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Abstract

Long weakly nonlinear finite-amplitude internal waves in a fluid consisting of three invis-
cid immiscible layers of arbitrary thickness and constant densities (stable configuration,
Boussinesq approximation) bounded by a horizontal rigid bottom from below and by a
rigid lid at the surface are described up to the second order of perturbation theory in5

small parameters of nonlinearity and dispersion. First, a pair of alternatives of appropri-
ate KdV-type equations with the coefficients depending on the parameters of the fluid
(layer positions and thickness, density jumps) are derived for the displacements of both
modes of internal waves and for each interface between the layers. These equations
are integrable for a very limited set of coefficients and do not allow for proper description10

of several near-critical cases when certain coefficients vanish. A more specific equation
allowing for a variety of solitonic solutions and capable of resolving most of near-critical
situations is derived by means of the introduction of another small parameter that de-
scribes the properties of the medium and rescaling of the ratio of small parameters.
This procedure leads to a pair of implicitly interrelated alternatives of Gardner equation15

(KdV-type equations with combined nonlinearity) for the two interfaces. We present a
detailed analysis of the relationships for the solutions for the disturbances at both in-
terfaces and various regimes of the appearance and propagation properties of soliton
solutions to these equations depending on the combinations of the parameters of the
fluid. It is shown both the quadratic and the cubic nonlinear terms vanish for several20

realistic configurations of such a fluid.

1 Introduction

There are many important topics related to internal waves (IWs) in the ocean. Large-
amplitude IWs are highly significant for sediment resuspension and transport (Bogucki
and Redekopp, 1999; Stastna and Lamb, 2008; Reeder et al., 2011) and for the bi-25

ology on the continental shelf (Sandstrom and Elliott, 1984). The currents forced by
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high-amplitude or breaking IWs cause powerful forces on marine platforms and sub-
mersibles. The associated strong distortion of the density field has a severe impact
on acoustic signaling (Apel et al., 2007; Chin-Bing et al., 2009; Warn-Varnas et al.,
2009; Sridevi et al., 2011). Their capacity to break and impact the local microstruc-
ture has major consequences for the understanding of interior ocean mixing (Muller5

and Briscoe, 2000). IWs are believed to be responsible for substantial damage (Os-
borne, 2010). Large water velocities in intense IWs can create enormous local loads
and bending moments and represent a potential danger to off-shore structures, such
as oil platforms, drill rigs, etc. The danger from IWs is considered so critical that, sim-
ilar to the systems of tsunami warning, the potential for automated detection systems10

for large-amplitude IWs (internal soliton early warning system) is being discussed now.
Such systems were even tested to support drilling campaigns and guarantee the safety
of drilling platforms (Stober and Moum, 2011).

Most of the studies of IWs focus on large-amplitude localized IWs, which propagate in
relatively shallow areas of oceans, shelf regions or semi-sheltered seas. A fascinating15

feature of many waves of this kind is that they propagate for a long time without any
significant change of their energy or shape as solitons do (Jeans, 1995). They can be
interpreted and adequately described as internal solitary waves (ISWs) and are often
referred to as internal solitons (Ostrovsky and Stepanyants, 1989; Grimshaw, 2001).
Observations of large-amplitude ISWs are presented in many original research papers20

and reviews (Holloway et al., 2001; Jackson, 2004; Ostrovsky and Stepanyants, 2005;
Sabinin and Serebryany, 2005; Vlasenko et al., 2005; Apel et al., 2007; Grimshaw et
al., 2007).

The widely used for both theoretical research and applications concept of layered
fluid is convenient for the description of IWs because wave motion in such environ-25

ments is described by equations containing a small number of parameters and often
allowing for analytical studies of the properties of solutions. These simple models are
able to mirror the basic properties of the actual internal wave systems. The efficiency
of the two-layer model – the simplest system basically representing the key proper-

3
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ties of IWs – was established in numerous analytical and numerical studies as well as
by means of in situ observations and laboratory experiments (Funakoshi, 1985; Fu-
nakoshi and Oikawa, 1986; Mirie and Pennell, 1989; Choi and Camassa, 1996, 1999;
Pullin and Grimshaw, 1998; Craig et al., 2004; Guyenne, 2006; Zahibo et al., 2007;
Camassa et al., 2010).5

The two-layer model only conditionally represents the vertical structure of seas and
oceans. Its direct extension – three-layer stratification – proved to be a proper approx-
imation of sea water density profile in some basins in the World Ocean with specific
hydrological conditions (Knauss, 1999; Leppäranta and Myrberg, 2009; Kurkina et al.,
2011a). Three-layer models are more complex than the two-layer systems, because of10

increased number of set-up parameters, but they represent new dynamical effects and
allow for much more analytical progress compared to the arbitrary stratified medium.
Another advantage of three-layer models in contrast to two-layer ones is the ability to
describe two modes of IWs, their properties and possible interactions.

Nonlinear theory of IWs in a three-layer fluid with constant density in each layer is15

presented in the literature in the framework of different approaches. Simplified equa-
tions for three-layer conjugate flows are derived in Lamb (2000) and Rusås and Grue
(2002) and some analytic results are obtained to understand conjugate flows and, in
consequence, large-amplitude, flat-centered (table-like) solitary internal waves of both
modes. Comparison with solutions obtained for continuous stratifications is also given20

in Lamb (2000). A fully nonlinear numerical method for the calculation of solitary waves
in a three-layer fluid (Rusås and Grue, 2002) allows for the investigation of both mode-
1 and mode-2 waves, including broad flat-centered waves and extreme (overhanging)
waves. The similarity of mode-1 waves with the interfacial waves in two-layer fluid is the
probable reason why the analysis is mainly performed for situations when one of the25

layers is relatively thin. These models have greatly contributed to the understanding of
nonlinear internal wave properties in a three-layer fluids and flows. They are, however,
often very complex and the results are not easy to visualize. The drawback is that ana-
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lytical progress is limited and numerical computations should be involved to obtain final
localized solutions and analyze their properties.

Although contemporary numerical methods and fully nonlinear approaches such as
the above-discussed method of conjugate flows allow for extensive studies into prop-
erties of highly nonlinear IWs, many specific features can still be recognized, analyzed5

and understood using classical methods for analytical studies into IWs in the weakly
nonlinear framework. Such fully analytical methods make it possible to exactly establish
the appearance of disturbances of different shapes and amplitudes, and, more impor-
tantly, to understand the specific features of the behavior of waves corresponding to
the situation where a substantial change in the overall regime of wave propagation is10

possible (Kurkina et al., 2011a).
Weakly nonlinear analytical models of different levels for IWs in a three-layer fluid

have been developed for some specific situations. The properties of mode-1 IWs in
symmetric three-layer fluid (when the undisturbed state is symmetric about the mid-
depth) were analyzed up to the second order in nonlinearity (Grimshaw et al., 1997).15

An extension involving up to the fourth-order nonlinear terms was derived in Kurkina
et al. (2011b). The model of Yang et al. (2009) involved both modes of IWs in a gen-
eral three-layer ocean, the first order in nonlinearity and dispersion (Korteweg–de Vries
(KdV) approximation; only mode-2 waves were analyzed). The weakly nonlinear theory
for continuously stratified fluid can be used to derive the parameters of evolution equa-20

tions for IWs in a three-layer fluid (Grimshaw et al., 1997; Yang et al., 2009). These
parameters for continuous stratification are given in the form of integral expressions in-
cluding the vertical mode (whose shape is determined by the density stratification), its
higher-order corrections and their derivatives (Lamb and Yan, 1996; Pelinovskii et al.,
2000; Grimshaw et al., 2002). When this technique is adapted to a layered model (with25

a piecewise continuous density profile), the relevant integrands contain very complex
expressions (especially for higher-order corrections and coefficients) involving gener-
alized functions, and analytical progress in their analysis is not always possible. There-
fore it is preferable to initially use equations for layered models and apply asymptotic

5
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expansions to them directly. This approach has been used, for instance, in Kurkina
et al. (2011b) and Koop and Butler (1981).

A specific feature of weakly nonlinear equations for a three-layer fluid is that some
coefficients at the nonlinear terms may vanish for certain modes and specific density
stratifications (Kakutani and Yamasaki, 1978; Grimshaw et al., 1997; Yang et al., 2009).5

This feature is common for several wave classes in stratified environments (Soomere,
2003). In such cases it is often necessary to account for higher-order nonlinear terms
to adequately describe the motion. In case of IWs in a three-layer fluid it is necessary
to produce a second-order weakly nonlinear theory to resolve some of such situations.
The attempts in this direction have been so far limited to the specific case of symmetric10

stratification (Kurkina et al., 2011b).
We develop here an analytic model for long IWs of finite amplitude for the three-layer

fluid with an arbitrary combination of the layers’ thicknesses. Such a vertical structure
much better matches the properties of real seas and oceans. The relevant nonlinear
evolutionary equations are obtained first with the use of an asymptotic procedure from15

the governing equations for three homogeneous fluid layers. The derivation of these
equations relies on second order of the perturbation theory for both interfaces and for
the waves of each mode. The developed framework makes it possible to investigate
the properties of both modes of long internal gravity waves in a three-layer fluid. The
key development is that for each equation the coefficients at the nonlinear terms and20

terms reflecting linear and nonlinear dispersion of waves are expressed explicitly via
parameters of the fluid configuration. This makes it possible to analyze comprehen-
sively the behavior and signs of all coefficients. The necessary order of the equations
is discussed and determined for each case. Special attention is paid to the situations
when the nonlinear terms of the lowest order of the perturbation theory can vanish.25

For such situations a particular rescaling is performed in order to balance the nonlinear
and dispersion terms in the equations.

6
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2 Governing equations

As usual in the analysis of long internal waves, let us consider a model situation of
irrotational motions in a three-layer inviscid fluid with undisturbed interface positions at
z = H1,2 (H2 ≥ H1) and total thickness H3 (H3 ≥ H2) overlying a flat horizontal bottom
located at z = 0 in the approximation of a rigid lid on the surface of the fluid (Fig. 1).5

The reference density of the middle layer is ρ2 = ρ and the densities in the lowermost
and uppermost layers are ρ1 = ρ+∆ρ1 and ρ3 = ρ−∆ρ2, respectively. We employ the
Boussinesq approximation and assume that densities in the layers differ insignificantly
(∆ρ1,2/ρ� 1). In this case, the equations of the motion are Laplace equations for the
velocity potential Φi in each layer:10

∇2Φi = 0, i = 1,2,3. (1)

The kinematic boundary conditions at the bottom and at the fixed upper boundary
reduce to the condition that vertical velocities at these boundaries vanish:

Φ1z
= 0 at z = 0, Φ3z

= 0 at z = H3. (2)

Here and further the subscripts x, y , z or t denote a partial derivative along the respec-15

tive coordinate (x,y ,z) or with respect to time t. The classical kinematic and dynamic
boundary conditions at the interfaces between the layers are as follows (Kurkina et al.,
2011b):

ηt +Φ1x
ηx −Φ1z

= 0
ηt +Φ2x

ηx −Φ2z
= 0

ρ1

(
Φ1t

+ 1
2 (∇Φ1)2 +gη

)
= ρ2

(
Φ2t

+ 1
2 (∇Φ2)2 +gη

)
z = H1 +η(x,t) , (3)

ζt +Φ2x
ζx −Φ2z

= 0
ζt +Φ3x

ζx −Φ3z
= 0

ρ2

(
Φ2t

+ 1
2 (∇Φ2)2 +gζ

)
= ρ3

(
Φ3t

+ 1
2 (∇Φ3)2 +gζ

)
z = H2 + ζ (x,t) . (4)20

7
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Here the unknown functions η(x,t) and ζ (x,t) denote the instantaneous position of the
interface between the bottom and middle layer and between the upper and middle layer,
respectively.

3 Asymptotic procedure

The appearance of the proper evolution equation for a phenomenon in a realistic en-5

vironment may substantially depend on the characteristic scales of the processes to
be highlighted or analyzed. Similarly to Kurkina et al. (2011b) our goal is to derive
an equation for small (but finite) amplitude long-wave motions in a layered fluid. This
goal naturally implies two small parameters. Firstly, the typical horizontal scale of wave
motion L (equivalently, the typical wave length for linear or nonlinear wave trains) con-10

siderably exceeds the fluid depth H . This assertion L� H not only ensures that a small
parameter H/L is present in the system but also matches the usual properties of en-
vironments supporting the IW motion in natural water bodies. It also fits with the basic
assumptions of common derivations of the KdV equation and its generalizations. An-
other small parameter naturally emerges from the restriction that the amplitude a of15

the disturbances to the interfaces’ positions from their undisturbed location is small
compared to the fluid depth. This assertion gives rise to the parameter of nonlinearity
ε = a/H� 1.

Our specific interest is to describe long-living solitary waves, for which the dispersion
in some sense balances the impact of nonlinearity. As will be shown below, a con-20

venient parameter that characterizes the role of dispersion in wave propagation is
µ = H2/L2. As the existence of long-living nonlinear wave motions and solitary waves
usually presumes a specific balance between the terms representing nonlinear and
dispersive effects, we assume that ε ∼ µ (Kurkina et al., 2011b).

These assumptions and introduced parameters make it possible to perform the anal-25

ysis of the problem (Eqs. 1–4) in nondimensional form. The standard procedure of in-
troducing nondimensional coordinates into Eqs. (1)–(4) under these assumptions leads

8
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to the following boundary problem:

Φ1zz
+εΦ1xx

= 0, 0 ≤ z ≤ H1, (5)

Φ2zz
+εΦ2xx

= 0, H1 ≤ z ≤ H2, (6)

Φ3zz
+εΦ3xx

= 0, H2 ≤ z ≤ H3, (7)

Φ1z
= 0 at z = 0, Φ3z

= 0 at z = H3 (8)5

ηt +εΦ1x
ηx −Φ1z

= 0, ηt +εΦ2x
ηx −Φ2z

= 0,

ρ1

(
Φ1t

+ 1
2ε
(
Φ1x

)2
+ 1

2

(
Φ1z

)2
+gη

)
= ρ2

(
Φ2t

+ 1
2ε
(
Φ2x

)2
+ 1

2

(
Φ2z

)2
+gη

)

z = H1 +η(x,t) , (9)

ζt +εΦ2x
ζx −Φ2z

= 0, ζt +εΦ3x
ζx −Φ3z

= 0,

ρ2

(
Φ2t

+ 1
2ε
(
Φ2x

)2
+ 1

2

(
Φ2z

)2
+gζ

)
= ρ3

(
Φ3t

+ 1
2ε
(
Φ3x

)2
+ 1

2

(
Φ3z

)2
+gζ

)

z = H2 + ζ (x,t) . (10)

The asymptotic analysis of the resulting equations is straightforward. As the procedure
is fairly cumbersome, largely follows a well-known approach (Koop and Butler, 1981)
and provides almost no instructive aspects, we omit its details and present only its10

basic steps. First, all unknown functions are expanded into Taylor series in the vicinity
of one of the interfaces:

f (x,z = H1 +η(x,t),t) =
∞∑
j=0

ηj

j !
∂j f
∂zj

∣∣∣∣∣
z=H1

, f (x,z = H2 + ζ (x,t),t) =
∞∑
j=0

ζ j

j !
∂j f
∂zj

∣∣∣∣∣
z=H2

.

All constituents of the resulting series are then expanded into power series with respect
to powers of the parameter ε� 1:15

η = ε
(
η0 +εη1 +ε

2η2 + . . .
)

, ζ = ε
(
ζ0 +εζ1 +ε

2ζ2 + . . .
)

. (11)

9

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1/2015/npgd-2-1-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1/2015/npgd-2-1-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 1–41, 2015

Propagation regimes
of interfacial solitary

waves

O. E. Kurkina et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

It is easy to show that all the potentials Φi ∼
√
ε; consequently, the power series for

the potentials are as follows:

Φi =
√
ε
(
ϕi ,0 +εϕi ,1 +ε

2ϕi ,2 + . . .
)

, i = 1,2,3, (12)

Finally we employ the technique of multiple temporal and spatial scales (Engelbrecht
et al., 1988; Nayfeh, 2000). The “slow” time and “stretched” reference frame coordinate5

are introduced as follows:

ξ = ε1/2(x−ct), τ = ε3/2t. (13)

Here c denotes (yet unknown) phase speed of free linear internal waves. This substi-
tution is equivalent to the following replacement of the operators of partial derivatives:

∂
∂x

= ε1/2 ∂
∂ξ

,
∂
∂t

= −ε1/2c
∂
∂ξ

+ε3/2 ∂
∂τ

. (14)10

Substitution of expansion (Eqs. 11 and 12) and definitions of modified coordinate
(Eqs. 13 and 14) into Eqs. (5)–(10) leads to an infinite system of equations with re-
spect to the elements of expansion (Eqs. 11 and 12). Equations of the resulting system

are scaled by one of the multiples ε1/2 or ε3/2, where they arise. The obtained system
can be solved recursively until any desired order. The system of equations obtained in15

the leading (lowest) order (∼ ε0) for the elements of expansion (Eqs. 11–13) has the
form (Ruvinskaya et al., 2010)

ϕi ,0zz = 0, i = 1,2,3, (15)

ϕ1,0z
= 0 at z = 0, ϕ3,0z

= 0 at z = H3, (16)

ϕ1,0z
= 0, ϕ2,0z

= 0
−(ρ+∆ρ)cϕ1,0ξ

+∆ρgη0 = −ρcϕ2,0ξ

}
z = H1, (17)20

ϕ2,0z
= 0, ϕ3,0z

= 0
−ρcϕ2,0ξ

+ r∆ρgζ0 = −(ρ− r∆ρ)cϕ3,0ξ

}
z = H2, (18)

10
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where ∆ρ1 = ∆ρ, ∆ρ2 = r∆ρ. It follows from Eqs. (15)–(18) that the functions ϕi ,0, i =
1,2,3, do not depend on the coordinate z.

The system of equations obtained in the first order (∼ ε1) is:

ϕi ,1zz +ϕi ,0ξξ = 0, i = 1,2,3, ϕ1,1z
(z = 0) = 0, ϕ3,1z

(z = H3) = 0, (19)

cη0ξ
+ϕ1,1z

= 0, cη0ξ
+ϕ2,1z

= 0

(ρ+∆ρ)
(
ϕ1,0τ

−cϕ1,1ξ
+ 1

2ϕ1,0ξ

)
+∆ρgη1 = ρ

(
ϕ2,0τ

−cϕ2,1ξ
+ 1

2ϕ
2
2,0ξ

)}z = H1,

(20)

5

cζ0ξ
+ϕ2,1z

= 0, cζ0ξ
+ϕ3,1z

= 0

ρ
(
ϕ2,0τ

−cϕ2,1ξ
+ 1

2ϕ
2
2,0ξ

)
+∆ρgζ1 = (ρ− r∆ρ)

(
ϕ3,0τ

−cϕ3,1ξ
+ 1

2ϕ
2
3,0ξ

)}z = H2.

(21)

From Eqs. (19)–(21) we obtain the following relationships:

ϕ1,1z
= −ϕ1,0ξξ

z, ϕ3,1z
=ϕ3,0ξξ

(H3 − z), (22)

ϕ1,0ξξ
H1 = cη0ξ

, ϕ2,0ξξ
(H1 −H2) = c(η0 − ζ0)ξ, ϕ3,0ξξ

(H2 −H3) = cζ0ξ
. (23)

Equations (22) and (23) together with Eqs. (17) and (18) allow to define the phase10

speed c of the linear IWs. The relevant equation is bi-quadratic and, not unexpectedly,
reveals that two wave modes exist in this system. One of them results in synchronous
in-phase movements of both the interfaces. The other mode is antisymmetric: the mo-
tions of the interfaces are synchronous but have opposite directions (Fig. 1). The cor-
responding expressions for the phase speeds are:15

c±
2
=

1
2
∆ρ
ρ
gH3 (l1 (1− l1)+ rl2 (1− l2)±d ) =

1
2
∆ρ
ρ
gH3

1
q±

, (24)

where d =
√
r2l22 (1− l2)2 −2rl1 (1− l2) (l2 − l1 (2− l2))+ l21 (1− l1)2 and l1,2 = H1,2/H3.

The symmetric mode of internal waves has the larger phase speed c+, correspond-
ing to the “+” sign before d in Eq. (24). For this reason we call it fast mode, or mode-1.

11
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The antisymmetric mode, whose phase speed is c−, is called slow mode, or mode-2.
Below we shall consider the nonlinear motions of both modes.

The first-order and second-order corrections to the linear solution satisfy the follow-
ing equations:

ε2 : η±1τ +α
±η±1η

±
1ξ
+β±η±1ξξξ = 0, ζ±1τ + α̃

±ζ±1 ζ
±
1ξ
+ β̃±ζ±1ξξξ = 0, (25)5

ε3 : η±2τ +α
±(η±1η±2 )ξ +β±η±2ξξξ +α±1 η±2

1 η
±
1ξ
+β±1 η

±
1,5ξ

+γ±1 η
±
1η
±
1ξξξ

+γ±2 η
±
1ξ
η±1ξξ = 0,

(26)

ζ±2τ + α̃
±(ζ±1 ζ±2 )ξ + β̃±ζ±2ξξξ + α̃±1 ζ±2

1 ζ±1ξ + β̃
±
1 ζ
±
1,5ξ

+ γ̃±1 ζ
±
1 ζ
±
1ξξξ

+ γ̃±2 ζ
±
1ξ
ζ±1ξξ = 0,

The coefficients of Eqs. (25) and (26) are presented in Appendix. The first-order
Eq. (25) are, as expected, the well-known KdV equations that describe the motions
of both the interfaces. The second-order Eq. (28) are linear equations with respect to10

η±2 and ζ±2 . Note that equations for η±n and ζ±n have a similar structure for each order n
and differ from each other only by values of their coefficients (note also that the coeffi-
cient in the equations for ζ±n have tildes). Further we omit indices “± ” where possible,
having in mind different expressions for different modes.

4 Equations for interfaces15

In each order we also obtain relationships between the corresponding terms in power
series (11) and (12). These relationships for the first order and second order terms are:

ζ1 = sη1, ζ2 = sη2 + squadη
2
1 + sdispη1ξξ

x, (27)

12

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1/2015/npgd-2-1-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1/2015/npgd-2-1-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 1–41, 2015

Propagation regimes
of interfacial solitary

waves

O. E. Kurkina et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where

s = (l2 −2ql1 (l2 − l1))/l1, squad =
2q (l2 − l1)

l1H3
((α∗ +3q) l1 −3) ,

α∗ = αH3/c, sdisp =
(l2 − l1)H2

3

6l1

(
2ql1

(
(l2 − l1)2 +12β∗

)
− l2 (l1 + l2)

)
,

β∗ = β/
(
cH2

3

)
.

Note that s± = ±1 for a symmetric stratification (H1 = H3 −H2, ∆ρ1 = ∆ρ2, or r = 1)5

analyzed in Kurkina et al. (2011b) for mode-1 waves.
Substituting ζ1, ζ2 into Eq. (11), we obtain:

ζ = ε (ζ1 +εζ2)+O
(
ε3
)

= εs (η1 +εη2)+ε2
(
squadη

2
1 + sdispη1ξξ

)
+O
(
ε3
)

(28)

= sη+ squadη
2 + sdispηxx +O

(
ε3
)

.10

Combining of Eqs. (25) and (26) leads to the following generalizations of the KdV equa-
tion for the interfaces (presented here in the original coordinates):

ηt +cηx +αηηx +βηxxx +α1η
2ηx +β1η5x

+γ1ηηxxx +γ2ηxηxx = 0, (29)

ζt +cζx + α̃ζζx + β̃ζxxx + α̃1ζ
2ζx + β̃1ζ5x

+ γ̃1ζζxxx + γ̃2ζxζxx = 0.

Although the second part of Eq. (29) can be derived separately, the two equations are15

not independent. Each such derivation results a link to the solutions of the other equa-
tion. This link is presented explicitly in Eq. (28) for the equation for the lower interface
η(x,t). It allows for a direct calculation of the disturbances for the upper interface ζ (x,t)
with an accuracy of O(ε3). A similar link (not shown) exists for the determination of the

13
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disturbances of the lower interface using the solution for the upper interface. These
couplings do not transform the equation for one interface to equation for the other in-
terface. For example, substituting Eq. (28) into the second of Eq. (29) does not yield
the first of Eqs. (29), but the difference includes terms which are of higher order than
those retained in the first of Eq. (29). The equation for one interface and thhe equa-5

tion obtained by substituting the connection between the two displacements into the
relationship for the other interface are only equivalent asymptotically when the small
parameters approach zero. Analogous interrelations become evident for a similar pair
of Gardner equations below.

The coefficients of Eq. (29) account for the main properties of the environment sup-10

porting the internal wave motion such as the location of the undisturbed interfaces, the
magnitude of the density jumps between the layers and the total fluid depth. The main
development here is the derivation of explicit expressions for the coefficients of these
equations. The expressions for α±, α̃±, β±, β̃±, α±1 , α̃±1 are quite complex and given in
the Appendix. As the coefficients β1, β̃1,γ1, γ̃1,γ2, γ̃2 are not analyzed in this paper, we15

do not provide their explicit expressions here. Note that β± ≡ β̃±, β±1 ≡ β̃
±
1 as they are

just coefficients at k3 and k5 in the Taylor expansion at small k (long-wave limit) of the
dispersion relation ω(k) for linear IWs in a three-layer fluid. This dispersion relation is
the same for both interfaces of a fixed mode.

The coefficients of the equation for the lower interface mode-1 displacement η+ in20

the limits H1→ H2 or H2→ H3 are reduced into known expressions for internal waves
in a two-layer fluid with density jumps ∆ρ1+∆ρ2 and ∆ρ1, respectively. For the mode-1
displacement of the upper interface ζ+ the vanishing of the lowermost or the middle
layer (in the limiting process H1→ 0 or H1→ H2) leads to the corresponding formula-
tions for parameters of IWs in two-layer systems with density jumps ∆ρ2 or ∆ρ1+∆ρ2,25

respectively.
The similarity of the structure of the equations for disturbances of mode-1 and mode-

2 considerably simplifies the further analysis. Namely, it is sufficient to solve only one
of those equations (say, for η) and then to use the above-derived relationships to obtain

14
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an approximate solution to the other equation. Within the considered accuracy of O(ε3)
of the approximation the relationship connecting interfacial displacements described by
Eq. (29) is:

ζ = sη+ squadη
2 + sdispηxx (30)

and it should be used when the initial conditions for the first of Eq. (29) are being set5

up. A similar expression exists for η(ζ ). This interdependence is, however, effective only
during limited time intervals. The relevant nonlinear and solitary-wave solutions have
different wave speeds (see Eq. 24) and therefore will split over longer time intervals
(considerably larger than 1/ε). This process of separation of initially basically equiva-
lent solutions for different modes implicitly expresses the limitations of the applicability10

of the used asymptotic procedure.

5 Gardner equations for interfacial displacements

Equation (29) are integrable using the inverse scattering method only for one specific
set of nontrivial values of their coefficients (Newell, 1985). This set, however, is not ap-
plicable for the internal wave motion in stratified environments, for which this equation15

apparently remains nonintegrable. In this case stationary (in a properly chosen mov-
ing coordinate system) solitary waves normally do not interact elastically. They may be
generated from a suitable chosen wave system and they often radiate their energy dur-
ing their motion and interact with other components of the wave field in a complicated
manner (Marchant and Smyth, 1996; Osborne et al., 1998; Osborne, 2010).20

It has been recognized already in first studies of internal waves using the KdV equa-
tion several decades ago that the coefficient at the (first order in terms of the asymptotic
procedure, or quadratic in the appearance) nonlinear term in this equation may vanish
or change its sign (Kakutani and Yamasaki, 1978; Miles, 1979; Gear and Grimshaw,
1983). The sign of the dispersive term, however, is always the same. Importantly, the25

15
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sign at the nonlinear term governs the polarity of solitary waves and soliton solutions to
the relevant equation. The event of vanishing the relevant coefficient or a change in its
sign therefore leads to substantial rearrangement of the wave propagation in the vicin-
ity of the vanishing location. A natural consequence is that an approaching soliton of,
say, elevation will be transformed into a soliton of depression and vice versa (Talipova5

et al., 1999; Grimshaw et al., 2002, 2010; Kurkina, 2011a).
In order to understand how this process functions it is necessary to build a higher-

order equation that is able to describe the phenomena in the area where the coefficient
at the quadratic nonlinear term vanishes. Moreover, such equations are crucial for the
description of the wave motion in domains where this term is much smaller than other10

terms and where higher-order terms govern the wave evolution. The derivation of such
equations is possible through a detailed analysis of the role of higher-order contribu-
tions (represented by coefficients α1, α̃1 in Eq. 29) of the presented asymptotic proce-
dure into Eq. (29) in cases when the quadratic terms vanish or are small enough to be
ignored.15

The relevant generalization of the KdV equation is called Gardner equation. This
equation contains a cubic nonlinear term, the coefficient at which may also be sign-
variable depending on the variations of the stratification (Kurkina, 2011a; Grimshaw
et al., 2002; Talipova et al., 1999; Grimshaw et al., 2010). If this term is negative (which
is the case in a two-layer environment), the solitons’ heights are limited and in the pro-20

cess of reaching the limiting height the soliton widens infinitely into a table-like distur-
bance. If the cubic term has a positive coefficient, Gardner equation possesses several
types of solitons with different polarities.

If the quadratic and cubic terms of Eq. (29) have the same order of magnitude, the
above-described asymptotic procedure is not applicable. A possibility is to explicitly25

use the smallness of the coefficient at the quadratic nonlinear term and to assume
that α ∼ δ, where δ� 1. A suitable procedure may be constructed using asymptotic
expansions similar to Eqs. (10) and (11) but built for two independent small parameters
µ and ε (see, e.g., Lamb and Yan, 1996). It is now necessary to account for second-

16
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order terms with respect to both parameters. This can be done by re-expanding the
above series in terms of α ∼ δ. A meaningful evolution equation can then be obtained
using the condition that three terms (quadratic and cubic nonlinearity, and the leading
term responsible for linear dispersion) are of the same order of magnitude. This is
possible if δ ∼ ε and µ ∼ ε2.5

The procedure itself is similar to the above-described technique and sorting out the
terms with similar powers of ε leads to the desired evolution equations. These equa-
tions, at the lowest order, for the disturbances at the interfaces of the three-layer envi-
ronment are equivalent to a pair of interrelated Gardner equations:

ηt +cηx +αηηx +α1η
2ηx +βηxxx = 0, ζt +cζx + α̃ζζx + α̃1ζ

2ζx +βζxxx = 0. (31)10

Formally, they only differ from Eq. (29) by the absence of terms β1η5x
, γ1ηηxxx and

γ2ηxηxx (and their counterparts in the equation for the other interface). The actual dif-
ference is, however, much deeper as Eq. (31) express the dynamics at another scale,
governed by two independent small parameters. This difference becomes to some ex-
tent evident via another relationship between the soliton amplitude and its width. These15

equations govern the interfacial motion of weakly nonlinear finite-amplitude unidirec-
tional waves neglecting mode interactions. Their coefficients are called environmental
parameters, because they account for the background conditions (configuration of the
medium). These coefficients are functions of the layers’ positions and density jumps
between the layers (or their ratio r).20

Similarly to Eq. (29), solutions to Eq. (31) are interrelated within the accuracy of

O
(
ε3
)

:

ζ = sη+ squadη
2. (32)

An inverse of Eq. (32) η = η(ζ ) can be derived similarly in a straightforward manner.

17
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The analytical one-soliton solution of Gardner equation is well known (Helfrich and
Melville, 2006; Pelinovsky et al., 2007):

η(x,t) =
A

1+Bcosh(γ(x− V t))
. (33)

The soliton velocity V = c+βγ2 is expressed through the inverse width of the soliton
γ. the parameters A and B depend on the coefficients of Eq. (31) and determine the5

soliton amplitude a as the extreme value of the function η(x,t) in Eq. (33):

a =
A

1+B
, A =

6βγ2

α
, B2 = 1+

6α1βγ
2

α2
. (34)

The parameters of the family of solutions can also be expressed through its amplitude
a:

γ2 = a
2α+aα1

6β
, A = a

(
2+a

α1

α

)
, B = 1+a

α1

α
. (35)10

There are different branches of the soliton solutions depending on the signs of co-
efficients at the nonlinear terms, see Fig. 2. The asymptotics of the solution (33) is
described for instance in Pelinovsky et al. (2007).

6 Environmental parameters of IWs

Whilst the mathematical properties of Gardner equation and its solutions are quite well15

known, these properties may radically vary along the propagation of realistic IWs in
natural environments (Nakoulima et al., 2004). Therefore it is important to analyze the
behavior of the environmental parameters for possible ranges of parameters of the
medium, which govern the kinematic and nonlinear characteristics of the IW field. The
above-described explicit expressions for the coefficients of Eq. (29) (see Appendix)20

18
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remain valid also for Eq. (31) and allow for producing the estimates of nonlinear IW
shapes, limiting amplitudes and projections of possible transformations of solitary IWs
in inhomogeneous medium (Kurkina et al., 2011a).

To describe the behavior of the environmental parameters we use their graphs on the
“phase” plane of scaled undisturbed interface positions (l1 = H1/H3, l2 = H2/H3) for the5

fixed value of the ratio r of density jumps. Along the diagonal l1 = l2 the two interfaces
coincide, and this line represents a two-layer fluid. The other diagonal l1 = 1− l2 corre-
sponds to the symmetric geometric configuration of layers that has been addressed in
detail in Kurkina et al. (2011b). As we always require l2 ≥ l1, the triangle to the left of
the diagonal l2 = l1 represents all possible ranges of l1 and l2. Therefore we use this10

triangle to analyze the environmental parameters for the upper interface (coefficients in
the equations for ζ±). For a Boussinesq fluid there is symmetry: switching the depths
of the upper and lower layers and interchanging the density jumps will result in exactly
the same behaviour with the waves flipped over. The coefficients for the equation for η
given in terms of l1 and l2 should be the same as the equations for ζ given in terms of15

1− l2 and 1− l1 and replacing r with 1/r . When the Boussinesq approximation is in-
volved, no preferred vertical direction exists, therefore if the solution of a fixed polarity
exists in this framework, its mirror disturbance is also a solution.

Figure 3 shows the maps of values of parameters c±, β±, α̃±, α̃±1 as functions of
l1 and l2 when r = ∆ρ2/∆ρ1 = 1. The parameters c± and β± are always positive for20

the three-layer fluid. They tend to zero only when one of the layers vanish for mode-2
waves (c−,β−) or when thicknesses of two out of three layers simultaneously tend to
zero for mode-1 waves (c+,β+). The parameters c− and β− both have one maximum
for the symmetric configuration l2 = 1− l1 = 3/4. Their counterparts c+ and β+ have
the maxima at the point l1 = l2 = 1/2, i.e., when the three-layer fluid degenerates into25

a two-layer fluid with equal layers and with a density jump of 2∆ρ.
A specific feature of the coefficients at the quadratic nonlinear term α±, α̃± is that

they may vanish for some nondegenerate three-layer configurations. These parameters
for mode-1 IWs vanish along the diagonal l2 = 1− l1 due to the symmetry of the wave

19
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motion. They have also other coinciding zero contours passing through the points (0;
0.5), (0.3; 0.7), (0.5; 1) on the plane (l1, l2). The signs of α+ and α̃+ always coincide.
Each of the quadratic nonlinear coefficients α− and α̃− for mode-2 IWs has a smooth
zero contour passing through the points (0; 0), (0.25; 0.75), (1; 1) on the plane (l1, l2).
The signs of these parameters, determining the polarity of solitary IWs in the KdV ap-5

proximation, are always opposite, reflecting the structure of mode-2 waves that always
create oppositely directed interface displacements.

The coefficients at the cubic nonlinear terms α±1 , α̃±1 behave differently for IWs of
different modes (Fig. 4). The coefficients α+1 and α̃+1 in Gardner equation for mode-1
IWs have two distinct closed zero contours passing through the points (0; 1) and (9/26;10

17/26) on the plane (l1, l2). The latter point corresponds to the symmetric stratification.
The possibility for the change of sign of the cubic nonlinear parameter at this point
for IWs in a three-layer fluid was first mentioned in Grimshaw et al. (1997). For such
a stratification both coefficients at the leading nonlinear terms in the weakly nonlinear
theory for mode-1 IWs vanish simultaneously. The wave dynamics near such a regime15

is described by an extended (2+4)KdV equation (Kurkina et al., 2011b). There exist
two other such points (Fig. 4) in each half-plane. The parameters α−1 and α̃−1 of mode-
2 waves are always negative. Their minimal absolute values occur for a symmetric
stratification, when all layers are relatively thick. When one of the layers vanish, α−1 and
α̃−1 tend to negative infinity, reflecting the fact that the three-layer mode-2 wave regime20

does not have a valid asymptotic process towards a two-layer dynamics.
For both modes the absolute values of the coefficients at the quadratic and cubic

terms of the equations for the upper and lower interface are not equal except they are
zero or the stratification is symmetric. This feature exemplifies the asymmetry of the
interfacial displacements for asymmetric three-layer stratifications.25

Figure 4 illustrates possible soliton branches of IWs of both modes for r =
∆ρ2/∆ρ1 = 1. It is clear that all possible regimes shown in Fig. 2 can be implemented
for mode-1 waves. Waves of both polarities can exist (waves of elevation on both in-
terfaces or waves of depression on both interfaces), but properties of such waves can

20

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1/2015/npgd-2-1-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1/2015/npgd-2-1-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 1–41, 2015

Propagation regimes
of interfacial solitary

waves

O. E. Kurkina et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

be different for different combinations of the parameters of the medium. The left panel
of Fig. 4 presents also information about all points at which both the coefficients at the
cubic and quadratic terms are zero. Higher-order extensions of the weakly nonlinear
models have to be produced to provide a balance between the nonlinear and dispersive
terms and to properly describe IWs in the vicinity of such points. These models for the5

points corresponding to asymmetric stratifications (and not located at the diagonal of
the (l1, l2)-plane) are supposed to be similar to the described in Kurkina et al. (2011b)
for a symmetric situation.

The pool of solitonic mode-2 waves (Fig. 4, left panel) consist of solitons with a limited
amplitude. As described above, these solitons broaden while approaching this limit and10

form table-like structures. Their polarity on each interface is determined by the sign of
the coefficient at quadratic nonlinear terms α−1 and α̃−1 . Thus two types of mode-2
waves can exist in the three-layer fluid: convex waves displacing the upper interface
upward and lower interface downward and concave waves doing the opposite. Both
types of mode-2 IWs were observed in the South China Sea (Yang et al., 2010), but15

concave waves occurred fairly rarely. Convex waves were found much more often. They
were experimentally observed in Mehta et al. (2002) and their nature can be explained
as an intrusion of water into middle layer.

The fluid at the mid-depth of a symmetric three-layer fluid (with equal density jumps)
is not displaced in case of mode-2 waves (Lamb, 2006), so a rigid boundary placed at20

the mid-depth will not be affected by the flow. The solution in the upper or lower half of
the fluid is simply the solution for a two-layer fluid involving a half of the middle layer;
these “partial” solutions of course only exist together and must be synchronized. The
middle layer plays a role of a fluid that both underlies the upper layer and overlies the
lower layer. If a half of middle layer is shallower than the lower and the upper layers,25

a hump of elevation may exist at the upper interface and a hump of depression – at
the lower one. This feature was used to interpret mode-2 solitary IWs experimentally
observed by Mehta et al. (2002) with the help of the Gardner model for a two-layer fluid.

21
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A summary of the results of some calculations of fully nonlinear and higher-order
weakly nonlinear solitary IWs is presented in Fig. 5. These data are in qualitative agree-
ment with the predictions of model based on the Gardner equation. Some differences
can be explained by the use of smoothed three-layer stratifications in numerical calcu-
lations in Lamb (2006).5

The contours of α+1 = 0 and α̃+1 = 0 in Gardner equations for the lower and upper
interface, respectively, are shown in Fig. 6 for the case ∆ρ1 = ∆ρ2. The difference be-
tween zero contours of shown in Fig. 6 is related to the fact that the second-order
coefficients are not uniquely determined until some choice is made as to what the de-
pendent variable in the weakly-nonlinear equation represents: it could be the displace-10

ment of the lower interface, the upper interface, the average of the two, the velocity at
some level between the two interfaces, etc. This was discussed, for example, in Lamb
and Yan (1996). While the first-order coefficients are not affected by this choice, the
second-order coefficients are. As the signs of α+ and α̃+ are always the same for any
fixed point of the plane (l1, l2), both of these solutions are taken from the left half-plane15

(α, α1) or both from the right half-plane. So different choices give different predictions
when we are close to critical values where the cubic nonlinear coefficient is zero. For
the fully-nonlinear dispersive equations we will only be in one regime.

The waves from mode-1 produce disturbances of the interfaces of the same polarity.
Therefore, if α1 > 0 the polarity of the solution matches with the sign of α. The shaded20

areas in Fig. 6 (the configurations where the displacements of the interfaces belong
to different branches of the solution (Eq. 33) are located fairly close to the contours
α+1 = 0, α̃+1 = 0. Consequently, the absolute values of the coefficients α+1 and α̃+1 are
small in these areas and the corresponding solution apparently resembles the KdV
soliton. This regime is the limiting one for the solutions corresponding to both “upper”25

and “lower” families of small-amplitude solitons depicted in Fig. 2. This feature confirms
the correctness of the presented constructions and the applicability of the solutions
(η+,ζ+) for internal waves of mode-1 even in these areas.

22
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In this case it should be decided whether to derive a Gardner equation for the lower
interface or upper interface. Notice that the relationship (32) does not convert the sec-
ond of Eq. (31) to the first of Eq. (31). This is connected to the fact that deriving the
Gardner equation for the upper interface amounts to a different choice and hence re-
sults in different coefficients. For stratifications with the same density jump across each5

interface, the interface furthest to the mid-depth is, probably, the best choice for the de-
pendent variable in the Gardner equation. In this case one would use the equation for ζ
and the relationship connecting interfacial displacements if l1 < 1− l2 and the equation
for η with connection Eq. (32) otherwise. For different density jumps the interface with
the largest density jump should be used.10

In the seas and oceans the assertion r = ∆ρ2/∆ρ1 = 1 is normally not valid and the
magnitudes of density jumps at different interfaces can be considerably different. To
depict the associated changes to the above “phase diagrams” of various solutions, we
chose the values r = 2 and r = 1/2 to characterize the variations to the coefficients
in question and the wave propagation regimes. Different values of r significantly in-15

fluence the patterns for mode-1 environmental parameters. The modifications are the
largest for the values of the coefficients at the nonlinear terms. These changes obvi-
ously affect the possible regimes for soliton appearance and propagation (Figs. 7 and
8). Interestingly, the parameters characterizing solutions of waves of mode-2 and the
relevant propagation regimes are only slightly affected (Figs. 9 and 10).20

It is worth noting that thermoclines’ thicknesses can be considerably different un-
der natural conditions. This is another way to destroy symmetry in a continuous
stratification and change wave propagation regime. While fluid with the stratification
ρ = ρ0− 1

2∆ρ1 tanh((z−H1)/d1)− 1
2∆ρ2 tanh((z−H2)/d2) for small d1,d2 could be mod-

eled numerically with a smoothened three-layer model, but considered three-layer25

model completely misses this.

23
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7 Conclusions

The performed analytical investigation of equations governing the propagation of
weakly nonlinear internal waves in a relatively simple but in frequently occurring in
nature and rich in content three-layer environment have highlighted several interesting
features that distinguish this environment from the similar but symmetric case (Kurkina5

et al., 2011b). We have derived a system of nonlinear evolution equations for long,
finite-amplitude internal waves, valid for both possible modes of wave motion at the
interfaces of a three-layed fluid of arbitrary ratios of the depths between the layers and
arbitrary (but small) values of the density jumps at the interfaces in the commonly used
framework of Boussinesq approximation. Although each of the equations of this system10

is known, the analysis of interrelations of the equations for disturbances at different in-
terfaces and the description of the possible wave propagation regimes provides a new
insight into the dynamics of internal waves in natural environments.

As expected, the classical Korteweg–de Vries equation is only conditionally a proper
tool for the description of the internal wave motion because the coefficient at its non-15

linear (quadratic) term may vanish for certain combinations of the environmental pa-
rameters (layer depths and densities) of the three-layer fluid. This shortage affects the
description of both mode-1 and mode-2 waves (with the same and opposite polarities of
the disturbances to the interfaces, respectively). To resolve such situations, the deriva-
tion of the evolution equations is extended by systematically taking into account for the20

next (second) order in magnitude terms in the relevant asymptotic procedure. This pro-
cedure leads to two implicitly interrelated Gardner equations (one for each interface)
with possibly spatially varying coefficients.

The derived explicit analytical (algebraic) expressions for their coefficients as func-
tions of the properties of the fluid made it possible to perform full analysis of the possi-25

ble appearances, propagation regimes and transformation domains of solitary solutions
of both modes to these equations in horizontally inhomogeneous environments. In par-
ticular, we perform a comprehensive analysis of the situations in which the coefficients

24
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of the quadratic and the cubic nonlinearity simultaneously vanish. This may happen
for three different combinations of the propertis of the fluid. In such occasions Gardner
equations fail to describe the internal wave dynamics and it is necessary to extend the
derivation of the proper evolution equation to even higher-order terms. While the rele-
vant analysis has been recently performed for the special case of symmetric three-layer5

fluid (Kurkina et al., 2011b), the multitude of options for the failure of Gardner equa-
tion to describe the dynamics of three-layer flows calls for further in-depth analysis
of this problem. More generally, the situations corresponding to any line representing
vanishing coefficients in Fig. 5 require more deep analysis of the associated dynamics.

Appendix A:10

Coefficients of Gardner equations for interfacial waves of both modes propagating on
both interfaces.

β±

c±H2
3

=
β̃±

c±H2
3

= 12

2rq± (1− l2) (l2 − l1)
(

2l1(l2 − l1)2q± − l2 (l2 + l1)
)

+2q±l1
(
l31 −3l21 +

(
3− (1− l2)2

)
l1 −2l2 (2− l2)

)
− l21 + l2 (2− l2)

1−4rq±2 l1 (1− l2) (l2 − l1)

α±H3

c±
=

3
2(1− l2) l1

8rq±
2

l1(1− l2)2 (l2 − l1)
(
l1q
± −1

)
−4q±

2

l21
(
l21 − (1+ l2)l1 + l2

)
+4q±l1(l2 − l1)−2l2 +1

1−4rq±2 l1(1− l2)(l2 − l1)

α±1 =
1

2(1− l2)2H2
3c
±l21
(
1−4rq±2(1− l2)l1(l2 − l1)

)15

×
(
α±

2
H2l21 (1− l2)2(−12rq±

2
l1(1− l2)(l2 − l1)−1)

+α±H3c
±(1− l2)l1

(
4rq±

2
(1− l2)2(l2 − l1)l1

(
−20l1q

± +11)
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+16q±
2
l21 (1− l1)(l2 − l1)+2q±l1(l2 − l1)+5(1−2l2)

)
+12rq±

2
c±

2
(1− l2)3(l2 − l1)l1

(
−10q±

2
l21 +15q±l1 −3

)
+12q±

3
c±

2
l31
(
−4l31 +3l21 (3+ l2)+ l1

(
(1− l2)2 +6(1− l2)−12)+ (5− l2)l2

)
−18q±

2
c±

2
l21
(
2l21 (3− l2)+ l1

(
2(1− l2)2 + (1− l2)−8)+ l2(5− l2)

)
+18q±c±

2
l1(1+ l2)(l2 − l1)−6c±

2(
3(1− l2)2 −3(1− l2)+1

))
5

α̃±(1− l2,1− l1,
1
r

) = α±(l1, l2,r),

α̃±1 (1− l2,1− l1,
1
r

) = α±1 (l1, l2,r)

Note that the coefficients of the equations for both modes have the same appearance.
All the differences are in the choice of the corresponding expressions of c±, q±α±. The
coefficients at terms describing linear dispersion β±, β̃± are equal for the equations for10

different interfaces within the same mode.
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Figure 1. Definition sketch of the three-layer fluid and internal waves of mode-1 (left) and
mode-2 (right).
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Figure 2. Shapes of soliton solutions to Gardner equation for different combinations of the signs
of coefficients at its nonlinear terms (idea of representation by R. Grimshaw, E. Pelinovsky and
T. Talipova).
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Figure 3. Variation of environmental parameters for IWs of fast (left column) and slow (right
column) mode in the particular case r = 1(∆ρ1 = ∆ρ2). Zero contours are given by bold black
lines.
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Figure 4. Map of the appearance of possible soliton solutions to Gardner equation for three-
layer fluid for fast (left panel) and slow (right panel) internal wave modes in the particular case
r = 1 (∆ρ1 = ∆ρ2). The legend of patterns legend is given on the top. Bold black curves corre-
spond to α̃ = 0. Bold grey curves correspond to α̃1 = 0. The markers show points at which α̃ =
α̃1 = 0. Black squares indicate the combinations (l1, l2) = (9/26; 17/26) ≈ (0.3462; 0.6538),
grey circles – the combinations (l1, l2) ≈ (0.1703; 0.5717) and (l1, l2) ≈ (0.4283; 0.8297).
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Figure 5. Points corresponding to stratifications for which mode-1 SIWs were considered in
Boussinesq approximation with equal density jumps in different approaches. Circles: positive
polarity waves (fully nonlinear numerical method for SIWs in three-layer fluid) (Rusås and Grue,
2002). Triangles: waves of elevation with a minimum amplitude greater than zero; squares:
waves of elevation with no minimum amplitude (fully nonlinear numerical model, continuous
almost three-layer stratification) (Lamb, 2006). Left vicinity of diamond on the line l2 = 1− l1:
waves of both polarities broaden and flatten while approaching an amplitude limit, (2+4) KdV
model for IWs in symmetric three-layer fluid (Kurkina et al., 2011a, 2012).
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Figure 6. Comparison of curves α+
1 = 0 and α̃+

1 = 0 when ∆ρ1 = ∆ρ2. The intersection points
are the same as marked points in Fig. 5, left panel, where α+ = 0 and α̃+ = 0. The shaded re-
gions represent the configurations where the displacements of the interfaces belong to different
branches of the solution Eq. (33) shown in Fig. 2.
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Figure 7. Variation of environmental parameters for mode-1 solitary IWs in a three-layer fluid
with unequal density jumps at the interfaces. Left column ∆ρ1 = ∆ρ2/2. Right column: ∆ρ1 =
2∆ρ2.
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Figure 8. Map of the appearance of possible soliton solutions for mode-1 IWs in a three-layer
fluid with unequal density jumps at the interfaces. Left column: ∆ρ1 = 1.1∆ρ2. Middle column:
∆ρ1 = 2∆ρ2. Right column: ∆ρ1 = ∆ρ2/2.
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Figure 9. Variation of the environmental parameters for mode-2 IWs in a three-layer fluid with
unequal density jumps at the interfaces. Left column: ∆ρ1 = 2∆ρ2. Right column: ∆ρ1 = ∆ρ2/2.
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Figure 10. Map of the appearance of possible soliton solutions for mode-2 IWs in a three-layer
fluid with unequal density jumps at the interfaces. Left column: ∆ρ1 = 2∆ρ2. Right column:
∆ρ1 = ∆ρ2/2.
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