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Abstract

In numerical weather prediction, the problem of estimating initial conditions is usually
based on a Bayesian framework. Two common derivations respectively lead to the
Kalman filter and to variational approaches. They rely on either assumptions of linearity
or assumptions of Gaussianity of the probability density functions of both observation5

and background errors. In practice, linearity and Gaussianity of errors are tied to
one another, in the sense that a nonlinear model will yield non-Gaussian probability
density functions, and that standard methods may perform poorly in the context of non-
Gaussian probability density functions.

This study aims to describe some aspects of non-Gaussianity of forecast and10

analysis errors in a convective scale model using a Monte-Carlo approach based on
an ensemble of data assimilations. For this purpose, an ensemble of 90 members of
cycled perturbed assimilations has been run over a highly precipitating case of interest.
Non-Gaussianity is measured using the K 2-statistics from the D’Agostino test, which is
related to the sum of the squares of univariate skewness and kurtosis.15

Results confirm that specific humidity is the least Gaussian variable according to that
measure, and also that non-Gaussianity is generally more pronounced in the boundary
layer and in cloudy areas. The mass control variables used in our data assimilation,
namely vorticity and divergence, also show distinct non-Gaussian behavior. It is shown
that while non-Gaussianity increases with forecast lead time, it is efficiently reduced20

by the data assimilation step especially in areas well covered by observations. Our
findings may have implication for the choice of the control variables.
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1 Introduction

In data assimilation, the analysis step aims to find the probability density functions
(PDF) of the state x from the available observations y and a priori knowledge given by
the PDF of the background (Kalnay, 2003). The usual Bayesian formulation yields

Pa(x|y) ∝ Po(y |x)Pb(x), (1)5

where Pa,Pb and Po respectively are the PDFs of the analysis, of the background
(usually a short range forecast) and of the observations, which must be specified.
For high dimensional systems, the multivariate Gaussian is a natural choice for
variables that may approximately verify the central limit theorem (Bocquet et al., 2010).
Thus, up to now operational Numerical Weather Prediction (NWP) has relied on data10

assimilation schemes that are Gaussian or corrections to a Gaussian analysis-based
strategy.

Of course in general the time integration of the model nonlinear dynamics will lead to
non-Gaussian forecast errors. For instance, the highly nonlinear processes involved in
clouds and precipitation are known to give non-Gaussian background errors (Auligné15

et al., 2011). Some authors have reported on displacement errors of meteorological
features that turn into non-Gaussian background errors (Lawson and Hansen, 2005).
Keeping the Gaussian formalism in this case may yield unrealistic analyses that are
distorted (Ravela et al., 2007).

In NWP, the analysis of humidity may be the most problematic with respect to non-20

Gaussianity (NG). This is due to the condensation effects near saturation and the
intrinsic positivity of humidity. The choice of the control variable for humidity is a long-
standing debate (Dee and da Silva, 2003). Specific humidity exhibits NG but is rather
weakly correlated (in average) to other variables. Relative humidity has been found to
be more Gaussian but has stronger cross-covariances with temperature that are state-25

dependent and difficult to model. It still has skewed distribution near condensation
or in dry conditions. The solution adopted in several operational centers is to use
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a normalized relative humidity variable. The normalization factor is the standard
deviation of the relative humidity error, stratified according to the analyzed relative
humidity itself. The asymmetries in PDFs are also accounted for through a nonlinear
transformation. This scheme has been implemented through several variants both in
global (Holm et al., 2002; Ingleby et al., 2013) and in limited area models (Gustafsson5

et al., 2011).
The 4D-Var algorithm commonly used in NWP (e.g. Rabier et al., 2000) has some

ability to handle nonlinearities. It solves for the most probable state in Eq. (1) by
minimizing a non-quadratic cost function with nonlinearities in the model and in the
observation operator mapping the model state to the observation space. The approach,10

known in the community as incremental 4D-Var (Courtier et al., 1994), is based on
a form of truncated Gauss–Newton iterations. The problem is solved by minimizing
a succession of inner-loop quadratic optimization problems with increasing horizontal
resolutions, in which the model is simplified and linearised around the state adjusted
by the previous outer-loop iteration (Laroche and Pierre, 1998).15

The PDF of observation errors is also non-Gaussian in general. In NWP, quality-
control are performed to exclude observations that are outliers compared to the
model and using statistical knowledge (Lorenc, 1986). Unfortunately, this can be
erroneous and a more flexible framework has been introduced for instance by Anderson
and Jarvinen (1999). It explicitly computes the probability of gross error for each20

observation, given the preliminary analysis from the outer loops. The weight of each
observation is smoothly decreased with increased likelihood for gross error. More
recently, this scheme has been replaced by the use of a Huber norm (Tavolato and
Isaksen, 2014). The NG of observation errors is out of the scope of this paper.

The main goal of this paper is to document the non-Gaussianities of background25

and of analysis errors in the context of convective scale NWP. For this purpose, a large
ensemble of perturbed cycled assimilations has been set up with the AROME-France1

model. The perturbations simulate the evolution of the true background and analysis

1Application de la Recherche à l’Opérationnel à Méso-Echelle (Seity et al., 2011).

1064

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1061/2015/npgd-2-1061-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1061/2015/npgd-2-1061-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 1061–1090, 2015

Diagnosing
non-Gaussianity

R. Legrand et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

errors (Houtekamer et al., 1996; Fisher, 2003; Berre et al., 2006). The diagnosis of NG
may help to find out for which variables and/or in which areas efforts could be made
to improve Gaussian assumptions in the assimilation algorithm, or to help designing
advanced data assimilation schemes taking into account displacement errors for
instance (Ravela et al., 2007).5

The paper is organized as follows: Sect. 2 presents the univariate D’Agostino test for
NG (D’Agostino, 1970) and evaluates its efficiency on some specified PDFs. Section 3
describes the ensemble from which the NG is diagnosed. This ensemble is composed
of assimilations and forecasts performed by the AROME-France model for a highly
precipitating event over the Mediterranean sea, of interest for the HyMeX campaign10

(Ducrocq et al., 2013). Results of the NG diagnostics are then documented. After
an overview for model prognostic variables, time evolution of NG is discussed. The
dependence of NG to physical nonlinear processes is then described by making use
of geographical masks based on cloud contents. In Sect. 4, the impact of the data
assimilation process on NG is studied by comparing diagnostics performed on both15

background and analysis errors, and by computing diagnostics in the control space of
the minimization. Conclusions are given in Sect. 5.

2 An index of non-Gaussianity

In NWP, dimensions of the state and observation vectors, including satellite and radar,
are huge (respectively around 108 and 105 in AROME-France). As mentioned in20

Bocquet et al. (2010) only the simpler statistical tests of Gaussianity are tractable for
such high dimensional problems. Therefore, we will rely on simple univariate tests for
NG.

1065

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1061/2015/npgd-2-1061-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1061/2015/npgd-2-1061-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 1061–1090, 2015

Diagnosing
non-Gaussianity

R. Legrand et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.1 D’Agostino test

The D’Agostino test (hereafter K 2 test, D’Agostino, 1970) is a statistical test where
the deviation from Gaussianity is detected from the PDF’s skewness and kurtosis.
The skewness is a measure of the asymmetry of the PDF about its mean. Positive
(negative) values are associated with a mode of the PDF smaller (larger) than its mean5

and with a large right (left)-tail. For instance, a negative skewness for specific humidity
at some point indicates that at least a part of the ensemble is much dryer than the
mean value of the ensemble. The kurtosis measures the peakedness of the distribution
(Thode, 2002). A PDF with larger tails and a narrow modal peak has a large kurtosis.

The theoretical skewness and kurtosis are respectively estimated over an ensemble10

by the sample third (G3) and fourth (G4) standardized moments. They are defined given
a sample xi=1..Ns

of size Ns and its sample mean x as

G3 =
m3

m
3
2

2

=

1
Ns

∑Ns

i=1(xi −x)3

[
1
Ns

∑Ns

i=1(xi −x)2
] 3

2

(2)

G4 =
m4

m2
2

=

1
Ns

∑Ns

i=1(xi −x)4

[
1
Ns

∑Ns

i=1(xi −x)2
]2

(3)

with m2, m3, and m4 the sample second (variance), third, and fourth order moments.15

These quantities estimate the theoretical skewness and kurtosis of the distribution. For
a Gaussian PDF, skewness is zero and kurtosis equals 3. Thus, the sample skewness
and kurtosis defined above could be used to detect deviation from Gaussianity, yet
their convergence to normality with ensemble size is slow. As reported in Tables 3.1
and 3.2 of Thode (2002), the normality is reached with sufficient accuracy typically20

for ensemble sizes of the order of ∼ 5000. For smaller ensemble sizes (more suitable
to NWP), it has been suggested to transform these quantities into f3(G3) and f4(G4)
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respectively, in order to remedy this situation (D’Agostino, 1970). f3 is defined as

A = G3 ×

√
(Ns +1)(Ns +3)

6(Ns −2)

B = 3

(
N2

s +27Ns −70
)
(Ns +1)(Ns +3)

(Ns −2)(Ns +5)(Ns +7)(Ns +9)

C =
√

2(B−1)−1

D =
√
C5

E =
1√

ln(D)

F =
A√

2
C−1

f3(G3) = E × ln(F +
√
F 2 +1)

and f4 is defined as

O = G4 ×
Ns(Ns +1)

(Ns −1)(Ns −2)(Ns −3)
−3

(Ns −1)

(Ns +1)
10

P =
24Ns(Ns −2)(Ns −3)

(Ns +1)2(Ns +3)(Ns +5)

Q =
(Ns −2)(Ns −3)

(Ns +1)(Ns −1)
√
P
×O

R =
6
(
N2

s −5Ns +2
)

(Ns +7)(Ns +9)

√
6(Ns +3)(Ns +5)

Ns(Ns −2)(Ns −3)
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S = 6+
8
R

 2
R
+

√
1+

4

R2


T =

1− 2
S

1+Q
√

2
S−4

f4(G4) =
1− 2

9S − T
1
3√

2
9S

.

The statistics are then combined to produce an omnibus test K 2, able to detect5

deviations from normality due to either skewness or kurtosis:

K 2 = f 2
3 (G3)+ f 2

4 (G4). (4)

For a Gaussian PDF, f3(G3) and f4(G4) both follow a Gaussian law with a zero mean
and a unity variance. In this case K 2 follows approximately a χ2 distribution with two
degrees of freedom. This property may be used to evaluate the null hypothesis H0: “the10

sample is from a Gaussian PDF”. Using unilateral testing, K 2 > 6.271 (for Ns = 100)
indicates a reject of Gaussianity at the 95 % confidence level.

2.2 Evaluation

The efficiency of the K 2 test can be evaluated by measuring its probability of detection
(POD) for the hypothesis H0. For a sample known to be from a non-Gaussian PDF, the15

POD gives the probability that the test accurately rejects H0. The best result is POD=1.
POD of K 2 test is estimated from Nxp independent experiments. For each

experiment, K 2 is computed from Ns elements sampled from a known distribution.
Depending on the K 2 value, H0 is accepted or rejected. When the known distribution
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is non-Gaussian, POD is given by the frequency of H0 rejections over the Nxp
experiments.

The POD is estimated for three non-Gaussian distributions: uniform, log-normal,
and a Gaussian mixture. The Gaussian mixture is defined through its PDF as P (x) =
w1P1(x)+w2P2(x)+w3P3(x) with P1, P2, and P3, three Gaussian distributions with zero5

mean and respectively 0.1, 0.05, 0.02 as chosen standard deviation. The chosen
weights are given by (w1,w2,w3) = (0.2,0.5,0.3). The representation of the shapes of
these three distributions is given in Fig. 1a, alongside the Gaussian distribution.

POD are estimated over Nxp = 105 experiments. For both tests, different ensemble
sizes Ns are tested (Ns =10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200). Results of10

this ideal case are shown in Fig. 1b. The log-normal distribution is the easiest one to
discriminate from the Gaussian distribution, yielding the highest POD that reach almost
one as soon as the ensemble size is above forty. For the two others, non-Gaussian
distributions (uniform and Gaussian-mixture) K 2 test is only correctly discriminating
from Gaussianity (with POD > 0.8) when Ns > 70. For Ns = 90, which corresponds15

to the ensemble size for the real dataset composed of AROME-France forecasts
(see Sect. 3), POD values are over 0.9 for all three non-Gaussian distributions. In
conclusion, the K 2 test is able to correctly discriminate NG for the ensemble size
considered in this paper.

There are some other well-established tests for univariate Gaussianity, such as the20

Anderson–Darling goodness-of-fit test (Anderson and Darling, 1954). The latter has
been also tested in the same framework and the performances proved to be very similar
to the ones of the K 2 test. When comparing the results, obtained over the ensemble
(Sect. 3), these two tests also give very similar results. e.g. they indicate the same
areas of NG over ≈ 90% of the domain. But, measuring skewness and kurtosis may be25

more informative and may be of interest for some assimilation schemes that account
for skewness (Hodyss, 2012). Also, describing the values of K 2 has the advantage to
prevent the results from depending on the chosen confidence level.
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3 Diagnosis of the non-Gaussianity of AROME forecast errors

3.1 An AROME-France ensemble for a high-precipitating case

AROME-France is an operational non-hydrostatic model covering France with a 2.5 km
horizontal resolution at the time of the experiments. Its lateral boundary conditions are
given by the global model ARPEGE2. Assimilation steps are done every three hours5

with a 3D-Var scheme and make use of a comprehensive set of observations such as
conventional, satellite or Doppler radar data (see Seity et al. (2011) for more details).

The simulation of background and analysis errors is achieved by using a Monte-Carlo
sampling, called an Ensemble Data Assimilation (EDA) in the context of NWP. A 90-
members EDA is first run for the global model (AEARP, Berre and Desroziers, 2010).10

Each EDA member is based on a 4D-Var cycled assimilation which uses perturbed
observations and a perturbed background, in order to simulate the error evolution
(Berre et al., 2006). Observation perturbations are constructed as random draws of
the specified observation error covariance matrix, and background perturbations result
from the forecast evolution of previous analysis perturbations and from their inflation15

at the end of each forecast (Raynaud et al., 2012). This global ensemble provides
perturbed boundary conditions to an ensemble of perturbed 3D-Vars for AROME-
France, as described in Ménétrier et al. (2014). True background errors are then
approximated by the deviations of the perturbed backgrounds from the ensemble
mean. A few cycles (typically four) are necessary to reach a regime where the spread20

of the ensemble is representative of the true error spread; these cycles are discarded
from the diagnostics presented below.

The case of interest is the 4 November 2011 between 00:00 and 06:00 UTC. A strong
Southerly convergent flow occurs at low levels over Southern France (Fig. 2). Warm
and moist air from the Mediterranean sea is advected over land, which triggers deep25

convection. Those high intensity events are studied by the HyMeX research program

2Action de Recherche Petite Échelle Grande Échelle (Pailleux et al., 2000).
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(Ducrocq et al., 2014). Associated precipitations are visible all along the Rhone valley,
with local maxima exceeding 25mmh−1. Also, associated with a low pressure area
over the North-East Atlantic (not shown), a cold active front extending from the bay of
Biscay to the eastern Britannic coast, is sweeping North-West of France with locally
strong precipitations.5

3.2 Vertical profiles of NG

The vertical profiles of quantities related to NG are shown in Fig. 3 for different
variables, namely zonal (U) and meridian (V) winds, temperature (T) and specific
humidity (q). On average, except near the surface, q is the variable that shows the
largest deviation from Gaussianity, confirming results obtained at the global scale10

(Holm et al., 2002). From 850 to 350 hPa, q is indeed characterized with an increase
of the deviation from Gaussianity. As shown in Fig. 3b, this NG is partly explained
by negative values of the skewness, highlighting a right-tailed PDF of the background
errors, meaning that many values are more humid than the ensemble mean.

In the troposphere, the increase of K 2 seems inversely proportional to the q mean15

content displayed in Fig. 3d. Values at higher levels, where q is almost nonexistent, may
however be taken with caution. Below 850 hPa, K 2 is peaking around 960 hPa. Above
850 hPa, the wind components and T remain close to Gaussianity. Below however, all
variables have significant deviation from Gaussianity, especially T for which high values
of K 2 are found at ground level, making of it the less Gaussian variable in the boundary20

layer.

3.3 Horizontal structures of NG

The horizontal structures of NG are shown for q in Fig. 4. They have large similarities
with the meteorological coherent structures, as the Southerly convergent flow over
South of France and the active cold front aloft North-West of France are associated with25

high values of K 2. Supporting the conclusion drawn from Fig. 3, transformed skewness
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f3(G3) is mainly negative (corresponding to right-tailed distributions) over the domain
and has a larger contribution than transformed kurtosis f4(G4) in large K 2 values. Over
Mediterranean sea, the skewness represents on average 70% of K 2.

It may be interesting to compare NG with the variance of the ensemble, as K 2 is
defined from standard third and fourth standardized moment avoiding any scale effects.5

As displayed in Fig. 5, the variance does not coincide with overall NG, even if it happens
that Gaussian areas may coincide with regions of low variance. However, the area
diagnosed with the highest values of variance, located South of the Balearic islands, is
associated with low values of K 2.

NG of the surface pressure is not shown in this study since, according to our10

diagnostics, it is a mainly Gaussian variable (averaged K 2 around 2.7). High values of
K 2 appears around the cold front and the convergence area but they are very localized
and of smaller amplitude compared to the other model variables.

3.4 Time evolution of non-Gaussianity

For each member of the ensemble, 18 h-forecasts have been run from the analyses15

performed at 00:00 UTC, the 04 November 2011. This allows to diagnose NG every
6 h during the first 18 h of integration. The corresponding vertical profiles are shown in
Fig. 6 for the two most non-Gaussian variables according to Sect. 3.2: q and T .

In order to get insights into the processes that may be involved in NG development,
the diagnostics have been separately computed for cloudy and for clear sky areas,20

following a similar approach to that of Montmerle and Berre (2010) and Michel et al.
(2011), in which precipitating masks have been used. Grid points over the domain are
separated in two bins: “cloudy” or “clear sky” points. “Cloudy” bin defines grid points
whose vertically integrated simulated cloud water exceeds 0.1gkg−1 for a majority of
ensemble members (i.e. more than 45 members for the 90-members ensemble). The25

other points are classified as “clear sky”. The percentage of “clear sky” points being
three to five times larger (not shown) than the detected “cloudy points”, similarities
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between “clear sky” profiles, and profiles averaged over the whole domain (as plotted
in Fig. 3) are apparent.

During the 6 first hours of forecasts, NG quickly increases. For q, all tropospheric
model levels are affected. For T , starting from a fairly Gaussian profile, increase of NG
is mainly affecting the boundary layer and higher levels remain close to Gaussianity.5

During the following 12 h (from 6 to 18 h-forecast), changes of NG are smaller for both
variables.

It is interesting to notice that different behaviors can be found for diagnostics
computed over “cloudy” and “clear sky” areas. For q, NG is mainly found in “cloudy”
areas, where K 2 quickly reaches values above 8, with two peaks around 900 and10

700 hPa. The altitude of the lower peak rises with forecast terms, while the amplitude
of the higher one increases. According to Fig. 6c that displays the time evolution of
the mean cloud contents, this evolution of NG in cloudy areas is likely due to nonlinear
processes such as the vertical displacement error of cloud base and top within the
ensemble and possibly the diabatic processes. In surface layers, K 2 for T quickly15

increases especially for clear air areas where turbulent and radiative processes occur.
After 12 h, NG is more spread vertically within clouds, probably because of diabatic
processes.

For the wind components, behaviors close to T have been found, but with smaller
amplitude (not shown): NG increases mainly in the boundary layer in “clear sky” areas20

and may be due to nonlinear turbulent processes.

4 Non-Gaussianity in the data assimilation process

Based on comparisons of NG diagnostics between successive background and
analysis errors, this section focuses on the evolution of NG through cycled 3D-Var
assimilations. Analysis errors will be treated for both model and control variables. The25

link between assimilated observations and NG reduction will be shown.
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4.1 Overview

An overview of the NG evolution during the analysis process is given in Fig. 7 that
shows averaged K 2 profiles for the analysis and the background errors computed for
two consecutive assimilation/3 h-forecast steps. Comparable results are found for the
two cycles, confirming the increase of NG during the model integration, and highlighting5

the substantial reduction of NG during the assimilation process, especially for levels
where NG grows quickly. Values of K 2 are indeed brought back to much more Gaussian
values, even in the lower levels for both q and T , and in higher troposphere for q.

Geographical variations of NG are illustrated in Fig. 8. As in Fig. 7, the NG of the
background and of the following 3 h-forecast are similar. The largest decreases of NG10

between background and analysis error match areas with a large analysis increment, in
particular where radar data are assimilated (Fig. 8d). Some NG areas remain though,
especially in areas where the background is less constrained by observations (e.g.
above Spain and above the sea). However, most areas where NG has been reduced
thanks to the data assimilation process recover their NG nature after 3 h of model15

integration.

4.2 Non-Gaussianity in control space

Previous results are documenting the NG of four model prognostic variables: U , V ,
T and q. As it is detailed in Brousseau et al. (2011), the assimilation scheme in
AROME-France is based on a 3D-Var whose control variables are the vorticity ξ, the20

unbalanced divergence ηu, the unbalanced temperature and surface pressure (T ,Ps)u,
and the unbalanced specific humidity qu. These control variables are linked to the
model variables following the multivariate formalism of Berre (2000), which is based
on the decomposition of the background error covariance matrix in spatial operators
and balance transforms. Since the minimization is performed in the control space, NG25

diagnostics have also been computed for these control variables.
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4.2.1 Overview

Vertical profiles of NG for control variables are presented in Fig. 9. Unlike the zonal
and meridian winds, ξ and ηu are strongly non-Gaussian over the whole troposphere,
whereas Tu and qu display much more Gaussian profiles.

Negative values of f3(G3) below 800 hPa for ηu (Fig. 9b) denote a larger spread of the5

distribution below the mean, probably due to the occurrence of low level convergence.
At mid-troposphere, error distributions of all four variables are near symmetric. Except
for qu, distributions in tropospheric levels remain symmetric and the K 2 index is mainly
explained by the kurtosis (Fig. 9c).

Those results agree with one of the conclusion of Ménétrier et al. (2015). These10

authors describe and algorithm to find the optimal truncation dedicated to sample
covariances filtering. This algorithm has two variants. The first one assumes Gaussian
PDF for the background perturbations while the second one does not. Their study
indicate that, at convective scale, the Gaussian variant is accurate for Tu and qu, but the
more general non-Gaussian variant has to be used for ξ and ηu, which are significantly15

non-Gaussian variables in agreement with our study.
While very similar, the horizontal structures of K 2 for ξ and ηu are noisier compared

to the other variables, with very small scale and intense signals (not shown). Maps
mostly follow the land–sea mask, with high values of K 2 over sea, and low values over
land. Aloft, NG follows meteorological active structures (cold front and Cevenol event).20

4.2.2 Non-Gaussianity in the multivariate transform

To go further in the discussion on Gaussianity of the control variables, this section is
comparing the K 2 values for total and unbalanced variables.

According to Fig. 10, the debalancing process is not really affecting the NG for
the divergence, except at lower levels where K 2 is slightly decreasing while keeping25

large values. K 2 values remain two to three times larger for the divergence (total or
unbalanced) than for T and q from the surface to the mid-troposphere. On the contrary,
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NG decreases significantly for T and q during the debalancing process. Changes
mainly appear in boundary layer for T . For q, changes appear for every model levels
especially in the boundary layer and under the tropopause. From surface to 750 hPa,
NG of qu is equal or smaller than the NG of Tu.

5 Conclusions5

It is suggested to use the K 2 value from the D’Agostino test for diagnosing non-
Gaussianity. This diagnostic is computed from the univariate sample skewness and
kurtosis from an ensemble. This may allow to describe deviations from the Gaussian
hypothesis for AROME-France background and analysis errors, as illustrated here on
a case study characterized by a Cevenol event and an active cold front with a 90-10

members ensemble.
According to our diagnostic, among model variables, q has the largest deviation from

Gaussianity, with a maximum of amplitude near the tropopause and in the boundary
layer. Deviation from Gaussianity for U , V , and T only appears in the boundary layer.
With an heterogeneous diagnostic, NG has been separately diagnosed for “cloudy”15

points and “clear sky” points. For q, cloud covering leads to higher NG, especially at
the bottom and at the top of the cloud layer. In “clear sky” situations, surface processes
are expected to enlarge K 2 for T , in a larger manner than for “cloudy” points. Studying
time evolution through forecast terms, NG is mainly increasing during the 6 first hours.
The 3D-Var assimilation appears to efficiently reduce the growing NG of the forecast,20

especially in well-observed areas. Finally, among control variables of the assimilation,
ξ and ηu deviate from Gaussianity in a larger manner than Tu and qu, which are much
more Gaussian than their balanced counterparts.

Despite this work is attributing non-Gaussian behaviors to well-known nonlinear
processes, such as the microphysical or boundary layer processes, it is not precisely25

addressing the cause of NG. However two important questions on variational data
assimilation are highlighted. First, regarding control variables of the assimilation,
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according to our diagnostic, the most non-Gaussian variables are the vorticity and the
divergence. Yet, main efforts have been put on “Gaussianisation” of specific humidity
(e.g. Holm et al., 2002) but the discussion may also be focused on vorticity and
divergence, either with a “Gaussianisation” of those variables or with a discussion on
the possibility to use other dynamical variables. Second, with the cloud mask approach,5

cloud layers have been associated with high values of NG.
This study uses an ensemble at convective scale that does not include model

error neither in the analysis nor in the forecast steps. It is possible that conclusions
would be different if stochastic noise drawn explicitly from a Gaussian is added to the
model states during the forecasts, as stated by Lawson and Hansen (2004). Also, this10

study is actually a part of a work focused on the correction of displacement errors.
Since displacement errors are identified to cause NG (Lawson and Hansen, 2005),
diagnostics of NG may be used to evaluate improvements in the current amplitude
error correction step (3D-Var) brought by a displacement error correction (Ravela et al.,
2007). This will be examined in a future work.15
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Figure 1. (a) Three non-Gaussian distributions on which POD have been estimated: uniform
distribution, log-normal distribution, and Gaussian mixture (see text for description). (b)
Probability of detection (POD) for K 2 test. POD are computed over Nxp = 105 one-dimensional
experiments for different sample sizes Ns.
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(a) (b)

Figure 2. (a) Specific humidity (q, kgkg−1) and (b) surface cumulative precipitation (mm h−1)
overlaid with winds vector, at model level 52 (≈ 920 hPa). Maps are given for one member of
AROME-France 3 h-forecasts ensemble, valid at 03:00 UTC the 4 November 2011.
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Figure 3. Vertical profiles of (a) K 2, (b) transformed skewness f3(G3), (c) transformed kurtosis
f4(G4), and (d) q (kg kg−1) for one member of the ensemble. For each level, values are averaged
over the horizontal domain. Profiles are computed from the 90-members ensemble of AROME-
France 3 h-forecasts valid at 03:00 UTC the 4 November 2011. Profiles in (a), (b), and (c) are
given for four model variables: U , V , T , and q.
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Figure 4. (a) K 2, (b) transformed skewness f3(G3), and (c) transformed kurtosis f4(G4), for q
at model level 52 (≈ 920 hPa), computed from the 90-members ensemble of AROME-France
3 h-forecasts valid at 03:00 UTC the 4 November 2011.
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Figure 5. Background-error standard deviations of q (g kg−1) for the model AROME-France, at
model level 52 (≈ 920 hPa). Standard deviations are estimated from the 90-members ensemble
of 3 h-forecasts, valid at 03:00 UTC the 4 November 2011.
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Figure 6. Time evolution (from 00:00 to 18:00 UTC, every 6 h) of the vertical profiles of K 2

for (a) q and (b) T computed for (thick) “cloudy” and (thin) “clear sky” points (see text). (c)
Vertical profiles of averaged liquid cloud ql and ice cloud qi contents (g kg−1). Initial cloud water
profile is null because the hydrometeors are not cycled. Consequently the initial profiles of
K 2 are common for the two regions. Profiles have been computed using forecasts from the 4
November 2011 00:00 UTC.
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Figure 7. Vertical profiles of K 2 on background and analysis errors for (a) q and (b) T , for two
successive cycled assimilation/3 h-forecast steps starting at 00:00 UTC the 4 November 2011.
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Figure 8. K 2 for q at level 52 (≈ 920 hPa) for (a) the background, (b) the analysis, and (c) the
following 3 h-forecast starting at 03:00 UTC the 4 November 2011. (d) Corresponding analysis
increment (kg kg−1) with positions of radar precipitation observations assimilated.
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Figure 9. Vertical profiles of (a) K 2, (b) transformed skewness f3(G3), and (c) transformed
kurtosis f4(G4). For each level, values are averaged over the horizontal domain. Profiles are
computed from the 90-members ensemble of AROME-France 3 h-forecasts valid at 03:00 UTC
the 4 November 2011. Profiles in (a), (b), and (c) are given for four control variables: ξ, ηu, Tu,
and qu.
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Figure 10. Comparison of K 2 vertical profiles of model variables (thick lines) and control
variables (thin lines). Profiles are computed from 3 h-forecasts valid at 03:00 UTC the 4
November 2011.
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