missing,
we were not able to establish an annual sedimentation model
(Seeberg-Elverfeldt et al., 2004a).

Studies by Erba et al. (1987) and Erba (1991) on lami-
nated sediments from various anoxic brine-filled depressions
in the Eastern Mediterranean Sea investigated the mecha-
nisms of sediment formation within this unique environment.
Sediments include discrete levels of gelatinous pellicles with
abundant biogenic and inorganic particles within a matrix of
organic matter (Erba et al., 1987) as well as large amounts of
bacteria (Erba, 1991). These bacteria live on the seawater-
brine interface within “deep mid-water bacterial mats” and
seem to form the organic matrix that entraps biogenic and
inorganic remains (Erba, 1991). After the load of entrapped
material increases to a certain point, these mats sink to the
bottom of the basin and are therefore buried by sediments
(see Fig. 13 in Erba, 1991; Erba et al., 1987). A second path-
way for the mats to reach the basin floor includes the pres-
ence of turbidity currents which destroy the floating bacte-
rial mats and transport fragments of the pellicles downwards
(Erba, 1991).

The formation of laminated sediments within the Sha-
ban Deep, northern Red Sea shows few similarities with
these processes and is described in detail below. The sed-
iment structure is different from the one described by Erba
et al. (1987) and Erba (1991) and we found no evidence for
a bacterial involvement in the formation of laminated sedi-
ments within the Shaban Deep.

5.1 Possible mechanisms for the formation of biogenic
laminae

We present possible mechanisms involved in the formation of
laminae of various types and homogenous intervals in Sha-
ban Deep sediments (Figs. 9, 10). Our rationale behind the
suggested scenarios includes several assumptions regarding
transport processes through the water column and interpre-
tation of the lamina fabric under BSEI: 1) particulate mat-
ter sinks relatively fast through the water column as fecal
pellets, aggregates and/or diatom mats; 2) particulate mat-
ter then concentrates at the SBI due to the density gradient
– until they are dense enough to break the interface – before
sinking through the brine; 3) all particles that have accumu-
lated at this interface might be subject to bacterial decom-
position; 4) sorting may occur during accumulation at the
SBI and during transport to the seafloor; 5) BSEI light layers
are generated by the disintegration of fecal pellets carrying
mainly coccoliths (and sometimes coccospheres); and 6) the
paleoflux scenarios presented earlier (Seeberg-Elverfeldt et
al., 2004a) are correct.

Our first type of sediment fabric, darkRhizosoleniaor Pro-
boscia laminae coupled with light coccolith-rich ones, are
found within the Holocene and the Upper Phase II sediments.
The species in the diatomaceous lamina have been associ-
ated with mat development in a stratified water column and
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deposition during winter mixing (shade flora and fall dump
of Kemp et al., 2000) while the calcareous type of lamina has
been referred to as representing the summer flux of coccol-
ithophorid blooms (Seeberg-Elverfeldt et al., 2004a).

Several steps are involved in the mechanism in reach-
ing thealternating light and dark continuous lamina struc-
ture (Fig. 9a) of the sediments. We suggest that, first the
summer bloom of coccolithophorids is consumed by cope-
pods and/or Appendicularia that produce fecal pellets. These
sink through the water column at speeds of 27–160 m d−1

(Yoon et al., 2001) and accumulate at the SBI until they
become heavy enough to fall through it. Secondly,Pro-
boscia/Rhizosoleniamats that have developed during the late
fall, descend through the water column in winter when strat-
ification breaks down. Mats sink fast (1–4 m h−1; Tracy Vil-
lareal pers. comm.) until they reach the SBI and accumulate
there until they are able to break the interface. When mats
are deposited on top of the fecal pellets lying on the basin-
floor, the annually laminated sediments within the Shaban
Deep are generated.

Our second sediment fabric is thepocket-like structure
found mainly within late Holocene sediments, resulting from
the deposition of diatomaceous aggregates and coccolith-rich
fecal pellets. As it was stated before, these pockets contain
a mixed diatom assemblage that is mainly associated with
species ofChaetoceros. This genus is known for polysaccha-
ride exudation and aggregation into transparent exopolymer
particles (TEPs) (Alldredge et al., 1993). Flocs ofChaeto-
ceros sink through the water column with speeds of 50–
200 m d−1 (two orders of magnitude faster than individual
Chaetoceroscells) (Alldredge and Gotschalk, 1989).

The basic mechanisms involving sinking and deposition
explained above can also be applied for the formation of the
pocket-like structure (Fig. 9b) withChaetoceros-aggregates
(that also include other diatom species) representing the win-
ter production, and fecal pellets the consumption of the sum-
mer bloom of coccolithophorids. Since the deposited ma-
terial is a mixture of different transporting agents, no clear
continuous laminae can develop. However, we suggest that
over time, this pocket-like structure gets compacted to gen-
erate the coccolith/Chaetoceroslaminae observed in Upper
Phase II (13–15 ka) sediments.

The third type of structure, amatrix of tightly packed
diatom frustules characteristic of sediments of age 18 ka
– LGM, relies on the same overall mechanisms described
above but due to the lack of the coccolith carbonate com-
ponent an annual signal could not be defined (Seeberg-
Elverfeldt et al., 2004a). It is known that during this time
frame Red Sea sediments are characterized by a so-called
“aplanktic zone” attributed to high salinities (>50 psu; Arz
et al., 2003) not favorable for planktonic foraminifer growth
(e.g. Hemleben et al., 1996), and severe carbonate dissolu-
tion (Arz et al., 2003). Taking this into account, we would
expect that fecal pellets rich in coccolithophorids were still
produced in the water column but due to the severe condi-

tions for carbonate preservation most of them would have
been dissolved.

For the Rhizosoleniamatrix (Fig. 10a) characteristic of
Lower Phase II (18–19 ka) sediments, we suggest that the
transportation pathway via mats to the brine-floor is the same
as in the Holocene. For generating theChaetocerosma-
trix characteristic of LGM sediments, long periods of in-
tense mixing and/or higher nutrient availability was assumed
(Seeberg-Elverfeldt et al., 2004a). We suggest that large
flocs (possibly TEPs) ofChaetocerosresting spores were
produced in the water column and after accumulation on the
SBI sank down to the basin floor (Fig. 10b). Both time inter-
vals also show thick non-continuous layers of large centric
diatoms that could have either first accumulated on the SBI
or have descended directly to the bottom as large aggregates
(Figs. 10a, b).

The role that the seawater-brine interface plays in the for-
mation of these special sediment fabric types is still unclear.
In our models, we attributed an “accumulating role”, that is,
particulate matter gets concentrated at the SBI due to den-
sity gradients. We believe that the most important aspect in
the laminae formation is the productivity signal in the photic
zone. The type sinking material and its structure (e.g. di-
atoms in aggregates or in mats, fecal pellets) determines the
sediment fabric that can be found in the basin itself. Fu-
ture studies would have to include the use of remotely op-
erated vehicles at different times of the year and sediment
traps at various depths to help understand the processes that
take place at this special boundary layer and its role in the
sedimentation process.

5.2 Possible depositional sequence of homogenous inter-
vals

Some of the investigated homogenous intervals showed a
clear gradation while others were like an assortment of un-
sorted material. Especially the two homogenous intervals
during the late Holocene show the clear characteristics of tur-
bidites (e.g. Reineck and Singh, 1980).

The Shaban Deep is part of the tectonically active axial
depression where the African and Arabian plate are slowly
drifting apart (e.g. Braithwaite, 1987). These movements
cause underwater earthquakes that mobilize the sediment that
is deposited on the slope.

The southern and eastern basins of the Shaban Deep it-
self have very steep slopes along the central ridge. The other
slopes are gentler in the eastern basin (Fig. 1). Both basins
are surrounded by a carbonate crust which possibly origi-
nates from oxidation of methane around the SBI (Pätzold et
al., 2003). Only a small amount of sediment can collect on
this crust. We suggest that even small tectonic movements
can cause this material to slide down the slope. This turbid-
ity current could either a) slide right into the brine pool as
a slump; or b) flow separation may occur with coarse mate-
rial streaming downslope and finer material moving on top
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of the SBI (McCave, 1972). This will disturb the interface
and sinking turbiditic material will collect the biogenic par-
ticles that have already accumulated on the SBI. The sce-
nario of flow separation of turbidites was earlier described
for the brine-filled Bannock Basin (Eastern Mediterranean)
by Corselli and McCoy (1989), and could explain the grada-
tion of homogenous intervals within late Holocene and LGM
Shaban Deep sediments (Fig. 8).

5.3 Possible origin of silt accumulations

The above described accumulations of silt particles (sorted
and unsorted) could be associated with agglutinated
foraminifers (J. Pike, pers. comm.). Berggren and Boersma
(1969) found low abundances of some benthic foraminifers
(including agglutinated species) within Red Sea brine cores.
However, preserved shells of agglutinated foraminifers were
not observed within any of our investigated sediments from
the Red Sea.

Pike and Kemp (1996b) identified silt aggregates in anoxic
laminated sediments from the Guaymas (Gulf of Califor-
nia) and Santa Barbara basins as remains of agglutinated
foraminifers. Brodie and Kemp (1995) also mentioned “silt
pellets” within the Peruvian upwelling sediments that show
the same characteristics as our accumulations of silt grains.
These authors describe them as either consisting of “a wide
range of grain sizes, or almost exclusively of small grains
(under 20µm in size)” and assigned their origin to remains
of agglutinated foraminifers.

Pike and Kemp (1996b) describe a model for the forma-
tion of these accumulations that includes the collection of silt
grains of different sizes by the individual foraminifer into a
detritic cover, where smaller grains are used to build a new
chamber while larger particles are used for protection. Af-
ter finishing the new chamber, the foraminifer leaves a pile
of coarser grains behind which are then preserved within the
sediment (Pike and Kemp, 1996b). This model is based upon
investigations of Bender (1992) on the chamber formation of
Textularia candeiana.

It is not likely that agglutinated foraminifers are able to
live within the sediments of the brine basin since the brine
is anoxic at all times. However, organisms could get trans-
ported from the slopes of the basin and since they are not able
to survive in this special environment, leave the remains of
their chambers behind.

5.4 Possible origin of pyrite layers

Pyrite layers of all investigated intervals were always asso-
ciated with coccolith layers and secondary formed carbon-
ate was not present. Hübner (2002) investigated sediments
from the brine-filled Urania Basin (eastern Mediterranean)
and suggested that pyrite formation started at the SBI. Filter
samples from Meteor cruise M 52/3 (2002) from the SBI con-

tained amorphous Fe-oxides but no Fe-monosulfides were
found (M. Schmidt, pers. comm.).

Although we are unable to deliver a specific model for the
formation of pyrite layers we suggest that the first step in the
formation of pyrite occurs at the SBI under certain environ-
mental conditions that permit the formation of amorphous
monosulfides. These conditions include a) a high content of
organic matter; b) hydrogen sulfide, produced during sulfate
reduction; c) elemental sulfur availability; and d) bacterial
oxidation of methane at the SBI. The final transformation of
monosulfides to framboidal pyrite takes place either at the
brine-sediment interface or within the sediment after deposi-
tion.

6 Conclusions

Backscattered electron microscopy of polished thin sections
reveals that Shaban Deep sediments include six different
types of sediment fabric:

– Alternating light and dark continuous layers composed
of coccoliths/diatom couplets;

– A pocket-like structure composed of diatom aggregates
embedded within light material (coccoliths and terrige-
nous material);

– A matrix of tightly packed diatoms;

– Homogenous intervals due to turbidity events;

– Silt accumulations; and

– Pyrite layers

The former three structures and their composition result from
a combination of biogenic production in the water column
and eolian input into the Red Sea, and a sequence of events
that include: a) fast sinking through the water column in the
form of aggregates, fecal pellets and diatom mats; b) accu-
mulation of particles at the SBI; c) sorting during settling
through the brine; and d) preservation in the sediment.

Silt accumulations are thought to be the remains of agglu-
tinated foraminifers. The formation of framboidal pyrite may
be initiated at the SBI.
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Löffler, S.-B., Schriftreihe der Deutschen Gesellschaft für Ge-
owissenschaften, Deutsche Gesellschaft für Geowissenschaften,
Erlangen, Germany, pp. 353, 2005.

Shaikh, E. A., Roff, J. C., and Dowidar, N. M.: Phytoplankton ecol-
ogy and production in the Red Sea off Jiddah, Saudi Arabia. Mar.
Biol., 92, 405–416, 1986.

Stoffers, P., Botz, R., and Scholten, J.: Isotope Geochemistry
of Primary and Secondary Carbonate Minerals in the Shaban-
Deep (Red Sea), in: Sediments and Environmental Geochem-
istry, edited by: Helnig, D., Rothe, P., Förster, U., and Stoffers,
P., Springer, Berlin, 83–94, 1990.

Yoon, W. D., Kim, S. K., and Han, K. N.: Morphology and sinking
velocities of fecal pellets of copepod, molluscan, euphausiid, and
salp taxa in the northeastern tropical Atlantic, Mar. Biol., 139,
923–928, doi:10.1007/s002270100630, 2001.

Ocean Science, 1, 113–126, 2005 www.ocean-science.net/os/1/113/

http://www.marum.de/M52_-_Schwarzes_Meer_-_Mittelmeer_-_Rotes_Meer.html
http://www.marum.de/M52_-_Schwarzes_Meer_-_Mittelmeer_-_Rotes_Meer.html

