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Abstract

Superparameterization (SP) is a multiscale computational approach wherein a large
scale atmosphere or ocean model is coupled to an array of simulations of small scale
dynamics on periodic domains embedded into the computational grid of the large scale
model. SP has been successfully developed in global atmosphere and climate models,5

and is a promising approach for new applications. The authors develop a 3D-Var varia-
tional data assimilation framework for use with SP; the relatively low cost and simplicity
of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively
expensive multiscale SP models. To demonstrate the assimilation framework in a sim-
ple model, the authors develop a new system of ordinary differential equations similar10

to the two-scale Lorenz-’96 model. The system has one set of variables denoted {Yi},
with large and small scale parts, and the SP approximation to the system is straightfor-
ward. With the new assimilation framework the SP model approximates the large scale
dynamics of the true system accurately.

1 Introduction15

Superparameterization (SP) is a multiscale computational method for parameterizing
small scale effects in large scale atmosphere and ocean models. It was originally de-
veloped and has been particularly effective as a cloud parameterization in atmosphere
models (Grabowski and Smolarkiewicz, 1999; Randall et al., 2003), and has been im-
plemented in global atmosphere and climate models (Khairoutdinov and Randall, 2001;20

Tao et al., 2009; Randall et al., 2013). SP couples a large scale, low resolution model
to an array of local small scale, high resolution simulations embedded within the com-
putational grid of the large scale model. The computational cost is kept down through
a variety of methods, most prominently by reducing the dimensionality of the small
scale simulations, e.g. using one vertical and one horizontal coordinate in the afore-25

mentioned atmospheric applications. Although atmosphere and climate models with
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SP are particularly successful at producing a realistic Madden–Julian oscillation and
diurnal cycle of convection over land (Khairoutdinov et al., 2005), there are as yet no
data assimilation systems designed for use with these models.

The authors recently developed an ensemble Kalman filter framework for data assim-
ilation with SP (Grooms et al., 2014, hereafter GLM14). This framework was developed5

in the context of stochastic SP, a variant of SP that reduces computational cost by re-
placing the small scale simulations of SP with quasilinear stochastic models (Grooms
and Majda, 2013; Majda and Grooms, 2014). Stochastic SP has only been developed
for idealized turbulence models (Grooms and Majda, 2013, 2014a, b; Grooms et al.,
2015), and is not yet implemented in global atmosphere, ocean, or climate models.10

Because of the relatively high cost and computational complexity of global atmosphere
and climate models with SP, the extra cost associated with an ensemble-based data
assimilation system makes it unlikely that it will be possible to use these models with
the framework of GLM14 in the near future.

Here we develop a 3D-Var variational data assimilation framework for SP that builds15

on and modifies the framework of GLM14. Observations of physical variables have
large scale and small scale parts, the former of which is equated with the large scale
model variables, and the latter with the variables of the small scale embedded simula-
tions. A key feature of SP is that the small scale simulations are periodic, so a location
on the small scale computational grid does not correspond precisely to any location in20

the real physical domain; as a result, the small scale simulations provide only statisti-
cal information about the small scales, and this information can be used as a prior in
the data assimilation context. In GLM14 an ensemble of SP simulations provides prior
information on the large scale variables, but in the present approach the prior informa-
tion on the large scales comes from a single SP simulation and a time-independent25

“background” covariance matrix for the large scale variables. When the observation
operator is linear the analysis estimates of the large and small scale variables can be
computed independently of each other, and the small scale covariance information ef-
fectively provides a time- and state-dependent estimate of representation error. When
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the observation operator is nonlinear the large and small scale analysis must be com-
puted simultaneously by minimizing an objective function. Although analysis estimates
of the small scale variables can be computed with linear observations, and must be
computed with nonlinear observations, our framework does not at this time use the
small scale analysis estimate to update any of the small scale SP variables because5

the latter cannot be unambiguously associated with any real physical location. A key
update of the GLM14 framework is that we here compute a small scale analysis es-
timate at locations where observations are available, rather than at every coarse grid
point. This can result in significant computational savings in the case of a nonlinear
observation operator. We also update the GLM14 framework to better handle observa-10

tions at locations off the coarse grid.
The 3D-Var framework with SP is presented in Sect. 2. In Sect. 3 we develop a new

system of ODEs based on the two-scale Lorenz-’96 (L96) model (Lorenz, 1996, 2006),
and an SP approximation to that system. Assimilation experiments using the new 3D-
Var framework and the new system are described in Sect. 4, followed by conclusions.15

2 Variational data assimilation with superparameterization

The key aspect of the GLM14 framework is the way in which the variables of the true
dynamical system are related to those of the superparameterization. Let the large scale
variables of the SP simulation be denoted u (the overbar does not denote a statistical
mean), and let the small scale variables be denoted ũ. In most SP applications there is20

a set of small scale variables at every point of the large scale computational grid. The
small scale variables exist on a local periodic domain, and have zero average across
the periodic directions.

In GLM14, observations are related to the SP model variables using the following
observation model25

v = H(L(u+u′))+ε (1)
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where H is the observation operator and ε is a vector of zero-mean normal random
variables associated with observation error. The vector u′ has the same size as u,
and models the small-scale contribution to physical variables at the coarse grid points,
i.e. u = u+u′ is the vector of real physical variables at the coarse model grid points. The
physical variables u are interpolated to the location of the observations by L. The mean5

and covariance of u′ are computed from the statistics of the small scale SP variables
ũ.

As noted in GLM14, it is unrealistic to use the same interpolation operator for both the
large and small scale variables because it assumes that the small scale variables vary
smoothly between the coarse grid points, whereas the small scale variables should by10

definition vary over shorter distances. (Observations in GLM14 were taken only on the
coarse grid points, avoiding the issue.) Instead of specifying an alternative interpolation
operator for the small scales, we update the framework by altering the definition of u′

to include small scale variables only at the points where observations are taken.
Let P denote the number of different physical locations where observations are avail-15

able (for simplicity of exposition we assume that there is only one observation per lo-
cation, i.e. v ∈RP ). The updated observation model for the pth location is

vp = Hp(Lp(u)+u′p)+εp (2)

where Lp interpolates the large scale model variables u to the observation location
and εp is a zero-mean Gaussian random variable. There is thus one vector u′p of20

small scale variables per observation location. The updated observation model for all
P observations can be written in vector form as

v = H(L(u)+u′)+ε (3)

where u′ is no longer defined as in GLM14, but according to the discussion above.
To complete the specification of the 3D-Var framework we specify a prior joint distri-25

bution for u and u′ with mean

E[u] = µ, E[u′] = 0 (4)
517
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and covariance[
B 0
0 P′

]
. (5)

The small scale variable u′ is assumed to be uncorrelated with the large scale variable.
In practice, the large and small scale variables are certainly not independent, but as
shown in GLM14 the assumption that they are uncorrelated is reasonable. As typical5

in a 3D-Var setting, the background covariance matrix B for the large scale variables
is independent of time, and the prior mean for the large scales is given by a single
forecast of the large scale part of the SP model.

The covariance of the small scale variables P′ is computed from the small scale
variables of the SP model, and thus changes from one assimilation cycle to the next.10

Specifically, it is first assumed that the small scale variables at different observation
locations are uncorrelated from each other so that one needs only compute the co-
variance matrices P′p of the u′p variables. This assumption is reasonable as long as the
observations are taken at locations reasonably well separated compared to the correla-
tion length of the small scale variables. (The framework could be updated for situations15

where the observations are closer than this, e.g. by using spatial correlation informa-
tion for the small scale variables computed from the SP simulation, but this is beyond
the scope of the present investigation.) To compute P′p we begin by computing auxil-

iary small scale sample covariance matrices P̃k using the small scale SP variables ũ
at each coarse grid point. Let {ũk,j}

J
j=1 be the small scale SP variables located in a pe-20

riodic domain at the kth coarse grid point, where there are J grid points in the periodic
embedded domain. Then, recalling that their average over J is zero, the auxiliary small
scale sample covariance matrix is

P̃k =
1

J −1

J∑
j=1

ũj ,kũ
T
j ,k (6)
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where the superscript T denotes a vector transpose. It is typically the case that J is
large enough that P̃k is full rank, and we do not consider exceptions here. Finally,
the small scale covariance matrices at the observation locations P′p are obtained by

interpolating the elements of the matrices P̃k from the coarse grid to the locations of the
observations, which assumes that the small scale statistics vary smoothly on the large5

scale. The interpolation method used to interpolate the small scale covariance matrices
need not be the same as L, and should have positive coefficients in order to ensure that
the small scale covariance matrices remain positive definite. (It may not be necessary
to compute sample covariance matrices P̃k at every coarse grid point; one only needs
to compute them at points needed in the interpolation.) For comparison, in GLM1410

the covariance of the small scale variables P′ is the same size as the large scale
background covariance B, and consists of the auxiliary small scale sample covariance
matrices P̃k arranged in block-diagonal form. When observations are taken at every
coarse grid location the GLM14 formulation is equivalent to the new one.

Having thus specified the observation model and prior mean and covariance, the15

3D-Var analysis estimate of the system state minimizes the following objective function
(Talagrand, 2010)

Υ(u,u′) =(u−µ)TB
−1

(u−µ)+u′TP′−1u′ + (v −H(L(u)+u′))T

R−1(v −H(L(u)+u′)) (7)

where R is the covariance matrix of the observation error vector ε.20

When the observation operator is linear, H = H, the analysis can be computed from
the Kalman filter formulas (Talagrand, 2010), which in this case gives

u
a
= µ+K(v −HLµ) (8)

K = B(HL)T(HLB(HL)T +HP′HT +R)−1 (9)

u′a = K′(v −HLµ) (10)25
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K′ = P′HT(HLB(HL)T +HP′HT +R)−1 (11)

where the superscript a denotes the analysis estimate. A key feature of these formu-
las is that the large scale and small scale estimates can be computed independently.
In particular, the large scale estimate can also be computed as the minimizer of the
following objective function5

Υ(u) = (u−µ)TB
−1

(u−µ)+ (v −HLu)T(HP′HT +R)−1(v −HLu). (12)

In cases where the small scale estimate is not used and the observation operator
is linear, the small scale estimate does not need to be computed. It can be seen from
Eqs. (9) and (12) that the observed small scale covariance matrix HP′HT acts as a time-
varying estimate of the representation error since it inflates the measurement error10

covariance R.
In GLM14 the small scale covariance matrix P′ is defined differently (as described

above) and the small scale vector u′ is the same size as the large scale vector u. In
the GLM14 formulation the final term in the objective function Eq. (7) is replaced by

(v −H(L(u+u′)))TR−1(v −H(L(u+u′))). (13)15

For linear observations the GLM14 versions of the Kalman filter formulas are

u
a
= µ+K(v −HLu) (14)

K = B(HL)T(HL(B+P′)(HL)T +R)−1 (15)

u′a = K′(v −HLu) (16)

K′ = P′(HL)T(HL(B+P′)(HL)T +R)−1. (17)20

In the new approach there is one set of small scale variables for each location where
observations are available, whereas in GLM14 there are small scale variables at each
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coarse grid point. In global atmosphere and climate models there are typically fewer
observations than coarse grid points; when the observation operator is nonlinear the
new formulation is more efficient because the objective function has fewer degrees of
freedom. Another key difference is in the assumptions that go into the specification
of the small scale background covariance: in GLM14 the small scale variables are5

tacitly assumed to vary smoothly over the physical domain, since they are smoothly
interpolated between coarse grid points, whereas in the present approach only the
small scale covariance is assumed to vary smoothly over the domain.

The following section develops a system of nonlinear ordinary differential equations
and an SP approximation based on the two-scale Lorenz-’96 model (Lorenz, 1996,10

2006), and the 3D-Var assimilation framework is tested in the context of this model in
Sect. 4.

3 A multiscale Lorenz-’96 model with superparameterization

In this section we develop a new simple model for SP in which to demonstrate our data
assimilation framework. Majda and Grote (2009) developed an idealized model of SP,15

but the system suffers from one major drawback: it does not consist of an SP approxi-
mation to an idealized system, but rather consists only of an idealized SP model. Harlim
and Majda (2013) used the model of Majda and Grote (2009) to develop a data assimi-
lation strategy for SP, but with the assumption that direct observations of the large scale
variables were available, rather than having both large and small scale contributions to20

the observations.
Wilks (2012) developed an SP approximation for the two-scale Lorenz-’96 system,

which has the following form (Lorenz, 1996, 2006)

Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk −
hc
b

J∑
j=1

Yj ,k + F (18)
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Ẏj ,k = c
[
−bYj+1,k(Yj+2,k − Yj−1,k)− Yj ,k +

h
b
Xk

]
. (19)

The Xk variables have periodicity Xk = Xk+K , and the Yj ,k variables have periodicity
Yj+J ,k = Yj ,k+1 and Yj ,k+K = Yj ,k , where j = 1, . . .,J and k = 1, . . .,K . The combined in-
dex j + J(k −1) is naturally associated with spatial location along a latitude circle, and
the local average J−1∑J

j=1 serves to separate large and small spatial scales. There5

are two sets of large scale variables (Xk , and the j average of Yj ,k) but only one set
of small scale variables (Yj ,k minus its j average). Observations of the Yj ,k variables
include contributions from the large and small spatial scales, but observations of the
Xk variables are purely large-scale. It is not difficult to incorporate this into the filtering
framework (simply set the small scale part of the Xk variables to zero), but we prefer10

an idealized model with only one set of variables. We therefore develop an alternative
model with a similar form but with only one set of variables and with spatially homoge-
neous statistics.

The model is defined by the following equation

Ẏ = hNY (Y )+ JTTNX (TY )−Y + F 1JK (20)15

where Y = {Yi}
JK
i=1, where 1JK is a vector of length JK with all elements equal to 1, and

T is a matrix in RK×JK . The nonlinear functions NY and NX are defined as

{NY (Y )}i = −Yi+1(Yi+2 − Yi−1) (21)

{NX (X)}k = −Xk−1(Xk−2 −Xk+1) (22)

where Eqs. (21) and (22) are evaluated assuming periodicity for the vectors X =20

{Xk}
K
k=1 and Y : Xk+K = Xk and Yi+JK = Yi . The matrix T extracts the large-scale part

of Y ; we choose to let T be defined as the projection onto the first K discrete Fourier
modes, followed by evaluation on an equispaced grid of K points. The large scale dy-
namics are obtained by applying T to Eq. (20) from the left

Ẋ = hTNY (Y )+NX (X)−X + F 1K (23)25
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where we define the large scale component X = TY , and use that JTTT is the identity
matrix and that T1JK = 1K (these are true for our choice of a Fourier projection, but
other choices of T are possible). Note that when h = 0 the dynamics are those of the
single-scale Lorenz-’96 model with K modes, and when h 6= 0 the nonlinearity Y N cou-
ples large and small scales. Energy conservation for the nonlinear terms in Eq. (20)5

is obtained by noting that Eq. (21) implies Y T
NY (Y ) = 0, and that Eq. (22) implies

Y
TTT

NX (TY ) = XT
NX (X) = 0. The matrix JTT interpolates from RK to RJK , and it is

convenient to define notation for the small scale part of Y :

y = {yi}JKi=1 = Y − JTTTY . (24)

The superparameterization approximation is governed by10

Ẏj ,k = −hYj+1,k(Yj+2,k − Yj−1,k)−Xk−1(Xk−2 −Xk+1)− Yj ,k + F (25)

where Xk = J
−1∑J

j=1Yj ,k , and there is local as well as global periodicity: Yj+J ,k = Yj ,k
and Xk+K = Xk . The large scale dynamics in the SP approximation are obtained by j
averaging Eq. (25), which gives

Ẋk = −
h
J

J∑
j=1

Yj+1,k(Yj+2,k − Yj−1,k)−Xk−1(Xk−2 −Xk+1)−Xk + F . (26)15

When h = 0 the large scale dynamics of the SP approximation and the true system
are equivalent. As in more complex SP applications, the small scale variables (here
Yj ,k −Xk) are locally periodic, and are coupled to the large scale using a local average
over a periodic domain in a manner analogous to the coupling in more complex SP
models (e.g., Grabowski, 2004). The Xk variables in the SP model attempt to accu-20

rately model the dynamics of X in the true system, but the small scale variables of the
SP approximation are only statistically related to the small scale variables of the true
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system, i.e. one does not expect an SP variable Yj ,k to be a direct approximation of any
of the true system variables Yi .

The purpose of this research is not to study the SP approximation in this system, but
rather to use the system as a testbed for our data assimilation framework. We therefore
choose to focus on parameter regimes where the SP approximation is reasonably ac-5

curate, setting J = 128 so that there is a good scale separation (the SP approximation
should break down for small J). The number of large scale modes is set to K = 41;
we choose 41 rather than the usual 40 so that the discrete Fourier modes associated
with the large scale variables are 0,±1, . . .,±20, and the twentieth mode is not split
between large and small scales. It remains to choose F and h. In general, for fixed10

nonzero h the small scale variables become more chaotic and larger amplitude as F
increases, and similarly for fixed F as h increases. As the small scales become more
chaotic and larger amplitude the large scale variables become less chaotic. This behav-
ior is perhaps counterintuitive, but similar behavior has been observed in the two-scale
Lorenz-’96 system by Abramov (2012). Balancing the desire for complex large scale15

dynamics and turbulent small scale dynamics, we choose to focus on two parameter
regimes.

I: F = 30, h = 0.4

II: F = 21, h = 0.35

Some characteristics of the dynamics in regimes I and II are presented in Figs. 1 and20

2, respectively. In regime I the large scale dynamics consist of a train of eight propa-
gating and nonlinearly interacting “waves”, as seen in the time series of the X variables
in Fig. 1a. The large scale dynamics of the SP approximation are qualitatively simi-
lar, as shown in Fig. 1b. The time-lagged autocorrelation function of the Xk variables
(averaged over k) is shown in Fig. 1e, and displays an oscillatory structure associated25

with the wave train. The initial decay of the time-lagged autocorrelation is approximated
by an exponential of the form exp{−(λ+ iω)t} with decorrelation time λ−1 = 0.84 and
oscillation period 2π/ω = 0.71; the resurgence of correlation between 6 and 8 time
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units is associated with the time it takes a single wave to propagate once around the
domain. The regularity of the wave train is also reflected in the space-lagged autocor-
relation function for the Xk variables shown in Fig. 1f, which is well approximated by
the SP dynamics. Figure 1c shows the Yi variables at an instant of time (blue), along
with the large scale part (red; the projection onto the first 41 Fourier modes) and the5

Xk variables (yellow circles). There is clearly strong small scale variability, but not so
strong that it completely obscures the large scale pattern, and the amplitude of the
small scale variability varies over the domain. Figure 1d shows the time-averaged en-
ergy spectrum |Ŷκ |

2, where Ŷκ is the discrete Fourier coefficient of Yi with wavenumber
κ. There is a clear separation in amplitude between the large scale Fourier modes10

(κ ≤ 20) and the small scale modes, showing that the large scale energy is concen-
trated near wavenumbers κ = 7 and 8, while the small scale energy is more broadly
distributed among Fourier modes. The broad distribution of small scale energy among
Fourier modes is indicative of the strongly chaotic small scale dynamics, as is the rapid
temporal decorrelation of the small scale variables yi shown in Fig. 1e. The decorre-15

lation time of the small scale variables yi is estimated as 0.2 using the integral of the
time-lagged autocorrelation function.

In regime II the large scale dynamics are more chaotic, though wave trains are still
evident in the time series of X in Fig. 2a. The large scale dynamics of the SP ap-
proximation are again qualitatively similar, as shown in Fig. 2b. The time-lagged au-20

tocorrelation function of the Xk variables in Fig. 2e decays much more rapidly than in
regime I. The initial decay of the time-lagged autocorrelation is approximated by an ex-
ponential of the form exp{−(λ+ iω)t} with decorrelation time λ−1 = 0.38 and oscillation
period 2π/ω = 0.95, and there is no resurgence of correlations at long lag times. The
decreased regularity of the wave train is reflected in the space-lagged autocorrelation25

function for the Xk variables shown in Fig. 2f, which is again well approximated by the
SP dynamics. The snapshot of the Yi variables in Fig. 2c shows a diminished level of
small scale variability overall, with some regions having almost no small scale activity
and others having strong small scale variability. The energy spectrum in Fig. 2d shows
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that the energy is more broadly distributed among large scale Fourier modes, though
there is still a peak at wavenumber κ = 8. The broad distribution of small scale energy
among Fourier modes is again indicative of the strongly chaotic small scale dynamics,
as is the rapid temporal decorrelation of the small scale variables yi shown in Fig. 2e.
The decorrelation time of the small scale variables yi is estimated as 0.23 using the5

integral of the time-lagged autocorrelation function.
The Yi variables have a uniform time mean of 3.8 and 3.6 in regimes I and II, respec-

tively, which is accurately reproduced by the SP approximation. The Xk variables have
variance 31 and 32 in regimes I and II, respectively, and their SP counterparts have
slightly higher variances of 33 and 34. The small scale variables yi have climatological10

variance of 70 in regime I and 29 in regime II, though Figs. 1c and 2c show that this
variability is unevenly distributed over the physical domain at any given instant. Data
assimilation experiments for both these regimes are described in the next section.

4 Assimilation experiments

In this section we describe data assimilation experiments in both regimes of the test15

model of the foregoing section using the 3D-Var framework from Sect. 2 and the SP
approximation described in the foregoing section. Observations are taken at P =MK
equispaced points with M = 1, 2, and 4; specifically, observations are taken at ip =
1+pJ/M for p = 1, . . .,P . Observations are either linear, with vp = Yip+εp, or nonlinear,

with vp = (Yip +30)2/50+εp. In both cases the observation errors εp are iid Gaussians20

with zero mean and variance 0.1. Observations are assimilated every ∆t time units. In
regime I we test ∆t = 0.2 and 0.6; for comparison the decorrelation times of the small
scale and large scale variables in this regime are 0.2 and 0.84. In regime II we test
∆t = 0.2 and 0.4, which are close to the decorrelation times of the small scale and
large scale variables, respectively.25
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Specification of the background covariance matrix is a crucial aspect of any 3D-Var
assimilation system. We consider the simplest possible estimate B = σ2IK where IK
is the K ×K identity matrix and σ2 is a tunable parameter. Assimilation experiments
are run over a range of σ2 and the optimal value is chosen based on RMS errors;
the results are very weakly sensitive to σ2 as long as it is within a factor of 2 of the5

diagnosed forecast error variance. Since our observing system includes at least one
observation for every Xk variable, it is less important to build a background covariance
matrix with correlations between the Xk variables.

A single assimilation experiment consists of 1000 cycles, where the SP variables
for the first forecast are initialized directly from the true model variables. Although the10

assimilation system provides estimates of the small scale part of the true system at
the location of the observations, this information is far from sufficient to provide an
estimate of the full state Y of the true system. We view the 3D-Var assimilation as
primarily aimed at estimating the large scale model variables Xk , and error statistics
are tracked only for the large scale variables. We track two performance metrics for the15

large scale variables, the time averaged RMS error

RMS Error = ‖X −XSP‖2 (27)

and the time averaged pattern correlation

Pattern Correlation =
X

T
X

SP

‖X‖2‖X
SP‖2

(28)

both for the forecast and for the analysis.20

As a point of comparison for the performance of the forecast in the assimilation
experiments, we consider climatological values of RMS error and pattern correlation
defined using the uniform climatological mean value of Xk as a prediction: Xk = 3.8 in
regime I and Xk = 3.6 in regime II. The climatological RMS error is simply the square
root of the climatological variance: 5.6 in regime I and 5.7 in regime II. The climato-25

logical pattern correlation is the time averaged pattern correlation between Xk and its
527
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uniform climatological mean value: 0.57 in regime I and 0.53 in regime II. If the forecast
has larger RMS error or smaller pattern correlation than the climatological values then
the forecast is of very limited utility.

As a point of comparison for the performance of the analysis estimate in the assimi-
lation experiments we take a “smoothed observation” estimate that is obtained by pro-5

jecting the observations onto the largest K Fourier modes. For example, when M = 1
there are K observations and the “smoothed observation” estimate of the Xk vari-

ables is simply Xk ≈ vp for the linear case and Xk ≈
√

50vp−30 for the nonlinear case.

The RMS errors in the smoothed observation estimate are tracked over the course of
each assimilation experiment, rather than computing climatological values. The 3D-Var10

should at a minimum perform better than the smoothed observations. The results for
both regimes are presented in Tables 1 and 2 in the format Forecast→Analysis. In all
cases the errors decrease asM increases, and the analysis significantly improves over
the forecast.

The large scale dynamics are more predictable in regime I than in regime II, but the15

small scale variance is larger as well, making it harder to obtain an accurate estimate
of the large scales. With a short observation time ∆t = 0.2, the forecast and analysis for
linear and nonlinear observations both have RMS errors smaller than both the climato-
logical error of 5.6 and the error in the smoothed observation estimate. The nonlinear
observations generate slightly more accurate results than the linear observations when20

M = 1, and the linear observations generate slightly more accurate results for M = 4,
but overall the results are similar. With a longer observation time ∆t = 0.6 the results
are, naturally, less accurate. In every case the analysis is more accurate than both the
climatological error and the smoothed observations, but the forecasts are more accu-
rate than the climatological mean only with M = 4. With M = 1 and 2, the RMS forecast25

errors are worse than the climatological error, but the forecast pattern correlations are
still a bit better than the climatological pattern correlation. As with the shorter observa-
tion time, the results are more accurate with the nonlinear observations.
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In regime II the results with the linear and nonlinear observations are very similar
in all cases. With a short observation time ∆t = 0.2, the forecast is always more ac-
curate than the climatological mean, and the analysis is always more accurate than
the smoothed observations. With a longer observation time ∆t = 0.4 the forecasts are
no more accurate than climatology, but the analysis is still more accurate than the5

smoothed observations, though at M = 4 the analysis is only slightly more accurate.

5 Conclusions

Superparameterization (SP) is a multiscale computational approach that has been suc-
cessfully applied to modeling atmospheric dynamics, and that shows promise for more
general applications (Tao et al., 2009; Randall et al., 2013; Majda and Grooms, 2014).10

Grooms et al. (2014) have developed an ensemble Kalman filter framework for use with
SP, but the standard approach to SP in global atmosphere and climate models, where
small scale nonlinear dynamics are simulated on an array of periodic domains embed-
ded in the computational grid of a large scale model, is too computationally demanding
for use in an ensemble framework. We here develop a 3D-Var variational data assim-15

ilation framework for SP that builds on and modifies the framework of GLM14. The
main update to the GLM14 framework, in addition to using a variational as opposed to
ensemble Kalman filter setting, is that small scale estimates are computed at locations
where observations are taken, rather than at every point of the large scale model’s
computational grid.20

The data assimilation framework is demonstrated in a new system of ordinary dif-
ferential equations based on the two-scale Lorenz-’96 model (Lorenz, 1996, 2006).
Unlike the two-scale Lorenz-’96 model the new model has only one set of variables, Yi ,
and these variables have large and small scale parts. An SP approximation to the new
system is developed, which is perhaps the simplest idealized model of SP. The new25

data assimilation framework is tested in two regimes of the new model, with both linear
and nonlinear observation operators. In regime I the large scale dynamics consist of
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a weakly chaotic wave train, with relatively strong small scale variability superposed. In
regime II the large scale dynamics are more strongly chaotic, and there is less small
scale variability. In both regimes the data assimilation performs as expected, with in-
creased accuracy as the number of observations increases.

Our work lays a foundation for 3D-Var data assimilation with existing SP models.5

The main difficulty in using the framework with an SP atmosphere or climate model is
in specifying an appropriate background covariance matrix for the large scale model,
but this difficulty should not be insurmountable given the extensive use of the 3D-Var
approach in atmosphere and ocean data assimilation (e.g. Kalnay, 2002; Kleist et al.,
2009). In addition, the new framework removes one of the difficulties associated with10

development of a 3D-Var framework for large scale models: the small scale simulations
in the multiscale SP computation provide direct information on the small scale statistics,
obviating, or at least simplifying, the need to develop models of representation error.
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Table 1. Results of the assimilation experiments for regime I. There are P =MK equispaced
observations, assimilated at time intervals of ∆t, and σ2 is the amplitude of the background
covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.6 and 0.57.

∆t M Observation type σ2 RMS error Smoothed observation error Pattern correlation

0.2 1 Linear 15 4.9→ 4.3 8.2 0.73→ 0.79
0.2 1 Nonlinear 20 4.7→ 4.1 8.1 0.74→ 0.80
0.2 2 Linear 10 4.1→ 3.4 5.7 0.81→ 0.87
0.2 2 Nonlinear 20 4.2→ 3.4 5.7 0.80→ 0.87
0.2 4 Linear 10 3.4→ 2.6 4.1 0.87→ 0.92
0.2 4 Nonlinear 15 3.8→ 2.8 4.0 0.83→ 0.91
0.6 1 Linear 35 6.1→ 5.1 8.2 0.60→ 0.72
0.6 1 Nonlinear 40 5.6→ 4.8 8.2 0.63→ 0.74
0.6 2 Linear 30 5.5→ 4.2 5.7 0.66→ 0.82
0.6 2 Nonlinear 30 5.2→ 4.0 5.7 0.68→ 0.82
0.6 4 Linear 25 5.0→ 3.3 4.1 0.72→ 0.89
0.6 4 Nonlinear 30 4.8→ 3.2 4.0 0.73→ 0.89
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Table 2. Results of the assimilation experiments for regime II. There are P =MK equispaced
observations, assimilated at time intervals of ∆t, and σ2 is the amplitude of the background
covariance matrix. For comparison, the climatological RMS error and pattern correlation are
5.7 and 0.53.

∆t M Observation type σ2 RMS error Smoothed observation error Pattern correlation

0.2 1 Linear 50 5.2→ 3.8 5.5 0.66→ 0.83
0.2 1 Nonlinear 30 5.2→ 3.8 5.5 0.66→ 0.83
0.2 2 Linear 30 4.8→ 3.0 3.8 0.70→ 0.89
0.2 2 Nonlinear 30 4.9→ 3.1 3.8 0.70→ 0.89
0.2 4 Linear 15 4.6→ 2.4 2.7 0.73→ 0.93
0.2 4 Nonlinear 30 4.6→ 2.4 2.7 0.74→ 0.94
0.4 1 Linear 40 6.2→ 4.2 5.5 0.53→ 0.79
0.4 1 Nonlinear 50 6.1→ 4.2 5.5 0.53→ 0.80
0.4 2 Linear 40 5.9→ 3.3 3.8 0.57→ 0.87
0.4 2 Nonlinear 50 5.9→ 3.4 3.8 0.56→ 0.87
0.4 4 Linear 40 5.7→ 2.6 2.7 0.59→ 0.92
0.4 4 Nonlinear 50 5.8→ 2.5 2.7 0.59→ 0.93
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Figure 1. Climatological statistics in regime I. (a) Time series of the Xk variables. (b) Time
series of the Xk variables from the SP approximation. (c) A snapshot showing Yi (blue), the
large scale part of Yi defined by projection onto the first 41 discrete Fourier modes (red), and
the Xk variables (yellow circles). (d) Time-averaged energy spectrum |Ŷκ |

2 where Ŷκ is the
discrete Fourier coefficient of Yi with wavenumber κ. (e) Time-lagged autocorrelation functions
for Xk (blue) and the small scale part of Yi (red), defined by projecting out the first 41 Fourier
modes. (f) Space-lagged autocorrelation functions for Xk from the true dynamics (blue) and the
SP approximation (red).
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Figure 2. Climatological statistics in regime II. Panels are the same as Fig. 1.
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