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Abstract

In the last few years, the scientific community has witnessed an ongoing trend
of using ideas developed in the study of complex networks to analyze climate
dynamics. This powerful combination, usually called climate networks, can be used to
uncover non-trivial patterns of weather changes along the years. Here we investigate5

the temperature network of North America region and show that two network
characteristics, namely degree and clustering, have markedly differences between the
Eastern and Western regions. We show that such differences are a reflection of the
presence of a large network community in the western side of the continent. Moreover,
we provide evidences that this large community is a consequence of the peculiar10

characteristics of the western relief of North America.

1 Introduction

Complex networks theory has powerful tools for describing the structure and
functioning of a wide range of natural, technological and social systems
(da Fontoura Costa et al., 2011). Owing to the general framework that the network15

theory provides, a mathematical representation of such systems is straightforward,
allowing not just the description of networked topologies, but also leading to a better
comprehension of dynamical processes in systems whose elements are connected in
a non-trivial fashion (Boccaletti et al., 2006). In the past few years, complex networks
have also been applied in climate sciences, creating this way the new field of climate20

networks (Tsonis et al., 2006, 2008; Tsonis and Swanson, 2008; Donges et al.,
2009a, b; Gozolchiani et al., 2008; Tsonis and Roebber, 2004; Yamasaki et al., 2008).
According to this paradigm, climate networks are formed by nodes, corresponding to
spatial grid points in a given global climate data set. These nodes are connected by
edges, whose weigths correspond to statistical similarities between times series of25

given climate variables (e.g., temperature, relative humidity, precipitation) associated
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to each node in the network. Although this field is relative new in the network research,
several results have been reported showing that network measurements can indeed
give new important insights into climate dynamics (Tsonis et al., 2006, 2008; Tsonis
and Swanson, 2008; Donges et al., 2009a, b; Gozolchiani et al., 2008; Tsonis and
Roebber, 2004; Yamasaki et al., 2008; Rheinwalt et al., 2012; Mheen et al., 2013;5

Runge et al., 2014). For instance, by the degree centrality measurements of climate
networks, researchers were capable of identifying highly connected nodes, which
turned out to be related with the North Atlantic Oscillation (Tsonis and Swanson, 2008).
These results revealed that climate networks can exhibit small-world properties due
to long-range edges (called teleconnections) connecting highly distant nodes (Tsonis10

et al., 2006, 2008). Moreover, the analysis of the teleconnections unveiled by this
framework has also shed light on the study of extreme climate events, such as the
El Niño-Southern Oscillations (ENSO) (Tsonis and Swanson, 2008; Gozolchiani et al.,
2008). More specifically, by constructing climate networks of the surface temperature
field during El Niño and La Niña periods, it was found that ENSO has a strong impact on15

the stability of climate systems, which is manifested as the decrease of the temperature
predictability during El-Niño years. It is worth noting that the application of concepts
from complex network theory in climate sciences has brought new insights that could
not be unveiled by using classical methods of climatology and statistics. Recently,
by using cross-correlation and mutual information to construct climate networks and20

analyzing the betweenness centrality field (node centrality measurement based on
shortest path lengths Costa et al., 2007), researches found wave-like structures that
are related to surface ocean currents, detecting this way a backbone of significantly
increased matter and energy flow in the global surface air temperature field (Donges
et al., 2009a, b). Furthermore, the authors also showed that these results cannot25

be achieved by using methods derived from multivariate analysis, such as principal
component analysis (PCA) and singular spectrum analysis (SSA) (Donges et al.,
2009a). In this work, we extend the analysis of climate networks investigating the
influence of altitudes of the grid points on centrality measurements of the networks
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generated through similarities in temperature time series measured at the surface level.
The main motivation for including the altitudes on the network model is the assumption
that the flow of matter and energy can be affected by topographical barriers, leading to
anomalies in the correlations between the time series of climate variables. Therefore,
in order to uncover these phenomena and quantify the influence of the relief on the5

network correlations, for each node v we associate its geographical altitude hv with
centrality measurements of the climate network, such as betweenness and clustering
coefficient.

We constructed climate networks allowing the existence of long-range connections.
By detecting communities in the climate networks, we found clusters that correspond to10

groups of nodes embedded in geographical areas of similar relief properties. Moreover
the correlation patterns between centrality measurements and relief properties vary
according to the considered network community. Finally we point out a possible effect of
time series interpolation generated by stations in the degree and clustering coefficient
of the networks.15

2 Materials and methods

2.1 Dataset description

Throughout the analysis we used the following databases:

i. Monthly land temperature records from the National Center for Environmental
Prediction/National Center for Atmospheric Research NCEP/NCAR (Kistler et al.,20

2001; Fan and Van den Dool, 2008) obtained from January 1948 to January
2011. The dataset consists of a regular spatio-temporal grid with 0.5◦ of latitude
and longitude resolution. Each grid point i has a temperature time series T i (t)
associated, containing the time evolution of the monthly mean temperature. A
visualization of stations employed in the analysis that originated the database is25

shown in Fig. 1 (data provided by the NOAA, 2013).
826
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ii. Relief dataset provided by National Geophysical Data Center (NGDC, 2009) and
consisting of 1-arc minute regular gridded area measuring land topography and
ocean bathymetry.

2.2 Complex networks measurements

In order to seek for relationships between the climate and relief, we use network5

measurements related to centrality and symmetry of connections. The most simple
of them, referred to as node degree,

ki =
N∑
j=1

Ai j , (1)

where Ai j = 1 if nodes i and j are connected and Ai j = 0 otherwise. The degree is a10

simple way to study the local importance of a node. Concerning climate networks, the
degree can be used to quantify how many points of the studied region display a time
series similar to a given point in the globe. In other words, nodes with large degrees
are related to regions presenting similar climate attributes.

The clustering coefficient of a node i is the probability that two of its neighbors are15

connected in the network, and is given by (da Fontoura Costa et al., 2011)

ci =
2T (i )

ki (ki −1)
, (2)

where T (i ) is the number of triangles passing trough i , or equivalently, the number
of connections between neighbors of i . The clustering bears an interesting local20

information. If a given point of the globe is strongly correlated with two other points,
the clustering quantifies how often these two points are also strongly correlated
between themselves. The existence of regions taking low values of ci suggests that
the propagation of climate changes occurs in a streamlined fashion in those regions.
Conversely, large clustering is related to a more diffusive propagation.25
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Another feature we study is betweenness centrality of a node. To define this
measurement, consider the following notation. Let σst be the number of shortest
paths from node s to node t (da Fontoura Costa et al., 2011). If σst(i ) is the
number of such paths passing through node i , the betweenness centrality is given
by (da Fontoura Costa et al., 2011)5

bi =
∑
s 6=t 6=i

σst(i )
σst

. (3)

This measure gives gives information about global relationships in climate dynamics.
It is of great importance in quantifying if a node is commonly used as a route for long-
range correlations in the network (Donges et al., 2009a).10

A node can be central but still not communicate well with the rest of the network. For
instance, a node that is connected to another one with large degree can be regarded
as being central in the network, but it has a strong dependence on its highly connected
neighbor. The accessibility measurement quantifies the number of nodes effectively
accessed after h steps, where the node accessed in the next step is chosen randomly.15

Formally, the accessibility is computed as

ai =
1

Nh
i

exp

−
N∑
j

P h
ij logP h

ij

 , (4)

where P h
ij is the probability that a random walk starting at node i arrives at node j

in h steps, Nh
i the number of reachable nodes in h steps from node i and exp(·) is20

the exponential function (see, e.g., Viana et al., 2012 for a detailed explanation of this
measurement).

Real-world networks often display a modular structure, i.e., the presence of
communities (Fortunato, 2010). The modular structure of a given network can be
quantified by the measurement known as modularity, which is given by (Newman,25
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2003)

Q =
1

2m

∑
i j

(
Ai j −

kikj
2m

,

)
δ
(
Ci ,Cj

)
, (5)

where m = 1/2
∑

Ai j is the total number of edges, Ci is the community to which
node i belongs and δ is the Kronecker delta. Once the partitioning of the nodes into5

communities is done, the modularity Q basically calculates the fraction of edges that
connects nodes of the same community subtracting the fraction of these edges that we
would expect to find in a random graph with the same degree sequence. Thus, Eq. (5)
provides a significance test of the obtained network partitioning, which will be used to
validate our results in the next sections.10

2.3 Climate networks

Because we are most interested in the topological characteristics of climate networks
and its correlations with relief heights, we consider now only the connected subgraph
whose nodes are located inside a continent. Note that we do not simply extract the
subgraph over land discarding any edges which connects nodes on the ocean, rather15

we recalculate the threshold ε by taking into account only the nodes in the spatio-
temporal grid which are over land.

Having the values of temperatures for each grid point in the dataset, a simple way to
infer that two points have similar dynamical evolution is through the Pearson correlation
coefficient between pairs of time series, which is given by20

ρi j =

〈
TiTj
〉
− 〈Ti 〉

〈
Tj
〉√(〈

T 2
i

〉
− 〈Ti 〉

2
)(〈

T 2
j

〉
−
〈
Tj
〉2) , (6)

where Ti is the time series associated to a point i in the spatio-temporal grid and 〈X 〉
means the average of the variable X . Furthermore, we also remove the mean annual
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cycle in order to avoid seasonal effects in the time series. In this section, we describe
the approach employed in our analysis.

We start with a fully connected network where each grid point is a node and
two nodes are connected trough an edge with an associated weight given by ρi j .
The fully connected network can be studied by using weighted versions of the5

characteristics presented in Sect. 2.2 (cf. Boccaletti et al., 2006 for a description
of weighted measurements for graphs). Nevertheless, we are only interested in
connections representing strong correlations. Hence, connections having a correlation
smaller than a given threshold ε are discarded. This leads to a network defined by the
adjacency matrix A whose elements are given by Ai j =Θ

(
ρi j −ε

)
−δi j , where Θ(·) is10

the Heaviside function. The threshold ε should be chosen in order to keep the network
edges that correspond to strong correlation between time series, thus eliminating the
non-relevant ones (Tsonis et al., 2006; Tsonis and Swanson, 2008; Tsonis et al., 2008;
Gozolchiani et al., 2008; Donges et al., 2009a). Therefore, for all networks analysed in
this approach, the threshold ε is chosen so that only 5 % of the connections are kept in15

the network. Without the constraint of only first-neighbours connections, it is reasonable
to expect a much richer pattern of connectivity with, e.g., presence of communities in
the network, i.e., clusters of nodes that are more connected inside these groups than
external nodes to the cluster. In the context of climate networks, the grouping of nodes
into communities was shown to be related to different climate patterns and to unveil20

different known climate zones (Tsonis et al., 2011).

3 Results

From reference (Fan and Van den Dool, 2008) we know that the land surface
temperature database is constructed by interpolating recorded time series from
stations spread over the globe. In order to avoid interpolation effects, it is useful25

to analyze the spatial distribution of the stations that generate this database. Using
data from (NGDC, 2009), in Fig. 1 we show the stations location used to record the
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monthly average temperature time series. As we can see, except the northeast region
of Brazil, South American is sparsely covered by stations, whereas North America
and Europe are more densely covered. Therefore, in order to eliminate any doubts
whether the observed patterns in the networks measurements are being affected by
the interpolation or not, we turn our analysis to regions with high density of stations,5

namely, the North America region.
Applying the methodology described in Sect. 2.3, we obtain the climate networks and

extract the centrality measurements for the region with the values of longitude θ and
latitude φ ranging in the intervals −128◦ ≤ θ ≤ −60◦ and 30◦ ≤φ ≤ 70◦, respectively.
Our results are shown in Fig. 2. As we can see in Fig. 1, the region has stations10

approximately uniformly distributed. Therefore, we can discard the hypothesis that the
highly connected areas in Fig. 2a is due to interpolation effects. It is also interesting
to note that in Fig. 2b there are two distinct patterns in the clustering coefficient field.
While the Eastern region has an almost uniform distribution for ci , the western region
displays a more irregular distribution. The same pattern is also followed by the other15

centrality measurements. Figure 3a and b show the accessibility and betweenness
centrality fields, respectively. Likewise, the patterns observed in the Western and
Eastern regions differ significantly, especially for the accessibility. It is important to
note that, according to Figs. 2a and 3b, the regions taking low values of degree and
accessibility overlap significantly. This pattern cannot be interpreted in a straightforward20

fashion, as the relevant correlation between degree and accessibility usually appears
when the hierarchical definition of the degree is taken into account (Viana et al., 2012).

The topology of the climate network was further analyzed by identifying the
natural topological communities. The communities arising from the application of
the eigenvector strategy (see Newman, 2006) is shown in Fig. 4. A straightforward25

comparison of Figs. 2 and 4 reveals that the large community located at the western
region corresponds to the nodes taking the lowest values of degree and accessibility
(see Figs. 2a and 3a). As for the clustering coefficient,it is irregularly distributed.
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Figure 5 displays the network communities and the relief structure. Remarkably, the
variations in the largest community border in the west side of North America is followed
by variations in the relief structure. Comparing Figs. 5 and 2, we notice that the contrast
between the Western and Eastern regions in the degree and clustering coefficient
fields is also observed in the relief structure. More specifically, the regions present very5

different patterns in the relief structure which is also revealed in the pattern of network
measurements, suggesting that with our methodology we may be able to quantify the
influence of the landscape in the climate network organization.

4 Conclusions

Despite being a recent field, climate networks have already been shown to provide10

valuable information about climate dynamics (Tsonis et al., 2006, 2008; Tsonis and
Swanson, 2008; Donges et al., 2009a, b; Gozolchiani et al., 2008; Tsonis and Roebber,
2004; Yamasaki et al., 2008). In this study, we used the monthly land temperature
records from NCEP/NCAR reanalysis to define correlations between stations, which
are then transformed into network connections when they exceed a specified threshold.15

One important point raised during our investigation was the effect of the spatial
distribution of stations on the resulting network. We found that the data pertaining to
the region in which (−128◦,30◦) ≤ (θ,φ) ≤ (−60◦,70◦) should not suffer such effects,
given its almost uniform distribution of stations. One important topic to be studied in
the future is the specific effect of spatial heterogeneities in the sampled data on the20

formation of abnormal, but most likely predictable, structures in the network.
In this study, we showed that the North America, when modeled as a climate

network, displays two regions with distinct topological properties. We have found that
the Eastern and Western regions display striking differences of degree, accessibility
and clustering coefficient, which may be explained by the presence of communities25

arising from the climate network. More specifically, the eastern side was found to be
characterized by uniform values of centrality measurements. Conversely, the Western
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side was mainly characterized by an heterogeneous distribution of measurements
values. The relationship between climate and relief was analyzed in the relief dataset
provided by NOAA jointly with the climate network data. Interestingly, we uncovered
dynamics not detected by other traditional methods. The most important pattern
arising from the analysis was the observation that the topological community of the5

climate network in the western region matched the region with peculiar relief structure,
suggesting a strong influence of the relief on the climate dynamics.

Of paramount interest for future studies is to use other relevant climate variables
(e.g., humidity, wind, pressure) to uncover additional relationships between relief and
climate, using the ideas developed in the climate networks field, as well the boundary10

effects (Rheinwalt et al., 2012) of spatially embedded networks.
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Fig. 1. Visualization of the stations used to interpolate the grid points in the temperature
database.
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(a)

(b)

Fig. 2. (a) Degree ki and (b) clustering coefficient ci obtained from the network of temperature
correlations.
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(a)

(b)

Fig. 3. (a) Betweenness centrality bi and (b) accessibility ai for h = 3 steps obtained from the
network of temperature correlations.
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Fig. 4. Community structure for the network constructed with the grid points with θ and latitude
φ in the intervals −128◦ ≤ θ ≤ −60◦ and 30◦ ≤φ ≤ 70◦ of the temperature database. Grid-points
colored with the same color correspond to nodes belonging to the same network community.
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Fig. 5. Boundaries of the communities obtained from the climate networks. Note that the largest
community coincides with a regular relief profile.
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