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Abstract

Directed graph representation of a Markov chain model to study global earthquake se-
quencing leads to a time-series of state-to-state transition probabilities that includes the
spatio-temporally linked recurrent events in the record-breaking sense. A state refers
to a configuration comprised of zones with either the occurrence or non-occurrence of5

an earthquake in each zone in a pre-determined time interval. Since the time-series
is derived from non-linear and non-stationary earthquake sequencing, we use known
analysis methods to glean new information. We apply decomposition procedures such
as ensemble empirical mode decomposition (EEMD) to study the state-to-state fluctu-
ations in each of the intrinsic mode functions. We subject the intrinsic mode functions,10

the orthogonal basis set derived from the time-series using the EEMD, to a detailed
analysis to draw information-content of the time-series. Also, we investigate the in-
fluence of random-noise on the data-driven state-to-state transition probabilities. We
consider a second aspect of earthquake sequencing that is closely tied to its time-
correlative behavior. Here, we extend the Fano factor and Allan factor analysis to the15

time-series of state-to state transition frequencies of a Markov chain. Our results sup-
port not only the usefulness the intrinsic mode functions in understanding the time-
series but also the presence of power-law behaviour exemplified by the Fano factor
and the Allan factor.

1 Introduction20

Earthquake sequencing has been the subject of detailed research (Nava et al., 2005;
Ünal and Çelebioğlu, 2011, 2014; Telesca et al., 2001, 2008, 2009, 2011; Cavers and
Vasudevan, 2013, 2015; Vasudevan and Cavers, 2012, 2013) both in the regional and
global sense in recent years. Nava et al. (2005) have introduced the Markov chain
model to study the earthquake sequencing in a seismogenically active region where25

the region is partitioned into zones. The functionality of the method is determined by
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the characteristics of the state-to-state transitions where each state is described by the
earthquake occupancy of the zones. Thus, states can fall into zones of no occupancy to
full occupancy at the extreme and into zones where some are occupied and some are
not, and can thus be presented in binary format with “0” representing non-occupancy
and “1” occupancy. The approach of Nava et al. (2005) was immediately extended to5

other regions (Herrera et al., 2006; Ünal and Çelebioğlu, 2011, 2014). Cavers and Va-
sudevan (2013) adapted the method of Nava et al. (2005) to a global catalogue which
was partitioned into zones on the basis of the tectonic boundaries (Kagan et al., 2010).
The existing Markov chain model was refined by incorporating the record-breaking re-
curring events for each event in the catalogue under certain constraints. A directed10

graph representation of the modified Markov chain model was then subjected to de-
tailed analysis for forecasting purposes (Cavers and Vasudevan, 2015).

One consequence of the approach taken by Cavers and Vasudevan (2015) and Va-
sudevan and Cavers (2013) is that it results in a time-series of state-to-state transition
frequencies of the modified Markov chain model, xsstf(t). This time-series is for an op-15

timized time-interval, ∆t. The fluctuations in state-to-state transitions are ∆t sampled.
The time-series is a comprehensive representation of earthquake sequencing in which
interaction of seismic events within and among zones are considered. Therefore, it can
be subjected to a detailed analysis.

Earthquake sequencing may be considered a non-linear and non-stationary pro-20

cess (Kanamori, 2003; Telesca et al., 2001, 2008, 2009, 2011; Flores-Marquez and
Valverde-Esparza, 2012). In earthquake sequencing, earthquakes are viewed as part
of a point process, with earthquake events occurring at some random locations in time.
This means that the earthquake sequencing is dictated by the set of event times, and
can also be expressed by the set of time-intervals between events. The time-series of25

earthquakes for any time-interval can be analyzed in many ways (Telesca et al., 2001,
2008, 2009, 2011).

We postulate here that the non-linear and non-stationary behavior in the time-series
should also be present in the time-series of the state-to-state transition frequencies
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derived from earthquake sequencing. Hence, we consider the approaches of Telesca
et al. (2001, 2008, 2009, 2011) to be appropriate for a study here.

Non-linear and non-stationary time-series have been examined in recent years with
a method known as empirical mode decomposition (EMD) and the intrinsic mode func-
tions derived from this are useful in this regard (Huang et al., 1998). The present time-5

series of state-to-state transition frequencies is suited for such a study.
In general, the time-series has non-zero amplitudes for the state-to-state transition

frequencies (Cavers and Vasudevan, 2015). In this particular case, there are instances
where there are no earthquakes exceeding the magnitude of 5.6 in all zones for one
∆t or for successive ∆t′s. This introduces “intermittency” in the time series.10

However, because of the presence of intermittency in it, an ensemble approach to
empirical mode decomposition, EEMD (Wu and Huang, 2004, 2009; Flandrin et al.,
2004, 2005) is applied here. The intermittency problem is handled with the addition of
random noise to the time-series before carrying out the EEMD. We examine the criteria
used for the selection of the added noise and the ensemble number for the EEMD.15

Another aspect of the study here is to ask a question if the time-series resulting from
a directed graph representation of the Markov chain model of earthquake sequences
exhibits power-law statistics similar to a description of fractal stochastic point processes
(Telesca et al., 2001, 2009, 2011) to model the time-occurrence-sequence of seismic
events. Quantifying the earthquake sequencing in terms of its fractal properties was20

done by means of the Fano factor and the Allan factor (Allan, 1966; Barnes and Allan,
1966; Lowen and Teich, 1993a, 1995; Thurner et al., 1997; Telesca et al., 2001, 2009,
2011; Flores-Marquez and Valverde-Esparza, 2012; Serinaldi and Kilsby, 2013). Since
the fractal properties of the time-series studied here has never been investigated, we
calculate the Fano factor and the Allan factor for the purpose of quantitative analysis.25

The remainder of the paper is divided into three sections. In the next section, we
show how the time-series of the state-to-state transition frequencies for a modified
Markov chain model as described in Cavers and Vasudevan (2015) is generated. In the
following section, we describe the EEMD procedure used and the analysis of the results

402

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/399/2015/npgd-2-399-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/399/2015/npgd-2-399-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 399–424, 2015

Insight into
earthquake

sequencing: analysis
of time-series

M. S. Cavers and
K. Vasudevan

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

that accrue from this procedure. We extend the approaches of Telesca et al. (2001,
2008, 2009, 2011) to calculate the Fano factor and the Allan factor with a view to study
the fractal properties of the time-series. In the last section, we discuss the results of
the analysis methods and draw certain inferences about the state-to-state transition
frequencies.5

2 Directed graph representation of earthquake sequencing

A Markov chain is a discrete-time stochastic process consisting of a collection of ran-
dom variables {X1, X2, X3, . . .} indexed by time, where for each n, the state of Xn+1
is independent of the past states X1, X2, . . .,Xn (Çınlar, 1975). Each Xi takes values in
a finite set, S, called the states of the system. To build a Markov chain model we first10

partition the region, either local or global, into zones. Typically these zones are made
up of rectangles that divide the region (Nava et al., 2005; Ünal and Çelebioğlu, 2011).
Recently, other partitions have been used. In particular, Cavers and Vasudevan (2015)
used a simplified 5-zone plate boundary template as given by Kagan et al. (2010) to
study global seismicity, while Ünal et al. (2014) used a seismic zones map that uses15

geographic information system analysis to divide Turkey into regions. For this particu-
lar study, we used the five-zone model described in Cavers and Vasudevan (2015) and
give an overview of its construction here.

Kagan et al. (2010) partitioned the shallow (≤ 70 km depth) events with moment mag-
nitude,Mw > 5.6 from the Global CMT catalogue (1 January 1982–31 March 2008) into20

5 zone sub-catalogues using their grid-assignment schemes (Table 1). The selected
catalogue consists of 6752 earthquakes with 4407 from Zone 4 (Trenches), 723 from
Zone 3 (Fast-spreading ridges), 487 from Zone 2 (Slow-spreading ridges), 898 from
Zone 1 (Active continent), and 237 from Zone 0 (Plate interior) respectively. For these
five zones, we express a state, corresponding to a time interval ∆t, as a concatenation25

of binary digits b4b3b2b1b0, where bL = 1 indicates an earthquake occurrence in zone
L during the specified time interval ∆t, and bL = 0 indicates the lack of an earthquake
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occurrence in zone L during the specified time interval ∆t. We use Θ= [θi j ] to denote
the transition frequency matrix, where θi j is the number of occurrences from state i to
state j . Letting s(n) represent the state for interval number n, the probability transition
matrix, P = [pi j ], consists of transition probabilities, pi j , given as

pi j = P r{s(n+1) = j |s(n) = i} = P r{j |i}, (1)5

pi j = θi j/ξi j , where ξi = Σj θi j . (2)

For a Markov chain structure given earlier for the five zones, the computation of tran-
sition frequencies and hence, transition probabilities, depend on the chosen time-
interval ∆t. Following the selection rules given elsewhere (Nava et al., 2005; Ünal and
Çelebioğlu, 2011; Cavers and Vasudevan, 2015), we used a ∆t value of 9 days for the10

construction of the Markov chain of transition probabilities.
A finite-state Markov chain can be depicted using a digraph representation, G, where

the set of possible states (binary strings of length 5) are the nodes, and an arc (i , j )
connects two states i and j if and only if pi j > 0 (Jarvis and Shier, 1996). Figure 1
shows an example of a digraph representing a Markov chain with a three zone partition,15

hence, there there are 23 = 8 states {000, 001, 010, 011, 100, 101, 110, 111} that we
write in decimal format {0, 1, 2, 3, 4, 5, 6, 7}, respectively. In this figure, we do not
show all of the possible transitions between states and typically an arc (i , j ) is omitted
when pi j = 0. We follow the same decimal state labelling format as in Fig. 1 for our 25 =
32 states, that is, state “0” (representing 00000 in binary) corresponds to no earthquake20

occurrence in all five zones in the chosen time interval, ∆t, and state “31” (representing
11111 in binary) points to earthquake occurrences in all five zones. Table 2 shows
details for defining all other states, “1” to “29”.

The combinatorial structure of a digraph representation of the Markov chain model
contains important information for earthquake sequencing (Cavers and Vasudevan,25

2015). It is often useful to use a weight wi j for each arc (i , j ) of the digraph to get
a weighted digraph. The weights have the form wi j = θi j , wi j = pi j , or can be empiri-
cally derived from the Markov chain. To introduce spatial–temporal complexity into the
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model so that transitions with earthquake occurrences at large distances have less
of an impact on our model than transitions with earthquake occurrences at short dis-
tances, we follow the approach by Cavers and Vasudevan (2015) to modify the weights
wi j in the weighted digraph by considering recurrences. Each earthquake (event) in
a zone may have several recurring events in the record-breaking sense. The recurring5

events for one event in a given zone may fall into other zones or may be in the same
zone. This flexibility adds to the possibility of interactions among zones. We first form
the network of recurrences as described by Davidsen et al. (2008). The weight ap-
plied to each arc in the network of recurrences is derived empirically by using a total
count of record breaking events between the corresponding earthquake zones and the10

distance involved (Cavers and Vasudevan, 2015; Vasudevan and Cavers, 2013). Each
recurrence from an earthquake a to an earthquake b in the sequence is given a weight
between 0 and 1, with a weight equal to 1 if the distance between a and b is less than
50 km. If the distance is r with r > 50 km and earthquakes a and b occur in Zones j
and k respectively, a weight of15

[Ljk(20 000)−Ljk(r)]/[Ljk(20 000)−Ljk(50)] (3)

is given, where Ljk(r) defined by Cavers and Vasudevan (2015) is the number of
record-breaking events from zone j to zone k at distance at most r in the network of re-
currences. The function in Eq. (3) is a decreasing function in r giving a weight close to
0 when the distance r is large. Note that for r = 50 km, an output of 1 is given while for20

r = 20 000 km, an output of 0 is given. As described by Cavers and Vasudevan (2015),
a Markov chain with the inclusion of spatio-temporal complexity of recurring events is
derived by summing the weights of the recurrence arcs corresponding to occurrences
from state i to state j in consecutive time-intervals. Here, we calculated the time-series
of the resulting state-to-state sequence (Fig. 2a) and the corresponding transition prob-25

ability matrix (Fig. 2b). Since it is obtained from the non-linear, non-stationary global
earthquake sequence, we consider it non-linear and non-stationary as well, and hence,
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can be subjected to analysis methods. Although it is not shown here, the approach
equally applies to earthquake catalogues from localized seismogenic zones.

3 Analysis methods

Each sample in the time-series shown in Fig. 2a represents a “zone-configuration” state
(Table 2). By definition, a zone-configuration has no zone or some zones or all zones5

highlighted by an earthquake or more in the optimally chosen time-interval. Going from
one sample to the next does not only represent going from one state to the next but
also shows the amplitude fluctuation between them. The adjacent states could rep-
resent the same zone-configuration or different zone-configurations. The time-series
deduced from using the present approach with the five-zones marks the state-to-state10

fluctuations arising out of the fluctuations of oscillations or earthquake occurrences in
the five-zones. We present in the following two analysis methods to glean an insight
into the characteristics of the time-series.

3.1 Ensemble empirical mode decomposition as applied to state-to-state
transition frequency sequence15

For non-linear and non-stationary time-series, the method of empirical mode decom-
position (EMD) has been recently proposed as an adaptive time-frequency analysis
method (Huang et al., 1998, 1999). Since the process that leads to the state-to-
state transition frequency sequence or time-series is inherently non-linear and non-
stationary, it is appropriate to apply the EMD to this data to understand the behavior20

of the intrinsic mode functions. The time-series (Fig. 2a) reveals the fluctuations in
the state-to-state transition frequencies arising out of varying occupancy of the zones
from one time interval to the next. A situation would easily arise when two or three
successive state-to-state transitions do not have earthquake occurrences in any of the
zones studied. This would translate into intermittency in the time-series. Recent studies25
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(Flandrin et al., 2004, 2005; Gledhill, 2003; Wu and Huang, 2004, 2009) support the
idea of carrying out noise-added analyses with the EMD. The noise added analyses
involves multiple realization of added noises to the time-series in question, leading to
the ensemble EMD (EEMD), as proposed by Wu and Huang (2004, 2009).

In the EEMD, the signal or the time-series in question with the added white noise,5

denoted as one trial, would populate the whole time-frequency space uniformly with
the constituting component of different scales. Since the noise added in each trial is
different, the ensemble mean of the noise cancels out and, hence, the signal resides in
the intrinsic mode functions generated from the EEMD (Wu and Huang, 2009).

The time-series of state-to-state transition frequencies of the modified Markov chain10

model, xsstf(t), is taken as the signal. In each realization of the experiment, white noise,
w(t), is added to the signal. One might interpret the added white noise as the possible
random noise that would be encountered in the measurement process or in certain
restrictions applied to the calculation of edge weights in the modified Markov chain.
So, for the i th realization,15

xsstf,i (t) = xsstf(t)+wi (t). (4)

For each realization, we decompose the data with the added white noise into intrinsic
mode functions (IMFs). We consider the ensemble means of the IMFs of the decom-
positions as the final result.

Wu and Huang (2009) recommended that the ensemble size should be kept large20

and the amplitude of the added noise should not be small. We set the ensemble num-
ber for the number of realizations in EEMD large such that the noise series cancel each
other in the final mean of the corresponding IMFs. For the two parameters, we used
an ensemble size of 1000 and added noise with an amplitude of 0.2 times the SD of
the original data. We assume that the IMFs resulting from the EEMD truly represent25

the true IMFs. EEMD results are summarized in Fig. 3a–t with each intrinsic mode
function followed by its state-to-state transition frequency matrix. The Hilbert–Huang
amplitude spectrum of the time series, shown in Fig. 4, reveals at least two important
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features: (1) the temporal fluctuations in amplitudes occur in packets, each packet con-
taining a set of zone to zone interactions. The oscillatory behaviour of packets contains
certain periodicity within the earthquake sequence. (2) The frequency-dependence of
amplitude packets encapsulates the relative importance of the interaction among mul-
tiple zones over different time intervals.5

3.2 Evaluation of fractality in a state-to-state transition frequency sequence

Earthquake occurrences have been modelled to be stochastic point processes
(Thurner et al., 1997; Telesca et al., 2001, 2005, 2009, 2011; Flores-Marquez and
Valverde-Esparza, 2012). One representation of the point process is to examine the
inter-event time-intervals. The resulting inter-event interval probability density function10

says something about the behavior of the times between events. We do not know any-
thing about the information contained in the relationships among these items. Since
successive events do not occur in constant time-intervals, another representation of
a point process is given by dividing the time-axis into equally spaced contiguous count-
ing windows of duration τ, and producing a sequence of counts that fall within each15

time-window. For example, for the kth time-window, the expression for the number of
counts, Nk(τ), is given by

Nk(τ) =

tk∫
tk−1

n∑
j=1

δ(t− tj )dt (5)

where Nk(τ) is the number of earthquakes in the kth window (Fig. 5a–d). The corre-
lation in the process {Nk(τ)} is the correlation in the underlying point process (Lowen20

and Teich, 1993a, b; Thurner et al., 1997; Telesca et al., 2001, 2005, 2009, 2011) have
accessed such a representation of the point-processes to underscore the existence or
non-existence of fractality in them. They have two calculable measures, Fano factor
(FF) and Allan factor (AF), to quantify the fractality of the process (Lowen and Teich,

408

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/399/2015/npgd-2-399-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/399/2015/npgd-2-399-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 399–424, 2015

Insight into
earthquake

sequencing: analysis
of time-series

M. S. Cavers and
K. Vasudevan

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1993a, b; Thurner et al., 1997; Telesca et al., 2001, 2005, 2009, 2011; Flores-Marquez
and Valverde-Esparza, 2012).

The Fano factor is a measure of correlation over different timescales (Thurner
et al., 1997). It is defined as the ratio of the variance of the number of events in a spec-
ified counting time τ to the mean number of events in the counting time, as is given5

by

FF(τ) =

〈
N2
k (τ)−Nk(τ)

〉2

〈Nk(τ)〉
(6)

where 〈 〉 denotes the expectation value. Lowen and Teich (1995) point out that the FF
of a fractal point process follows a power law with the power-law exponent, α, obeying
0 < α < 1. In other words, the FF is always greater than 1. For Poisson processes, the10

FF is always near unity for all counting times, and the fractal exponent is approximately
equal to zero.

The Allan factor is a relation with the variability of successive counts (Allan, 1996;
Barnes and Allan, 1966). It is the ratio of the variance of successive counts for a spec-
ified counting time τ divided by twice the mean number of events in the counting time.15

The expression of AF is given as

AF(τ) =
〈Nk+1(τ)−Nk(τ)〉2

2〈Nk(τ)〉
. (7)

Similar to the FF, the AF assumes values near unity for Poisson processes. Telesca
et al. (2009, 2011) and Flores-Marquez and Valverde-Esparza (2012) have shown the
power-law exponent for the AF to be 0 < α < 1.20

In this paper, we examine a new representation of the point process with a Markov
chain model. For the working model, we compute the state-to-state transition frequen-
cies as described by Nava et al. (2005) and as applied to global seismicity (Vasudevan
and Cavers, 2012; Cavers and Vasudevan, 2013). An expression similar to Eq. (7) can
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be derived if we know the optimal time-interval for the Markov chain model. Since we
know the optimal time-interval, we introduce a sequence of state-to-state transition fre-
quencies, {Nsstf,k(τ)}, with Nsstf,k(τ) referring to the number of state-to-state transitions
over the kth window for the optimal time-interval, as is shown in Fig. 5e.

There are a few observations to be made. First, Nsstf,k(τ) is not necessarily an in-5

teger number for any kth window. Following the definition of a state, in the context of
a directed graph of a Markov chain model, a state-to-state transition refers to an edge
of a graph. It is the weight associated with the edge of the directed graph that plays an
important role. Since we have used a modified Markov chain model which includes the
influence of the event recurrences in the record-breaking sense, the above expression10

includes their weights as well in the computation of Nsstf(k). The sequence of state-to-
state transition frequencies, {Nsstf(k)}, yields a time-series. This time-series is the new
expression of the point-process where the weighted edges of directed graph of the
modified Markov chain represent the significance of the earthquakes between states.
This new alternative representation signifies the behavior of the state-to-state transi-15

tion frequencies over a large time window. Here, seeking to find the time-correlative
behavior of the time-series would be of great importance since this would give us an
opportunity to see the interaction of zones considered in a collective sense.

Here, we seek to understand the correlative behavior by looking at the two statistical
measures, FFsstf and AFsstf, as defined below:20

FFsstf(τ) =

〈
N2

sstf,k(τ)−Nsstf,k(τ)
〉2

〈Nk(τ)〉
(8)

AFsstf(τ) =
〈Nsstf,k+1(τ)−Nsstf,k(τ)〉2

2〈Nsstf,k(τ)〉
. (9)

The behavior of the two measures, FFsstf and AFsstf, with respect to the optimal time-
interval should shed some light on the correlative behavior of the time-series but also
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on the selective clustering of the certain state-to-state transitions. We consider this
knowledge to be useful for forecasting purposes.

In our adaptation of the sum of edge weights for the state-to-state transition frequen-
cies as a new representation of a point-process embedded in the modified Markov
chain here, the arguments of Thurner et al. (1997) and Telesca et al. (2001, 2005,5

2009, 2011) would apply. This means that the FF of the modified Markov chain se-
quence would follow a power-law with the power-law exponent, α, satisfying 0 < α < 1.

Extending this to FFsstf and AFsstf, as is shown in Fig. 6, we find that the power
law exponent calculated, corresponding to the least-squares fit of the data is greater
than zero (0.27 and 0.30, respectively). They suggest not only the fractality of the10

modified Markov chain sequence for optimal time-interval but also the deviation from
the Poissonian behavior of earthquake sequencing considered in this present study.

4 Discussion and conclusions

Thurner et al. (1997) pointed out that the sequence of counts, generated by recording
the number of events in successive counting time-windows of certain length, contained15

information about the point process depicted by the set of event times. This idea was
further tested in understanding the dynamics of earthquake sequencing (Telesca et al.,
2009, 2011; Flores-Marquez and Valverde-Esparza, 2013), and in particular, the fractal
behavior of the sequence of counts. We know that this idea was initially restricted to
the sequence of counts for varying windows of interval-times.20

In our description of the directed graph of the Markov chain model of any earthquake
sequencing, regional or global, we stress the significance of the state-to-state transi-
tion probabilities for multiple zones that span the sequence of earthquakes over an
optimal time window (Cavers and Vasudevan, 2013; Vasudevan and Cavers, 2013). In
other words, the edges of the directed graph carry weights. We conjecture that these25

weights represent a new definition of the point process. Furthermore, a consideration
of the earthquake recurrences within each zone and among zones, following the con-
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cept of recurrences in the record-breaking sense (Davidsen et al., 2008), leads to an
empirically-determined distance-dependent weights for the edges. Unlike extending the
idea of the sequence of counts where every event occurrence augments the counting
value by unity (Thurner et al., 1997; Telesca et al., 2009, 2011; Flores-Marquez and
Valverde-Esparza, 2013), we consider the summing of the weights for each edge such5

that the sum represents a “pulse” for each state-to-state transition. We analyse the re-
sulting time-series from the point of view of its Fano factor and Allan factor. There is
evidence for fractality of the multi-state modified Markov chain to represent the earth-
quake sequencing, as is revealed by the power-law scaling behavior present in the
Fano and Allan factors with their respective exponents of 0.27 and 0.30.10

Cavers and Vasudevan (2013) interpreted the Markov chain of 32-states for five-
distinctly different zones to contain the basic combinatoric structure superimposed by
the thumb-print of the undulatory structure of the recurrence weights. Since the earth-
quake sequencing is in general non-linear and non-stationary, we contend that the
time-series representing the above Markov chain is also non-linear and non-stationary,15

and is conducive to an ensemble empirical mode decomposition (EEMD) procedure
to understand its intrinsic mode functions (IMFs). The ensemble empirical model de-
composition of the time-series leads to nine intrinsic mode functions and a trend. Each
one of the IMFs reveals the amplitude fluctuation of the state-to-state transitions. While
there is a commonality in the relative dominance of the subduction-style earthquakes,20

represented by the top right corner grid of the transition frequency matrices, the pres-
ence or absence of certain state-to-state transitions in certain IMFs reveals the impor-
tance of integral multiples of the optimal time-interval.

A simple observation of the first 6 or 7 IMFs stresses the importance of multiple-zone
approach to global seismicity problem in that the earthquake sequencing for the time25

period we considered has similar oscillatory behavior of the state-to-state transition
probabilities from the point of view of the amplitude scaling and the oscillating period.
The growth and decay of oscillations in easily identifiable packets in each IMF following
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certain periodicity is an intrinsic signature of the role of multiple zones in earthquake
sequencing.
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Table 1. Tectonic zone identifier, tectonic zone and the number of earthquakes considered for
Mw > 5.6 and depth< 70 km from 1 January 1982 to 31 March 2008.

Zone identifier Tectonic zone N N/Ntotal

0 Plate-interior 237 0.0351
1 Active continent 898 0.1330
2 Slow-spreading ridges 487 0.0721
3 Fast-spreading ridges 723 0.1071
4 Trenches 4407 0.6527

Global (or Ntotal) 6752 1.0000
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Table 2. Zone and state definition used in the construction of a directed graph of a Markov
chain. “0” and “1” refer to the no occurrence or occurrence of an earthquake for a given zone.
For five zones, there are 32 states.

State Zone 4 Zone 3 Zone 2 Zone 1 Zone 0

0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1

10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
20 1 0 1 0 0
21 1 0 1 0 1
22 1 0 1 1 0
23 1 0 1 1 1
24 1 1 0 0 0
25 1 1 0 0 1
26 1 1 0 1 0
27 1 1 0 1 1
28 1 1 1 0 0
29 1 1 1 0 1
30 1 1 1 1 0
31 1 1 1 1 1

418

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/399/2015/npgd-2-399-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/399/2015/npgd-2-399-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 399–424, 2015

Insight into
earthquake

sequencing: analysis
of time-series

M. S. Cavers and
K. Vasudevan

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. A graph representation of earthquake sequencing with arcs (with weights wi j ) repre-
senting transitions between states.
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Figure 2. (a) A time-series of the state-to-state transition frequencies of the modified Markov
chain model of the earthquake sequencing. (b) The state-to-state transition frequencies of the
modified Markov chain model of the earthquake sequencing.
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Figure 3. Ensemble empirical mode decomposition of the time series. (a) First intrinsic mode
function; (b) state-to-state transition frequency matrix for the first intrinsic mode function;
(c) second intrinsic mode function; (d) state-to-state transition frequency matrix for the second
intrinsic mode function; (e) third intrinsic mode function; (f) state-to-state transition frequency
matrix for the third intrinsic mode function; (g) fourth intrinsic mode function; (h) state-to-state
transition frequency matrix for the fourth intrinsic mode function; (i) fifth intrinsic mode function;
(j) state-to-state transition frequency matrix for the fifth intrinsic mode function; (k) sixth intrinsic
mode function; (l) state-to-state transition frequency matrix for the sixth intrinsic mode function;
(m) seventh intrinsic mode function; (n) state-to-state transition frequency matrix for the seventh
intrinsic mode function; (o) eighth intrinsic mode function; (p) state-to-state transition frequency
matrix for the eighth intrinsic mode function; (q) ninth intrinsic mode function; (r) state-to-state
transition frequency matrix for the ninth intrinsic mode function; (s) trend; (t) state-to-state tran-
sition frequency matrix for the ninth intrinsic mode function.
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Figure 4. Hilbert–Huang amplitude spectrum of the intrinsic functions.
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Figure 5. Representation of a point process (a–d) vs. representation of a state-to-state transi-
tion (e) (adapted from Thurner et al., 1997).
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Figure 6. (a) Fano factor graph for the time series; (b) Allan factor graph for the time series.
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