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Abstract

The ensemble Kalman filter (EnKF) is a powerful data assimilation method meant for
high-dimensional nonlinear systems. But its implementation requires fixes such as
localization and inflation. The recently developed finite-size ensemble Kalman filter
(EnKF-N) does not require multiplicative inflation meant to counteract sampling errors.5

Aside from the practical interest of avoiding the tuning of inflation in perfect model data
assimilation experiments, it also offers theoretical insights and a unique perspective on
the EnKF. Here, we revisit, clarify and correct several key points of the EnKF-N deriva-
tion. This simplifies the use of the method, and expands its validity. The EnKF is shown
to not only rely on the observations and the forecast ensemble but also on an implicit10

prior assumption, termed hyperprior, that fills in the gap of missing information. In the
EnKF-N framework, this assumption is made explicit through a Bayesian hierarchy.
This hyperprior has been so far chosen to be the uninformative Jeffreys’ prior. Here,
this choice is revisited to improve the performance of the EnKF-N in the regime where
the analysis strongly relaxes to the prior. Moreover, it is shown that the EnKF-N can15

be extended with a normal-inverse-Wishart informative hyperprior that additionally in-
troduces climatological error statistics. This can be identified as a hybrid 3D-Var/EnKF
counterpart to the EnKF-N.

1 Introduction

The ensemble Kalman filter (EnKF) has become a popular data assimilation method20

for high-dimensional geophysical systems (Evensen, 2009, and references therein).
The flow-dependence of the forecast error used in the analysis is its main strength,
compared to schemes using static background statistics such as 3D-Var and 4D-Var.

However, to perform satisfyingly, the EnKF may require the use or inflation and/or
localization, depending on the data assimilation system setup. Localization is required25

in the rank-deficient regime, in which the limited size of the ensemble leads to an
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empirical error covariance matrix of too small rank, as is often the case in realistic
high-dimensional systems (Houtekamer and Mitchell, 2001; Hamill et al., 2001; Ott
et al., 2004).

Inflation is a complementary technique meant to increase the variances diagnosed
by the EnKF (Pham et al., 1998; Anderson and Anderson, 1999). It is usually intended5

to compensate for an underestimation of uncertainty. This underestimation can be
caused either by sampling error, an intrinsic deficiency of the EnKF system, or model
error, an extrinsic deficiency.

A variant of the EnKF, called the finite-size ensemble Kalman filter (EnKF-N) has
been introduced in Bocquet (2011) and Bocquet and Sakov (2012). It has subsequently10

been successfully applied in Bocquet and Sakov (2013, 2014) in an ensemble varia-
tional context. It has been shown to avoid the need for multiplicative inflation usually
needed to counteract sampling errors. In particular, it avoids the costly chore of tuning
this inflation.

The EnKF-N is derived by assuming that the ensemble members are drawn from the15

same distribution as the truth, but makes no further assumptions on the ensemble’s
accuracy. In particular, the EnKF-N, unlike the traditional EnKFs, does not make the
approximation that the sample moments coincide with the actual moments of the prior
(which would be accessible if the ensemble size N was infinite).

Through its mathematical derivation, the scheme underlines the missing information20

besides the observations and the ensemble forecast, an issue which is ignored by
traditional EnKFs. This missing information is explicitly compensated for in the EnKF-
N using a so-called hyperprior. In Bocquet (2011), a simple choice was made for this
hyperprior, namely the Jeffrey’s prior, which is meant to be as much non-informative as
possible. While the EnKF-N built on Jeffrey’s prior often performs very well with low-25

order models, it may fail in specific dynamical regimes because a finer hyperprior is
needed (Bocquet and Sakov, 2012). Other choices were made in the derivation of the
EnKF-N which remain only partly justified or insufficiently clear.
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The objective of this paper is to clarify several of those choices, to answer several
questions raised in the above references, and to advocate the use of improved or new
hyperpriors. This should add to the theoretical understanding of the EnKF, but also
provide a useful algorithm. Specifically, the EnKF-N allows the development of data
assimilation systems under perfect model conditions without worrying about tuning the5

inflation. In the whole paper, we will restrict ourselves to perfect model conditions.
In Sect. 2, the key ideas and algorithms of the EnKF-N are recalled and several

aspects of the approach are clarified. It is shown that the redundancy in the EnKF cen-
tered perturbations leads to a subtle but important correction to the EnKF-N when the
analysis is performed in ensemble space. In Sect. 3, the ensemble update step of the10

EnKF-N is revisited and clarified. In Sect. 4, the nonlinearity of the ensemble forecast
step and its handling by the EnKF-N, and more generally multiplicative inflation, are
discussed. The corrections to the EnKF-N are illustrated with numerical experiments
in Sect. 5. Sections 6 and 7 discuss of modifying or even changing the hyperprior.
In Sect. 6, we discuss caveats of the method in regimes where the posterior ensem-15

ble should relax to the prior ensemble, such as when the dynamics are quasi-linear.
Simple alternatives to the Jeffreys’ hyperprior are proposed. Finally, a class of more
informative priors based on the normal-inverse-Wishart distribution and permitting cli-
matological information to be used is introduced and theoretically discussed in Sect. 7.
Conclusions are given in Sect. 8.20

2 The finite-size ensemble Kalman filter (EnKF-N)

The key ideas of the EnKF-N are presented and clarified in this section. Additional
insights into the scheme and why it is successful are also given.
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2.1 Marginalizing over potential priors

Bocquet (2011) (later Boc11) recognized that the ensemble mean x and ensemble er-
ror covariance matrix P used in the EnKF may be different from the unknown first- and
second-order moments of the true error distribution, xb and B, where B is a positive
definite matrix. The mismatch is due to the finite-size of the ensemble which leads to5

sampling errors, partially induced by the nonlinear ensemble propagation in the fore-
cast step (see Sect. 4). Figure 1 illustrates the effect of sampling error when the prior
is assumed Gaussian and reliable, whereas the prior actually stems from an uncertain
sampling using the ensemble.

The EnKF-N prior accounts for the uncertainty in xb and B. Denote E =10

[x1,x2, . . .,xN ] the ensemble of size N formatted as an M ×N matrix, x = E1/N the
ensemble mean where 1 = (1, · · ·,1)T, and X = E−x1T the perturbation matrix. Hence,
P = XXT/(N−1) is the empirical covariance matrix of the ensemble. Marginalizing over
all potential xb and B, the prior of x reads

p(x|E) =
∫

dxbdBp(x|E,xb,B)p(xb,B|E). (1)15

The symbol dB corresponds to the Lebesgue measure on all independent entries∏M
i≤jd[B]i j , but the integration is restricted to the cone of positive definite matrices.

Since p(x|E,xb,B) is conditioned on the knowledge of the true prior statistics, it does
not depend on E, so that:

p(x|E) =
∫

dxbdBp(x|xb,B)p(xb,B|E). (2)20

Bayes’ rule can be applied to p(xb,B|E), yielding

p(x|E) =
1
p(E)

∫
dxbdBp(x|xb,B)p(E|xb,B)p(xb,B). (3)
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Assuming independence of the samples, the likelihood of the ensemble E can be writ-
ten

p(E|xb,B) =
N∏
n=1

p(xn|xb,B). (4)

The last factor, p(xb,B) is the hyperprior. The distribution represents our beliefs about
the forecasted filter statistics, xb and B, prior to actually running any filter. This distribu-5

tion is termed hyperprior because it represents a prior for the background information
in the first stage of a Bayesian hierarchy.

Assuming one subscribes to this EnKF-N view on the EnKF, it shows that additional
information is actually required in the EnKF, in additional to the observations and the
prior ensemble which are potentially insufficient to make an inference.10

A simple choice was made in Boc11 for the hyperprior: the Jeffrey’s prior is an ana-
lytically tractable and uninformative hyperprior of the form

pJ(xb,B) ∝ |B|−
M+1

2 , (5)

where |B| is the determinant of the background error covariance matrix B of dimension
M ×M.15

2.2 Predictive prior

With a given hyperprior, the marginalization over xb and B, Eq. (3), can in principle be
carried out to obtain p(x|E). We choose to call it a predictive prior to comply with the
traditional view that sees it as prior before assimilating the observations. Note, however,
that statisticians would rather call it a predictive posterior distribution as the outcome20

of a first-stage inference of a Bayesian hierarchy, where E is the data.
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Using Jeffreys’ hyperprior, Boc11 showed that the integral can be obtained analyti-
cally and that the predictive prior is a multivariate T-distribution:

p(x|E) ∝

∣∣∣∣∣ (x−x)(x−x)T

N −1
+εNP

∣∣∣∣∣
−N2

, (6)

where |.| denotes the determinant and εN = 1+1/N. The determinant is computed in
the space generated by the perturbations of the ensemble so that it is not singular.5

This distribution has fat tails thus accounting for the uncertainty in B. The factor εN is
a result of the uncertainty in xb; if xb were known to coincide with the ensemble mean
x, then εN would be 1 instead. For a Gaussian process, εNP is an unbiased estimator
of the squared error of the ensemble mean x (Sacher and Bartello, 2008), where εN
stems from the uncertain xb which does not coincide with x. In the derivation of Boc11,10

the εNP correction comes from integrating out on xb. Therefore, εN can be seen as an
inflation factor on the prior covariance matrix that should actually apply to any type of
EnKF.

This non-Gaussian prior distribution can be seen as an average over Gaussian dis-
tributions weighted according to the hyperprior. It can be shown that Eq. (6) can be15

re-arranged:

p(x|E) ∝
{

1+
(x−x)T(εNP)†(x−x)

N −1

}−N2
, (7)

where P† is the Moore–Penrose inverse of P.
In comparison, the traditional EnKF implicitly assumes that the hyperprior is δ(B−

P)δ(xb −x) where δ is a Dirac multidimensional distribution. In other words the back-20

ground statistics generated from the ensemble coincide with the true background statis-
tics. As a result, one obtains in this case the Gaussian prior:
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p(x|E) ∝ exp
{
−1

2
(x−x)TP†(x−x)

}
. (8)

2.3 Analysis

Consider a given analysis step of the data assimilation cycle. The observation vector
is denoted y of dimension d . In a Bayesian analysis, p(x|y) = p(y|x)p(x)/p(y), the
likelihood p(y|x) is decoupled from the prior pdf p(x). In the EnKF-N framework we are5

interested in p(x|y,E). Bayes’ formula then reads

p(x|y,E) =
p(y|x,E)p(x|E)

p(y|E)
. (9)

But y does not depend on E when conditioned on x: p(y|x,E) = p(y|x). As a conse-
quence, Bayes’ formula now simply reads within the EnKF-N framework:

p(x|y,E) =
p(y|x)p(x|E)

p(y|E)
. (10)10

This is at odds with the ill-founded claim by Boc11 that the likelihood still depends on
E. This expression clarifies one of the issue raised in Boc11.

Let us recall and further discuss the analysis step of the EnKF-N for state estimation.
For the sake of simplicity, the observational error distribution is assumed Gaussian, un-
biased, with covariance matrix R. The observation operator will be denoted H . The in-15

novation is denoted δ = y−H(x). Because the predictive prior Eq. (6) is non-Gaussian,
the analysis is performed through a variational optimization similarly to the maximum
likelihood filter (Zupanski, 2005), rather than by matrix algebra as in traditional EnKFs.
Working in ensemble space, states are parameterized by vectors w of size N such that

x = x+Xw . (11)20
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There is at least one “gauge” degree of freedom in w due to the fact that x is invari-
ant under w 7−→w + λ1, where λ is an arbitrary scalar. This is the result of the linear
dependence of the centred perturbation vectors.

For reference, with these notations, the cost function of the ensemble transform
Kalman filter (ETKF, Bishop et al., 2001; Ott et al., 2004) based on Eq. (8) reads:5

J (w ) =
1
2

∥∥y −H(x+Xw )
∥∥2

R +
N −1

2
‖w ‖2Πw (12)

where ‖z‖2G = zTG−1
z and Πw is the orthogonal projector onto the row space of X.

Algebraically, Πw = X†X where X† is the Moore–Penrose inverse of X. Equation (12) is
the direct result of the substitution into Eq. (8) of x by w using Eq. (11). As explained by
Hunt et al. (2007), one can add the term ‖w ‖2IN−Πw to the cost function without altering10

the minimum. Denoting ‖z‖2 = zT
z, this leads to:

J (w ) =
1
2

∥∥y −H(x+Xw )
∥∥2

R +
N −1

2
‖w ‖2. (13)

The added term has been labelled gauge fixing term by Boc11 using standard physics
terminology. The EnKF-N cost function in Boc11 is

J (w ) =
1
2

∥∥y −H(x+Xw )
∥∥2

R +
N
2

ln
(
εN + ‖w ‖

2
)

. (14)15

It is the result of the substitution of x byw using Eq. (11) into Eq. (7), and of the addition
of the gauge fixing term albeit inside the logarithm, which was justified by extending the
idea of Hunt et al. (2007) and the monotonicity of the logarithm. The restriction of x to
the ensemble subspace is an approximation inherent in the traditional EnKFs. By virtue
of the hyperprior, it is not necessarily part of the EnKF-N. However, it is quite justified20

assuming the ensemble tracks the unstable subspace of the dynamics.
There is another caveat in the use of the ensemble transform Eq. (11). First of all,

the logarithm of the determinant of the Jacobian matrix should be added to the cost
1099
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function since

lnpw (w ) = lnpx(x(w ))+ ln

∣∣∣∣∂x(w )

∂w

∣∣∣∣ . (15)

Had the transformation w 7−→ x(w ) been nonlinear, the cost function would have been
impacted (see for instance Fletcher and Zupanski, 2006). However, the standard en-
semble transform is linear which should result in an irrelevant constant. Unfortunately,5

because of the gauge degree(s) of freedom of the perturbations, the transformation is
is not injective and therefore singular, and the determinant of the transformation is zero
yielding an undefined constant. Hence, the issue should be addressed more carefully.
It will turn out in the following section that the cost function should be amended in the
non-quadratic case.10

2.4 Accounting for the gauge degrees of freedom of the ensemble transform

Let us denote Ñ ≤min(N −1,M) the rank of X. The number of gauge degrees of free-
dom is then g ≡ N − Ñ. The most common case encountered when applying the EnKF
to high-dimensional systems is that the rank of X is N −1�M, that is to say g = 1
because X1 = 0. A non singular ensemble transform is obtained by restricting w toN ⊥15

the orthogonal complement of the null space,N , of X. Hence, the ensemble transform:

T :N ⊥ −→ T (N ⊥)

w̃ 7−→ T (w̃ ) = Xw̃ (16)

is nonsingular. This amounts to fixing the gauge at zero. With this restriction toN ⊥, the
prior of the ETKF defined over N ⊥ is20

p(w̃ ) ∝ exp
(
−N −1

2
‖w̃ ‖2

)
, (17)
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whereas the prior pdf of the EnKF-N is

p(w̃ ) ∝
(
εN + ‖w̃ ‖

2
)−N2

. (18)

In principle, the analysis can be performed in N ⊥ using reduced variables w r ∈R
Ñ ,

looking for an estimate of the form x = x+Xrw r, where Xr would stand for a reduced
perturbation matrix. To do so, let us introduce the singular value decomposition of the5

initial perturbation matrix: X = UΣVT, with U ∈RM×Ñ such that UTU = IÑ , Σ is a diagonal

positive matrix in RÑ
2

, and V ∈RN×Ñ is such that VTV = IÑ . The reduced perturbation
matrix Xr is then simply given by Xr = UΣ. However, the change of variable w 7−→w r
would prevent us from using the elegant symmetric formalism of the ensemble trans-
form Kalman filter because the perturbation matrix Xr is not centered. Moreover, the10

new perturbations, Xr, are non-trivial linear combinations of the initial perturbations, X.
It is likely to generate imbalances with nonlinear dynamics. Indeed, it is unlikely that
the displacement of the ensemble in the analysis would be minimized, as opposed to
what happens with the ETKF when the transform matrix is chosen symmetric (Ott et al.,
2004). We applied this change of variable to a standard ETKF and tested it numerically15

with the Lorenz-95 low-order model (Lorenz and Emanuel, 1998). We obtained much
larger displacements and intermittent instabilities that require more inflation.

Hence, we wish to fix the gauge while keeping the initial perturbations as much as
possible. To do so, the definition of the prior pdfs defined on N ⊥ are extended to the
full ensemble space RN =N ⊥ ⊕N , while maintaining their correct marginal over N ⊥.20

For the EnKF, we can fix the gauge by choosing

p(w ) ∝ exp
(
−N −1

2
‖w ‖2

)
, (19)

as in Eq. (13) which has indeed the correct marginal since p(w ) factorizes into in-
dependent components for N and N ⊥. For the EnKF-N, we can fix the gauge while
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keeping the symmetry by choosing

p(w ) ∝
(
εN + ‖w ‖

2
)−N+g2

. (20)

It can be seen that this pdf has the correct marginal by integrating out on N , using the

change of variable w − w̃ 7−→
√
εN + ‖w̃ ‖

2(w − w̃ ).
The use of these extended pdfs in the analysis are justified by the fact that the5

Bayesian analysis pdf p(w |y) in ensemble space has the correct marginal over N ⊥.
Indeed, if p(y|w ) = p(y|x = x+Xw ) is the likelihood in ensemble space which does not
depend on w̃ , then the marginal of the Bayesian analysis pdf p(w |y) ∝ p(y|w )p(w ) is
consistently given by p(w̃ |y) ∝ p(y|w̃ )p(w̃ ). We conclude that it is possible to perform
an analysis in terms of the redundant w in place of w̃ .10

As opposed to the Gaussian case, the form of pdf Eq. (20) brings in a change in
the EnKF-N when the analysis is performed in ensemble space. The appearance of
g in the exponent is due to a non trivial Jacobian determinant when passing from
the ungauged to the gauge variables, a minimalist example of the so-called Faddeev–
Popov determinant (Zinn-Justin, 2002). This consideration generates a modification15

of the EnKF-N cost function when using Eq. (20) as the predictive prior. Henceforth,
we shall assume g = 1, which will always be encountered in the rest of the paper.
Consequently, the modified EnKF-N has the following cost function:

J (w ) =
1
2

∥∥y −H(x+Xw )
∥∥2

R +
N +1

2
ln(εN + ‖w ‖

2), (21)

which should replace Eq. (14). This modification, g = 0→ 1, as compared with Boc11,20

will be enforced in the rest of the paper. Such a change will be shown to significantly
impact the numerical experiments in Sect. 5.
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3 Update of the ensemble

The form of the predictive prior also has important consequences on the EnKF-N the-
ory. First of all, the pdfs Eqs. (18) or (20) are multivariate T-distributions, and more
specifically multivariate Cauchy distributions. They are proper, i.e. normalizable to 1,
but have neither first-order nor second-order moments.5

3.1 Laplace approximation

Conditioned on B, both the prior and the posterior are Gaussian provided the observa-
tion error distribution is Gaussian which is assumed for the sake of simplicity. Without
this conditioning, however, they are both a (continuous) mixture of candidate Gaus-
sians in the EnKF-N derivation. Therefore, the posterior p(w |y) ∝ p(y|w )p(w ) should10

be interpreted with caution. As was done in Boc11, its mode can in principle be safely
estimated. However, its moments do not generally exist. They exist only if the likelihood
p(y|w ) enables it. Even when they do exist, they do not carry the same significance as
for Gaussians.

Hence, the analysis wa is safely defined using the EnKF-N Cauchy prior as the most15

likely w of the posterior pdf. But, using the mean and the error covariance matrix of the
posterior is either impossible or questionable because as explained above they may
not exist.

One candidate Gaussian that does not involve integrating over the hyperprior, is
the Laplace approximation of the posterior (see Bishop, 2006, for instance), which is20

the Gaussian approximation fitted to the pdf in the neighborhood of wa. This way, the
covariance matrix of the Laplace distribution is obtained as the Hessian of the cost
function at the minimum wa. Refining the covariance matrix from the inverse Hessian
is not an option since the exact covariance matrix of the posterior pdf may not exist.
This is a counterintuitive argument against looking for a better approximation of the25

posterior covariance matrix rather than the inverse Hessian.
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Once a candidate Gaussian for the posterior has been chosen, the updated ensem-
ble of the EnKF-N is obtained from the Hessian, just as in the ETKF. The updated
ensemble is

Ea = xa1T +Xa , xa = x+Xwa, (22)

where xa is the analysis in state space; wa is the argument of the minimum of Eq. (21).5

The updated ensemble of perturbations Xa is given by

Xa =
√
N −1X[Ha]−1/2U, (23)

where U is an arbitrary orthogonal matrix satisfying U1 = 1 (Sakov and Oke, 2008) and
where Ha is the Hessian of Eq. (21),

Ha = YTR−1Y+ (N +1)
(εN +w

T
a wa)IN −2waw

T
a

(εN +w
T
a wa)2

(24)10

with Y = HX and H the tangent linear of H . The algorithm of this so-called primal EnKF-
N is recalled by Algorithm 1. Note that the algorithm can handle nonlinear observation
operator since it is based on a variational analysis similarly to the maximum likelihood
ensemble filter of Zupanski (2005). We will choose U to be the identity matrix in all
numerical illustrations of this paper, and in particular Sect. 5, in order to minimize the15

displacement in the analysis (Ott et al., 2004).

3.2 Theoretical equivalence between the primal and the dual approaches

Boc11 showed that the functional Eq. (21) is generally non-convex but has a global
minimum. Yet, the cost function is only truly non-quadratic in the direction of the radial
degree of freedom ‖w ‖ of w , because the predictive prior is elliptical. This remark led20

Bocquet and Sakov (2012) (later BS12) to show that the minimization of Eq. (21) can
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be performed simply by minimizing the following dual cost function over ]0, (N+1)/εN ]:

D(ζ ) =
1
2
δT(R+Yζ−1YT)−1δ+

εNζ
2

+
N +1

2
ln
N +1
ζ
− N +1

2
, (25)

whose global minimum can easily be found since ζ 7−→D(ζ ) is a scalar cost function.
The variable ζ is conjugate to the square radius ‖w ‖2. It can be seen as the number
of effective degrees of freedom in the ensemble. Once the argument of the minimum5

of D(ζ ), ζa, is computed, the analysis for w can be obtained from the ETKF-like cost
function:

J (w ) =
1
2

∥∥y −H(x+Xw )
∥∥2

R +
ζa
2
‖w ‖2, (26)

with the solution:

wa = (YTR−1Y+ ζaIN )−1YTR−1δ = YT(ζaR+YYT)−1δ. (27)10

Based on this effective cost function, an updated set of perturbations can be obtained:

Xa =
√
N −1X[Ha]−

1
2 U with Ha = YTR−1Y+ ζaIN . (28)

As a consequence, the EnKF-N with an analysis performed in ensemble space can be
seen as an ETKF with an adaptive optimal inflation factor λa applied on the prior distri-

bution, and related to ζa by λa =
√

(N −1)/ζa. Provided one subscribes to the EnKF-N15

formalism, this tells us that sampling errors can be cured by multiplicative inflation. This
is supported by Whitaker and Hamill (2012) who experimentally showed that multiplica-
tive inflation is well suited to account for sampling errors whereas additive inflation is
better suited to account for model errors in a meteorological context. Other efficient
adaptive inflation methods have been proposed by, e.g. Wang and Bishop (2003), An-20

derson (2007), Li et al. (2009), Zheng (2009), Brankart et al. (2010), Miyoshi (2011),
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Liang et al. (2012) and Ying and Zhang (2015) for broader uses including extrinsic
model error. Nevertheless, from our experiments, they are not as performant with the
specific goal of accounting for sampling errors as the EnKF-N.

Equation (28), on which the results of BS12 are based, is only an approximation
because it does not use the Hessian of the complete cost function Eq. (21). Only the5

diagonal term of the Hessian of the background term is kept:

Hb '
N +1

εN + ‖wa‖
2

IN , (29)

which can be simply written Hb ' ζaIN using ζa =
N+1

εN+‖wa‖
2 shown in BS12 to be one

of the optimum conditions. The off-diagonal rank-one correction, −2(N +1)−1ζ2
awaw

T
a ,

has been neglected. This approximation is similar to that of the Gauss–Newton method10

which is an approximation of the Newton method where the Hessian of the cost func-
tion to be minimized is approximated by the product of first-order derivative terms and
by neglecting second-order derivative terms. The approximation actually consists in
neglecting the co-dependence of the errors in the radial (‖w ‖) and angular (w/‖w ‖)
degrees of freedom of w .15

Since the dual EnKF-N is meant to be equivalent to the primal EnKF-N, the updated
ensemble should actually be based on Eq. (24) which can also be written

Xa =
√
N −1X[Ha]−

1
2 U with Ha = YTR−1Y+ ζaIN −

2ζ2
a

N +1
waw

T
a , (30)

and compared to the approximation Eq. (28) used in BS12. The algorithm of this so-
called dual EnKF-N is recalled in Algorithm 2 and includes the correction. With Eq. (30),20

the dual scheme is strictly equivalent to the primal scheme provided that H is linear,
whereas it is only approximately so with Eq. (28).

The co-dependence of the radial and angular degrees of freedom exposed by the
dual cost function are further explored in the Appendix.
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4 Cycling of the EnKF-N and impact of model nonlinearity

We have discussed and amended the analysis step of the EnKF-N. To complete the
data assimilation cycle, the ensemble must be forecasted between analyses. The cy-
cling of the EnKF-N can be summarized by the following diagram:
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The co-dependence of the radial and angular degrees of freedom exposed by the dual
cost function are further explored in Appendix A.

4 Cycling of the EnKF-N and impact of model nonlinearity

We have discussed and amended the analysis step of the EnKF-N. To complete the data
assimilation cycle, the ensemble must be forecasted between analyses. The cycling of the5

EnKF-N can be summarized by the following diagram:

yk yk+1

• •
tk tk tk+1 predictive tk+1 tk+1

• • // • • •
Ef

k analysis Ea
k forecast Ef

k+1 prior analysis Ea
k+1

In accounting for sampling error, the EnKF-N framework differs quite significantly from that
of van Leeuwen (1999); Furrer and Bengtsson (2007); Sacher and Bartello (2008). Focus-
ing on the bias of the EnKF gain and precision matrix, these studies are geared towards10

single-cycle corrections. By contrast, the EnKF-N enables the likelihood to influence the
estimation of the posterior covariance matrix. This can be seen by writing and recognizing
the posterior as a non-uniform mixture of Gaussians, as for the prior. The inclusion of the
likelihood is what makes the EnKF-N equipped to handle the effects of model nonlinearity
and the sequentiality of data assimilation.15

With linear perfect evolution and observation models, and provided the ensemble is big
enough to span the unstable and neutral subspace, inflation or localization are unneces-
sary in the ensemble square root filter (Sakov and Oke, 2008; Gurumoorthy et al., 2015).
Sampling errors, if present, can be ignored in this case. Therefore, it is likely that inflation
is actually compensating for the misestimation of errors generated by model nonlinearity.20

16

5

In accounting for sampling error, the EnKF-N framework differs quite significantly from
that of van Leeuwen (1999), Furrer and Bengtsson (2007) and Sacher and Bartello
(2008). Focusing on the bias of the EnKF gain and precision matrix, these studies are
geared towards single-cycle corrections. By contrast, the EnKF-N enables the likeli-
hood to influence the estimation of the posterior covariance matrix. This can be seen10

by writing and recognizing the posterior as a non-uniform mixture of Gaussians, as for
the prior. The inclusion of the likelihood is what makes the EnKF-N equipped to handle
the effects of model nonlinearity and the sequentiality of data assimilation.

With linear perfect evolution and observation models, and provided the ensemble
is big enough to span the unstable and neutral subspace, inflation or localization are15

unnecessary in the ensemble square root Kalman filter (Sakov and Oke, 2008; Guru-
moorthy et al., 2015). Sampling errors, if present, can be ignored in this case. There-
fore, it is likely that inflation is actually compensating for the misestimation of errors
generated by model nonlinearity. Following this line of thought, Boc11 hypothesized
that the finite-size scheme actually accounts for the error generated in the nonlinear20

deformation of the ensemble in the forecast step of the EnKF.
A recent study by Palatella and Trevisan (2015) confirms and clarifies this sugges-

tion. The authors show that the nonlinear evolution of the error in the extended Kalman
filter generates additional errors unaccounted for by the extended Kalman filter linear
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propagation of the error. In a specific example, they are able to avoid the need for infla-
tion with the 40-variable Lorenz-95 model using a total of 24 perturbations (14 for the
unstable and neutral subspace and 10 for the main nonlinear corrections). We checked
that the same root mean square errors as shown in table II of Palatella and Trevisan
(2015) can be achieved by the EnKF-N and the optimally tuned EnKF with an ensem-5

ble of size N = 24. This reinforces the idea that the EnKF-N accounts, albeit within
ensemble space, for the error generated by nonlinear corrections inside and outside
the ensemble subspace. Additionally, note that the EnKF-N does not show any sign
of divergence in the regime studied by Palatella and Trevisan (2015) even for much
stronger model nonlinearity.10

To picture the impact of inflation on the fully cycled EnKF, let us consider the sim-
plest possible, one-variable, perfect, linear model xk+1 =αxk , with k the time index. If
α2 >1, the model is unstable, and stable if α2 < 1. In terms of uncertainty quantifica-
tion, multiplicative inflation is meant to increase the errors covariances so as to account
for misestimated errors. Here, we apply the inflation on the prior at each analysis step15

since the EnKF-N implicitly does it. Let us denote bk the forecast/prior error variance,
r the static observation error variance and ak the error analysis variance. ζ plays the

same role as in the EnKF-N scheme, so that a uniform inflation is ζ−
1
2 . Sequential data

assimilation implies the following recursions for the variances:

a−1
k = ζb−1

k + r−1 and bk+1 = α
2ak , (31)20

whose asymptotic solution (a≡a∞) is

if α2 < ζ : a = 0 and if α2 ≥ ζ : a =
(

1− ζ/α2
)
r . (32)

Now, consider a multivariate model which is the collection of several independent one-
variable models with as many growth factors α. In the absence of inflation, ζ =1, the
stable modes, α2 <1, converge to a perfect analysis (a=0) whereas the unstable25

modes, α2 >1, converge to a finite error (a>0) that grows with the instability of the
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modes, as expected. When inflation is used, ζ <1, the picture changes but mostly af-
fect the modes close to neutral (see Fig. 2). The threshold is displaced and the modes
with finite asymptotic errors now include a fraction of the stable modes. The strongly
unstable modes are much less impacted.

In spite of its simplicity and its linearity, this model enables to make the link between5

the EnKF-N, multiplicative inflation and the dynamics. Ng et al. (2011) and Palatella and
Trevisan (2015) have argued that, in the absence of model error, systematic error of
the EnKF comes from the error transported from the unstable subspace to the stable
subspace by the effect of nonlinearity. Unaccounted error would accumulate on the
stable modes close to neutrality. As seen above, the use of the EnKF-N, or multiplicative10

inflation on the prior, precisely acts on these modes by increasing their error statistics
without affecting the most unstable modes that mainly drive the performance of the
EnKF.

5 Numerical experiments

Twin experiments using a perfect model and the EnKF-N have been carried out on15

several low-order models in previous studies. In many cases the EnKF-N, or its variant
with localization (using domain localization), were reported to perform on the Lorenz-63
and Lorenz-95 models as well as the ETKF but with optimally tuned uniform inflation.
With a two-dimensional system based on a barotropic turbulence model, it was found
to perform almost as well as the ETKF with optimally tuned uniform inflation (Bocquet20

and Sakov, 2014).
The choice of εN has remained a puzzle in these experiments. It has been reported

that the Lorenz-63 model required εN = 1+1/N, whereas the Lorenz-95 model required
εN = 1, seemingly owning to the larger ensemble size. It was also previously reported
that domain localization of the EnKF-N with both models required εN = 1+1/N. In25

the present study, we have revisited those experiments using the correction g = 0→
1 of Sect. 2.4 and sticking with the theoretical value εN = 1+1/N. This essentially
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reproduced the results of the best choice for εN in each case. For these low-order
models, this solved a puzzle: there is no need to adjust εN = 1+1/N. Hence, the EnKF-
N in the subsequent experiments uses the correction g = 0→ 1 and εN = 1+1/N.

Figure 3 summarizes the corrections of Sects. 2 and 3. It also illustrates the equiva-
lence between the primal and the dual EnKF-N. It additionally shows the performance5

of the dual EnKF-N with the approximate Hessian used in BS12, and the performance
of the ensemble square root filter with optimally tuned uniform inflation. The Lorenz-
95 low-order model is chosen for this illustration (Lorenz and Emanuel, 1998). Details
about the model can be found in their article. A twin experiment is performed, with
a fully observed system (H = Id , where d =M = 40), an observation error variance10

matrix R = Id which is also used to generate synthetic observations from the truth. The
ensemble size is N = 20. The time interval between observation updates ∆t is varied
which changes the nonlinearity strength. Varying model nonlinear is highly relevant be-
cause, as explained in Sect. 4, model nonlinearity is the profound cause of the need
for inflation. We plot the mean analysis root mean square error (RMSE) between the15

analysis state and the truth state. To obtain a satisfying convergence of the statistics,
the RMSEs are averaged over 105 cycles, after a spin-up of 5×103 cycles.

The performances of the primal and the dual EnKF-N are indistinguishable for the full
∆t range. The dual EnKF-N with approximate Hessian hardly differs from the EnKF-N,
i.e. using Eq. (28) in place of Eq. (30). However, it is slightly suboptimal for ∆t = 0.0520

by about 5%.
Similar experiments have been conducted with the Lorenz-63 model (Lorenz, 1963),

the Lorenz-05II model (Lorenz, 2005) model, the Kuramato–Shivashinski model (Ku-
ramato and Tsuzuki, 1975; Sivashinsky, 1977), and a 2-D-barotropic model. These
experiments have yielded the same conclusions.25
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6 Performance in the prior-driven regime

The EnKF-N based on the Jeffreys’ hyperprior was found to fail in the limit where the
system is almost linear but remains nonlinear (BS12). This regime is rarely explored
with low-order models but it is likely to be encountered in less homogeneous, more
realistic applications. Figure 4a illustrates this failure. It extrapolates the results of Fig. 35

to very small time intervals between updates where the dynamics are quasi-linear. As
∆t decreases the RMSE of the optimal inflation EnKF decreases as one would expect,
while the RMSE of the EnKF-N based on the Jeffreys’ prior increases.

In this regime, the EnKF-N has great confidence in the prior as any filter would
do. Therefore, the innovation-driven term becomes less important than the prior term10

Db(ζ ) = εNζ
2 + N+1

2 ln N+1
ζ −

N+1
2 in the dual cost function Eq. (25), so that its mode ζa

tends to the mode of Db(ζ ) which is ζa = (N +1)/εN = N. Note that an inflation of 1
corresponds to ζ = N−1. Hence, in this regime, even for moderately-sized innovations,
there is deflation. The failure of the EnKF-N was empirically fixed in BS12 by capping
ζa to prevent deflation.15

More generally, we believe the problem is to be encountered whenever the prior
largely dominates the analysis (prior-driven regime). This is bound to happen when
the observations are too few, too sparsely distributed, which could occur when using
domain localization, and whenever they are unreliable compared to the prior. Quasi-
linear dynamics also fit this description, the ratio of the observation precision to the20

prior precision becoming small after a few iterations.
This failure may not be due to the EnKF-N framework. It may be due to an inap-

propriate choice of candidate Gaussian posterior as described in Sect. 3. Or it may
be due to an inappropriate choice of hyperprior in this regime. Although it seems diffi-
cult to devise a hyperprior that performs optimally in all regimes, we can suggest two25

adjustments to Jeffreys’ hyperprior in this prior-driven regime.
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6.1 Capping of the inflation

Here, deflation is avoided by capping ζ . Firstly, we build the desired dual cost func-
tion. Instead of minimizing D(ζ ) over ]0, (N +1)/εN ], it is minimized over ]0,ζ ], with
0 ≤ ζ ≤ (N +1)/εN , which defines the dual cost function. ζ is a tunable bound which is
meant to be fixed over a wide range of regimes. Following a similar derivation to Ap-5

pendix A of BS12, one can show that the background term of the primal cost function
corresponding to this dual cost function is

if ‖w ‖2 ≤ N +1

ζ
−εN : Jb(w ) =

ζ
2

(
‖w ‖2 +εN

)
+
N +1

2
ln

(
N +1

ζ

)
− N +1

2

if ‖w ‖2 > N +1

ζ
−εN : Jb(w ) =

N +1
2

ln
(
εN + ‖w ‖

2
)

.

(33)

The dual and primal cost functions can both be shown to be convex. There is no duality
gap, which means, with our definitions of these functions, that the minimum of the dual10

cost function is equal to the minimum of the primal cost function. By construction, in
the small innovation range, i.e. ‖w ‖2 ≤ (N +1)/ζ −εN , the EnKF-N, endowed with this
new hyperprior, corresponds to the ETKF (Hunt et al., 2007) with an inflation of the
prior by (N −1)/ζ ≥ 1. Since the hyperprior assumed in the regime of small ‖w ‖ is

p(xb,B) = δ(B− ζP), this could be called the Dirac–Jeffreys hyperprior.15

Even with the Dirac–Jeffreys hyperprior, it is still necessary to introduce a tiny amount
of inflation through ζ in the quasi-linear regime. This might prove barely relevant in
a high-dimensional realistic system as it was for the sensitive low-order models that
we tested the scheme with. Even with Lorenz-95, instability develops over very long
experimental runs without this residual inflation. Still this remains a theoretical concern.20

Moreover, we could not find a rigorous argument to support avoiding deflation in all
regimes, and hence the capping. That is why we propose an alternative solution in the
following.
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6.2 Smoother relaxation to the prior

In the limit of R getting very large, the observations cannot carry information, and the
ensemble should not be updated at all, i.e. it should be relaxed to the prior ensemble,
with an inflation of 1 (ζ = N−1). Outside of this regime, we do not see any fundamental
reason to constrain ζ to be smaller than N −1. A criterion to characterize this regime5

would be

ψ =
1

N −1
Tr(YTR−1Y), (34)

which computes the ratio of the prior variances to the observation error variances.
When ψ tends to zero, the analysis should relax to the prior and ζ should tend to
N −1. When ψ drifts away from zero, we do not want to alter the hyperprior and the10

EnKF-N scheme, even if it implies deflation. We found several schemes that satisfy
these constraints. Two of them, denoted R1 and R2, consist in modifying εN into ε′N
and yield a well-behaved mode of the background part of the dual cost function ζb =
argmin

ζ

[
Db(ζ )

]
:

R1: ε′N =
εN

1− 1
Ne
−ψ

=⇒ ζb = N −e−ψ

R2: ε′N =
N +1
N

(
N

N −1

) 1
1+ψ

=⇒ ζb = N
(
N −1
N

) 1
1+ψ

.

(35)15

The point of these formulae is to make ζb tend to N −1 when the criterion ψ tends to
zero (no inflation). On the other hand, when ψ gets bigger ζb tends to N, i.e. to the
original dual cost function’s behavior dictated by Jeffreys’ hyperprior. The implementa-
tion of these schemes is straightforward for any of the Algorithms 1 or 2, since only εN
needs to be modified either in the dual or the primal cost functions.20
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6.3 Numerical illustrations

The performance of the Dirac–Jeffreys EnKF-N where we choose
√

(N −1)/ζ = 1.005,
and of the EnKF-N with the smooth relaxation to the prior (R1) and (R2), are illustrated
with a twin experiment on the Lorenz-95 model in the quasi-linear regime. Also included
are the EnKF-N with Jeffreys’ prior and the ensemble square root filter with optimally5

tuned inflation, are plotted as a function of ∆t in [0.01,0.5] in Fig. 4a.
Another way to make a data assimilation system based on the Lorenz-95 more linear,

rather than decreasing ∆t, is to decrease the forcing parameter to render the model
more linear. Figure 4b illustrates this when F is varied from 4 (linear) to 12 (strongly
nonlinear), with ∆t = 0.05, and the same set-up as in Sect. 5. As anticipated, the EnKF-10

N based on Jeffrey’s hyperprior fails for F < 7.5. However, the EnKF-N based on the
Dirac–Jeffrey’s hyperprior and the EnKF-N with the relaxation schemes R1 and R2
show performances equivalent to the EnKF with optimally tuned inflation. We remark
a slight underperformance of the EnKF-N in the very strongly chaotic regimes com-
pared to the optimally tuned EnKF. We have also check that these good performances15

also apply to the Lorenz-63 model.

7 Informative hyperprior, covariance localization and hybridization

So far, the EnKF-N has relied on a noninformative hyperprior. In this section we exam-
ine, mostly at a formal level, the possibility to account for climatological information, like
an hybrid 3D-Var/EnKF is meant to (Hamill and Snyder, 2000) and Wang et al. (2007a).20

A single numerical illustration is intended since extended results would involve much
more developments and would be very model-dependent.

In a perfect model context, we observed that uncertainty on the variances usually
addressed by inflation could be taken care of by the EnKF-N based on Jeffreys’ hyper-
prior. However, it does not take care of the correlation (as opposed to variance) and25

rank-deficiency issues, which are usually addressed by localization. Localization has to
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be superimposed to the finite-size scheme to build a local EnKF-N without the intrinsic
need for inflation (Bocquet, 2011). Nonetheless, by marginalizing over limited-range
covariance matrices (Sect. 5 of Boc11), we also argued that the use of an informative
hyperprior would produce covariance localization within the EnKF-N framework. A mini-
mal example where the hyperprior is defined over B matrices that are positive diagonal,5

hence very short-ranged, was given and supported by a numerical experiment. Hence,
it is likely that the inclusion of informative prior is a way to elegantly impose localization
within the EnKF-N framework.

An informative hyperprior is the normal-inverse-Wishart (NIW) pdf:

pNIW(xb,B) ∝ |B|−
M+2+ν

2 exp
[
−κ

2
‖xb −xc‖

2
B −

1
2

Tr(B−1C)
]

. (36)10

It is convenient because, with this hyperprior, Eq. (3) remains analytically integrable.
The state xc, the scale matrix C, which is assumed to be full-rank, κ and ν are hyperpa-
rameters of the distribution from which the true error moments xb and B are drawn. The
pdf pNIW is proper only if ν > M −1, but this is not an imperative requirement provided
that the integral in Eq. (3) is proper.15

The resulting predictive prior can be deduced from Gelman et al. (2014) Sect. 3.6:

p(x|E) ∝
{

1+
N + κ

N + κ +1
‖x− x̂‖2κN

N+κ (xc−x)(xc−x)T+XXT+C

}− 1
2 (N+1+ν)

(37)

where x̂ = (κxc +Nx)/(N + κ). From these expressions, xc could be interpreted as
some climatological state and C would be proportional to some climatological error
covariance matrix. Hence, they could be estimated from climatological statistics. They20

could also be parameterized by tunable scalars that could be estimated by a maximum
likelihood principle (Hannart and Naveau, 2014).
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A subclass of hyperpriors is obtained when the degree of freedom xc is taken out,
leading to the inverse Wishart (IW) distribution:

pIW(xb,B) ∝ |B|−
M+1+ν

2 exp
[
−1

2
Tr(B−1C)

]
, (38)

and to the predictive prior

p(x|E) ∝
{

1+
N

N +1

∥∥x−x∥∥2
XXT+C

}− 1
2 (N+ν)

. (39)5

Jeffreys’ hyperprior is recovered from the IW hyperprior in the limit where ν→ 0 and
C→ 0, well within the region ν ≤M −1 where the IW pdf is improper. Note that the
use of an IW distribution was advocated owing to its natural conjugacy in a remarkable
paper by Myrseth and Omre (2010) where a hierarchical stochastic EnKF was first
proposed and developed.10

Because the scale matrix C is assumed full-rank, updating in state space is preferred
to an analysis in ensemble space. Based on the marginals Eqs. (37) and (39), the Jb
term of the analysis cost function is of the form:

Jb(x) =
γ
2

ln
[
εN + ‖x− x̂‖

2
Γ

]
with Γ = XXT + Ĉ. (40)

In the case of the NIW hyperprior, one has: γ = N +1+ ν, εN = 1+1/(N + κ) and Ĉ =15

C+ κN
N+κ (xc −x)(xc −x)T. In the case of the IW hyperprior, one has: γ = N + ν, εN =

1+1/N, x̂ = x, and Ĉ = C. We observe that the Jb term is formally similar to that of the
EnKF-N with Jeffrey’s hyperprior which is directly obtained in state space from Eq. (7).
Hence the sequential data assimilation schemes built from the NIW and IW hyperpriors
formally follow that of the EnKF-N. But, to do so, the analysis must be written in state20

space, whereas it has been expressed in ensemble space so far.
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7.1 Primal analysis and dual analysis

The primal analysis in state space is obtained from xa = argminxJ (x), where

J (x) = Jo(x)+Jb(x) =
1
2
‖y −H(x)‖2R +

γ
2

ln
[
εN + ‖x− x̂‖

2
Γ

]
. (41)

For the dual analysis, we further assume that the observation operator H is linear (for
the primal/dual correspondence to be exact). The derivation of the dual cost function5

follows that of BS12. The following Lagrangian is introduced to separate the radial and
angular degrees of freedom of x:

L(x,ρ,ζ ) = Jo(x)+
ζ
2

[
‖x− x̂‖2Γ −ρ

]
+
γ
2

ln(εN +ρ), (42)

where ζ is a Lagrange multiplier. The saddle-point equations of this Lagrangian are:

ρa = ‖xa − x̂‖
2
Γ , (43)10

ρa =
γ
ζa
−εN , (44)

xa = x̂+ΓHT(ζaR+HΓHT)−1δ̂ with δ̂ = y −Hx̂ . (45)

xa, ρ
a, and ζa are the saddle-point values of the variables. Using these saddle-point

equations, it can be shown that the minimization of Eq. (41) is equivalent to the mini-
mization of the following scalar dual cost function over ]0,γ/εN ]15

D(ζ ) = L(xa,ρ
a,ζ ) =

1
2
δ̂T(R+ ζ−1HΓHT)−1δ̂+

εNζ
2

+
γ
2

ln
γ
ζ
− γ

2
, (46)

a mild generalization of Eq. (25). As in BS12, ζ is interpreted as an effective size of the
ensemble as seen by the analysis. Note that, in this context, it could easily be larger
than N −1 if the climatological information load is significant.
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7.2 State space update of the ensemble perturbations

Recall that the square root ensemble update corresponding to Eq. (30) and Jeffrey’s
hyperprior is

Xa =
√
N −1X

[
YTR−1Y+ ζaIN −

2ζ2
a

N +1
waw

T
a

]− 1
2

U. (47)

Note that covariance localization cannot be implemented in ensemble space using5

Eq. (47). To make the covariance matrix explicit, we wish to write this in state space.
Firstly, from Eq. (27), wa can be written wa = YT

z, where z = (ζaR+YYT)−1
δ. Then, by

the matrix shift lemma which asserts that Af (BA) = f (AB)A for any two matrices A and
B of compatible sizes and f an analytic function,1 we can turn this right-transform into
a left-transform:210

Xa =
√
N −1

[
ζaIM +XYT

(
R−1 −

2ζ2
a

N +1
zzT

)
H

]− 1
2

XU. (48)

When ζa = N−1 and z = 0, one recovers the ensemble square root Kalman update for-

mula written in state space: Xa =
[
IM +PHTR−1H

]− 1
2
X (Sakov and Bertino, 2011). Note

that we could absorb − 2ζ2
a

N+1zz
T into R using the Sherman–Morrison formula, leading to

an effective observation error covariance matrix Re which is bigger than R (using the15

order of the positive symmetric matrices). To superimpose localization on this Jeffrey’s

1Assuming f (x) =
∑∞
k=0akx

k , one has Af (BA) =
∑∞
k=0akA(BA)k =

∑∞
k=0ak(AB)kB =

f (AB)A.
2Let A be a diagonalizable, non necessarily symmetric, matrix A =ΩΛΩ−1 with Λ diagonal.

If Λ ≥ 0, then the square root matrix A
1
2 is defined by ΩΛ

1
2 Ω−1.
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hyperprior EnKF-N, a Schur product can easily be applied to XYT in Eq. (48), while the
transformation still applies to the initial perturbations X without any explicit truncation.

Here, however, we wish to obtain a similar left-transform but for the NIW EnKF-N.
The Hessian of the primal cost function Eq. (41) is:

H = HTRH+γ
Γ−1

εN + ‖x− x̂‖
2
Γ

−2γ
Γ−1(x− x̂)(x− x̂)TΓ−1[

εN + ‖x− x̂‖
2
Γ

]2
, (49)5

yielding at the minimum:

Ha = HTR−1H+ ζaΓ
−1 −2

ζ2
a

γ
Γ−1(xa − x̂)(xa − x̂)TΓ−1 ≡ HTR−1H+ ζaΓ

−1
e , (50)

where the correction term has been absorbed into an effective symmetric positive def-
inite matrix Γe. Henceforth, Γ will stand for Γe, and any correction term is assumed to
have been absorbed into Ĉ in Γ. Decomposing ζ−1

a Γ, which is the effective background10

error covariance matrix, into as many modes as required ζ−1
a Γ = ZZT and applying

Eq. (48), it is not difficult to obtain a square root matrix of the analysis error covariance
matrix Pa:

P
1
2
a =
[
ζaIM +ΓHTR−1H

]− 1
2
Γ

1
2 . (51)

However, this does not constitute a limited-size ensemble of perturbations since P
1
2
a is15

full-rank as C was assumed full-rank. To obtain an ensemble update of N perturbations,
the scale matrix Ĉ in Γ = XXT + Ĉ can be projected onto the ensemble space gener-
ated by the initial perturbations. Then, ΠXĈΠX replaces Ĉ, where ΠX is the orthogonal
projector on the columns of X, ΠX = XX†. Following Raanes et al. (2015), we can form
an effective set of perturbations Xc that satisfy20

XcXT
c = XXT +ΠXĈΠX = X

[
IN +X†Ĉ(XT)†

]
XT (52)
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by using

Xc = X
[
IN +X†Ĉ(XT)†

] 1
2

(53)

or alternatively a left-transform equivalent formula which is obtained from the matrix
shift lemma

Xc =
[
IM +XX†Ĉ(XXT)†

] 1
2
X =
[
IM +ΠXĈΠX(XXT)†

] 1
2
X. (54)5

Substituting this Xc to Γ
1
2 in Eq. (51), we obtain an update of the perturbations X as

a new set of perturbations of the same size N:

Xa =
√
N −1

[
ζaIM +ΓHTR−1H

]− 1
2
[
IM +XX†Ĉ(XXT)†

] 1
2
XU. (55)

7.3 Covariance localization and 3D-Var/EnKF hybridization

The state space formulation of the analysis enables covariance localization which was10

not possible in ensemble space. To regularize P = XXT/(N −1) by covariance local-
ization, one can apply a Schur product with a short-range correlation matrix Θ. In that
case, Eq. (41) is unchanged but with Γ = Ĉ+Θ◦(XXT), with ◦ the Schur product symbol.
Note that this type of covariance localization is not induced by the hyperprior, but su-
perimposed to the EnKF-N whatever its hyperprior. The state update is obtained from15

Eqs. (45) and (46) by letting HΓHT −→Θ ◦ (YYT)+HĈHT, or ΓHT −→Θ ◦ (XYT)+ ĈHT.
An alternative is to use the α control variables (Lorenc, 2003; Buehner, 2005).

A mathematically equivalent cost function to Eq. (41) but with Γ = Ĉ+Θ ◦ (XXT) is

J (δx,{αn}) = Jo

(
x̂+δx+

N∑
n=1

αn ◦
{
xn −x

})
+
γ
2

ln

(
εN + ‖δx‖

2

Ĉ
+

N∑
n=1

‖αn‖
2
Θ

)
. (56)
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The {αn}n=1,...,N are N ancillary control vectors of size M related to the dynamical
errors, whereas δx is a control vector of size M related to the climatological errors.
The control vector x is related to {αn} and δx by identifying x with the argument of Jo
in the cost function. This expression of the cost function is obtained by first passing from
Eq. (41) to Eq. (42), then along the lines of Wang et al. (2007b). It can be seen from5

the cost function that the EnKF-N based on the NIW hyperprior yields a generalization
of the 3D-Var/EnKF hybrid data assimilation method to the EnKF-N framework.

Moreover, the above derivation suggests the following perturbation update needed
to complete the NIW EnKF-N scheme:

Xa =
√
N −1

[
ζaIM +

{
ĈHT +Θ ◦ (XYT)

}
R−1H

]− 1
2
[
IM + ĈΘ ◦ (XXT)−1

] 1
2
XU. (57)10

7.4 Numerical illustration

Here we wish to illustrate the use of the EnKF-N based on the IW hyperprior. We
consider again the same numerical setup as in Sect. 5 with the Lorenz-95 model. The
ν hyperparameter and the C scale matrix are chosen to be:

ν = 1+N
α

1−α
, C =

β
1−β

IM (58)15

with α and β two real parameters in the interval [0,1[. Synthetic experiments are per-
formed for a wide range of (α,β) couples for two sizes of the ensemble:N = 20, which is
bigger than the dimension of the unstable subspace (13) which, for traditional EnKFs,
would not require localization but inflation, and N = 10 which, for traditional EnKFs,
would require both localization and inflation. We do not use inflation since it is meant to20

be accounted for by the finite-size scheme. We do not superimpose domain or covari-
ance localization. Analysis RMSEs are computed for each run and reported in Fig. 5.

This is a preliminary experiment. In particular we do not perform any optimization of
α and β based for instance on empirical Bayesian estimation. For N = 20, we barely
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remark any improvement in term of RMSEs due to the use of the NIW hyperprior as
compared to the EnKF-N based on Jeffreys’ hyperprior, i.e. (α,β) = (0,0). However, we
observe that for N = 10 localization is naturally enforced via the hyperprior due a mech-
anism known in statistics as shrinkage. Although there is no dynamical tuning of α and
β, and even though the choice for C is gross, good RMSEs can be obtained. A RMSE5

of 0.33 is achieved for (α,β) = (0.50,057) as compared to a typical analysis RMSE
of 0.20 for the EnKF-N with optimally tuned, superimposed localization. Interestingly,
the average optimal effective size in this case is ζa = 15, above the unstable subspace
dimension, validating its potential use as a diagnostic.

8 Conclusions10

In this article, we have revisited the finite-size ensemble Kalman filter, or EnKF-N. The
scheme offers a Bayesian hierarchical framework to account for the uncertainty in the
forecast error covariance matrix of the EnKF which is inferred from a limited-size en-
semble. We have discussed, introduced additional arguments for, and sometimes im-
proved several of the key steps of the EnKF-N derivation. Our main findings are:15

1. A proper account of the gauge degrees of freedom in the redundant ensemble of
perturbations and the resulting analysis led to a small but important modification
of the ensemble transform-based EnKF-N analysis cost function (g = 0→ 1, as
seen in Eq. 21).

2. Consequently, the marginal posterior distribution of the system state is a Cauchy20

distribution, which is proper but does not have first and second-order moments.
Hence, only the maximum a posteriori estimator is unambiguously defined. More-
over, this suggests that the Laplace approximation should be used to estimate the
full posterior.

3. The modification g = 0→ 1 frees us from the inconvenient tweaking of εN to 1 or25

to 1+ 1
N : now, only εN = 1+ 1

N is required.
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4. The connection to dynamics has been clarified. It had already been assumed that
the EnKF-N compensates for the nonlinear deformation of the ensemble in the
forecast step. This conjecture was here substantiated by arguing that the effect
of the nonlinearities is similar to sampling error, thus explaining why multiplicative
inflation, and the EnKF-N in particular, can compensate for it.5

5. The ensemble update of the dual EnKF-N was amended to offer a perfect equiv-
alence with the primal EnKF-N. It was shown that the additional term in the pos-
terior error covariance matrix accounts for the error co-dependence between the
angular and the radial degrees of freedom. However, this correction barely af-
fected the numerical experiments we tested it with.10

6. The EnKF-N based on Jeffreys’ hyperprior led to unsatisfying performance in the
limit where the analysis strongly relaxes to the prior, especially in the regime
where the model is almost (but not) linear. We proposed two new types of
schemes which rectify the hyperprior. These schemes have been successfully
tested on low-order models, meaning that the performance of the EnKF-N be-15

comes as good as the ensemble square root Kalman filter with optimally tuned
inflation in all the tested dynamical regimes.

7. As originally mentioned in Boc11, the EnKF-N offers a broad framework to craft
variants of the EnKF with alternative hyperpriors. Inflation was shown to be ad-
dressed by a noninformative hyperprior whereas a localization seems to require20

an informative hyperprior. Here, we showed that choosing the informative normal-
inverse-Wishart distribution as a hyperprior for xb,B leads to a formally similar
EnKF-N, albeit expressed in state space rather than ensemble space. The EnKF-
N based on this informative hyperprior is a finite-size variant of the hybrid 3D-
Var/EnKF. It has a potential for tuning the balance between climatological and25

dynamical errors. Moreover, we showed on a preliminary numerical experiment
that localization can be naturally carried out through shrinkage induced by the
scale matrix of the normal-inverse-Wishart hyperprior.
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With the corrections and new interpretations on the EnKF-N based on Jeffrey’s hy-
perprior, we have obtained a practical and robust tool that can be used in perfect model
EnKF experiments in a wide range of conditions without the burden of tuning the mul-
tiplicative inflation. This has saved us a lot of computational time in recent published
methodological studies.5

An EnKF-N based on an informative hyperprior, the normal-inverse-Wishart distribu-
tion, has been described and its equations derived. We plan to evaluate it thoroughly
on extensive numerical experiments. Several optional uses of the method are con-
templated. Hyperparameters xc, C, ν and κ could be diagnosed from climatological
statistics. Empirical Bayesian approaches could then be used to objectively balance10

the climatological errors and the dynamical errors. Alternatively, the hyperparameters
could be estimated online in the course of the EnKF, rather than being obtained from
prior climatological statistics, using a more systematic empirical Bayesian approach.

Appendix: Coupling of the radial and angular degrees of freedom

Section 3.2 separately identified angular and radial degrees of freedom in the EnKF-N15

cost function. This led to the dual cost function, and an alternative interpretation of the
EnKF-N as an adaptive inflation scheme that accounts for sampling errors.

Here we wish to interpret the contributions in the Hessian Eq. (24) that come from
the angular and from the radial degrees of freedom. To do so, we study the evidence
p(y), i.e. the likelihood of the observation vector, as estimated from the EnKF-N. This20

evidence is usually computed by marginalizing over all possible model states, which
reads in our case:

p(y) =
∫
RN

dw p(y|w )p(w ) =AN
∫
RN

dw e
− 1

2‖y−H(x+Xw )‖2R−N+1
2 ln

(
εN+‖w ‖

2
)
, (A1)
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where AN =
Γ(N+1

2 )

ε
N−1

2
N 2

N
2 πN+

1
2
√
|R|

is a normalization constant. This integral is also called the

partition function of the system in statistical physics since it sums up the contributions
of all possible states to the evidence. To untangle the angular and radial degrees of
freedom, we apply the following identity for any α > 0 and β > 0 to the prior:

α−β =
1

Γ(β)

∞∫
−∞

dt e−αe
t+βt. (A2)5

Additionally assuming here that the observation operator is linear, we obtain:

p(y) = BN
∫

RN+1

dwdt e−
1
2 ‖δ−Yw ‖2R−

1
2e

t‖w ‖2− 1
2e

tεN+
N+1

2 t, (A3)

where BN = 2
N+1

2

Γ(N+1
2 )
AN . The main contribution to the evidence can be estimated by using

the Laplace method to estimate this integral. Let us denote L(w ,t) minus the argument
of the exponential in the integrant. If the saddle-point of L(w ,t) is (w ?,t?), and if its10

Hessian at the saddle-point isHw ,t(w ?,t?), then an estimate of the evidence is (Bishop,
2006):

p(y) ' BN

√
(2π)N+1∣∣Hw ,t(w ?,t?)

∣∣e−L(w ?,t?). (A4)

The normalization by the Hessian represents a correction due to Gaussian fluctuations
of the variables (w ,t) around the saddle-point. The saddle-point conditions are15

w =
(

YTR−1Y+etIN
)−1

YTR−1δ , et =
N +1

εN + ‖w ‖
2

(A5)
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which are equivalent to the dual EnKF-N saddle-point equations (BS12). The Hessian
is

Hw ,t(w ?,t?) =

[
YTR−1Y+et? IN et?w ?

et?w ? N+1
2

]
. (A6)

Hence, the integral is dominated by the saddle-point solution found in the dual EnKF-N
derivation. It corresponds to a standard ETKF analysis with a prior correction by the et?5

factor. Moreover, the fluctuations are due to the standard ETKF fluctuations YTR−1Y+
et? IN , with additional corrections due to the radial degree of freedom. When computing
a precision matrix Hw for the variables w from the Hessian Eq. (A6) using the Schur
complement, i.e. the precision on the w variables conditioned on the knowledge of t?,
we find10

Hw (w ?,t?) = YTR−1Y+et? IN −
2

N +1
e2t?w ?w

T
? , (A7)

which coincides with Eq. (24). This tells that the correction −2(N +1)−1ζ2
waw

T
a in

Eq. (24) is due to the fluctuation of ζ (= et) and its coupling to the angular degrees
of freedom.
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Algorithm 1 Algorithm of the primal EnKF-N

Require: The forecast ensemble {xk}k=1,...,N , the observations y, the observation error
covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.

1: Compute the mean x and the perturbations X from {xk}k=1,...,N , Y = HX, δ = y−Hx

2: Find the argument of the minimum: wa = argmin
w

[
‖δ−Yw‖2

R + (N + 1)ln
(
εN + ‖w‖2

)]

3: Compute: Ha = YTR−1Y + (N + 1)
(εN+‖wa‖2)IN−2wawT

a

(εN+‖wa‖2)
2

4: Compute xa = x + Xwa, Wa =
√
N − 1[Ha]−

1
2 U

5: Compute xak = xa + XWa
k

Algorithm 2 Algorithm of the dual EnKF-N

Require: The forecast ensemble {xk}k=1,...,N , the observations y, the observation error
covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.

1: Compute the mean x and the perturbations X from {xk}k=1,...,N , Y = HX, δ = y−Hx
2: Find the argument of the minimum:
ζa = argmin

ζ∈]0,(N+1)/εN ]

[
δT
(
R + Yζ−1YT

)−1
δ + εNζ + (N + 1)ln N+1

ζ − (N + 1)
]

3: Compute wa =
(
YTR−1Y + ζaIN

)−1
YTR−1δ

4: Compute Ha = YTR−1Y + ζaIN − 2ζ2
a

N+1wawT
a

5: Compute xa = x + Xwa, Wa =
√
N − 1[Ha]−

1
2 U

6: Compute xak = xa + XWa
k
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Algorithm 2 Algorithm of the dual EnKF-N

Require: The forecast ensemble {xk}k=1,...,N , the observations y, the observation error
covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.

1: Compute the mean x and the perturbations X from {xk}k=1,...,N , Y = HX, δ = y−Hx
2: Find the argument of the minimum:
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ζ∈]0,(N+1)/εN ]

[
δT
(
R + Yζ−1YT

)−1
δ + εNζ + (N + 1)ln N+1

ζ − (N + 1)
]

3: Compute wa =
(
YTR−1Y + ζaIN

)−1
YTR−1δ
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Analysis with a reliable Gaussian prior p(x|xb,B)

Analysis with a Gausian prior
from a first sample p(x|x,P)

Analysis with a Gaussian prior
from a second sample p(x|x,P)

Analysis with the predictive Cauchy prior p(x|E)

Figure 1. Schematic of the traditional standpoint on the analysis of the EnKF (top row), what it
actually does using a Gaussian prior sampled from 3 particles (middle row), and using a pre-
dictive prior accounting for the uncertainty due to sampling (bottom row). The full green line
represent the Gaussian observation error prior pdfs, the dashed blue lines represent the Gaus-
sian/predictive priors if known, or estimated from an ensemble, or obtained from a marginal-
ization over multiple potential errors statistics. The dotted red curves are the resulting analysis
pdfs.
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Figure 2. Analysis variance when applying sequential data assimilation to xk+1 = αxk with (ζ =
0.75, dashed line) or without (ζ = 1, full line) multiplicative inflation on the prior, as a function of
the model growth α. We chose r = 1.
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Figure 3. Average analysis RMSE for the primal EnKF-N, the dual EnKF-N, the approximate
EnKF-N, and the EnKF with uniform optimally tuned inflation, applied to the Lorenz-95 model,
as a function of the time step between updates. The finite-size EnKFs are based on Jeffreys’
hyperprior.
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Figure 4. Average analysis RMSE for the EnKF-N with Jeffreys’ hyperprior, with the EnKF-N
based on the Dirac–Jeffreys’ hyperprior, with the EnKF-N based on the Jeffreys’ hyperprior but
enforcing the relaxation schemes R1 or R2, and the EnKF with uniform optimally tuned inflation,
applied to the Lorenz-95 model, as a function of the time step between update (left panel), and
as a function of the forcing F of the Lorenz-95 model (right panel).
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Figure 5. Average analysis RMSE as a function of (α,β) for the EnKF-N based on the IW
hyperprior, without inflation nor enforced localization, for ensemble sizes of N = 20 (left panel)
and of N = 10 (right panel). The RMSEs above 1, i.e. worse than analysis by pure observations,
are in white.
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