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Abstract

Climate projections simulated by Global Climate Models (GCM) are often used for
assessing the impacts of climate change. However, the relatively coarse resolutions
of GCM outputs often precludes their application towards accurately assessing the
effects of climate change on finer regional scale phenomena. Downscaling of climate5

variables from coarser to finer regional scales using statistical methods are often
performed for regional climate projections. Statistical downscaling (SD) is based on
the understanding that the regional climate is influenced by two factors – the large
scale climatic state and the regional or local features. A transfer function approach
of SD involves learning a regression model which relates these features (predictors)10

to a climatic variable of interest (predictand) based on the past observations.
However, often a single regression model is not sufficient to describe complex
dynamic relationships between the predictors and predictand. We focus on the
covariate selection part of the transfer function approach and propose a nonparametric
Bayesian mixture of sparse regression models based on Dirichlet Process (DP),15

for simultaneous clustering and discovery of covariates within the clusters while
automatically finding the number of clusters. Sparse linear models are parsimonious
and hence relatively more generalizable than non-sparse alternatives, and lends to
domain relevant interpretation. Applications to synthetic data demonstrate the value
of the new approach and preliminary results related to feature selection for statistical20

downscaling shows our method can lead to new insights.

1 Introduction

Climate change is one of most challenging problems facing the mankind whose impacts
are expected to influence policy decisions on critical infrastructures, management of
natural resources, humanitarian aid, emergency preparedness along with numerous25

regional scale human economic and social activities. Therefore, it is imperative to
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accurately assess the impacts of climate change at regional scale in order to inform
stakeholders for appropriate decision making related to mitigation policies. General
Circulation Models (GCM) are the most credible tools at present for climate projections
in future that accounts for the effects of greenhouse gas emissions under different
socio-economic scenarios. Although GCMs perform reasonably well in projecting5

climate variables at a larger spatial scale (> 104 km2), they perform poorly for regional
scale climate projections. Such poor performance of the GCMs coupled with the
importance of regional climate projections for impact studies have led to development
of Limited Area Models (LAM) or Regional Climate Models (RCM), where finer spatial
grids over a limited spatial area are embedded within a coarser GCM grid. This10

method is also known as dynamic downscaling. However, these models are complex,
computationally expensive and requires rerunning for each new region. Moreover,
regional models inherit the basic gaps in understanding of climate physics that limits
the performance of GCMs. A couple of recently published studies (Kumar et al., 2014;
Knutti and Sedláček, 2013) rigorously compared the projections of latest generation of15

climate models (CMIP5) with the previous generation (CMIP3) but found no significant
improvement in majority of statistical performance metrics even with higher spatial
resolutions and addition of new physical processes in the computational model. This
may suggest that purely physics based models may have reached their limit.

A complementary approach for regional projection is statistical downscaling that20

uses statistical models to learn empirical statistical relationship between large scale
GCM features (predictors) and regional scale climate variable(s) (predictands) to
be projected. The statistical approaches of downscaling can be categorized into
three broad classes – weather typing, weather generators and the transfer function
approaches (Wilby et al., 2004). Weather typing approaches have originally been25

developed for weather forecasting and generally involves classifying days into similar
clusters or weather states based on their synoptic similarity. Typically, weather patterns
are clustered based on their similarity with nearest neighbors while the statistical
models they use varies in their definition of similarity measure. On the other hand,
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weather generators replicates the statistical properties of the daily predictand variable
by using a stochastic model like Markov process that uses wet–dry and dry–wet
transition probabilities as input for training while conditioning its parameters on large-
scale predictors.

In this paper, however, we are interested in transfer function based regression5

models that learn a linear or nonlinear mapping between large scale predictors and
regional scale predictand variables. Regression models are conceptually simplest
among the three since they provide a direct mapping between the predictor and
predictand values. However, the success of the regression models depends on
the accurate choice of predictors. Sparse regressions based on constrained L1-10

norm (Tibshirani, 1994) of the coefficients became popular due to their ability to
simultaneously select covariates and fit parsimonious linear models that are better
generalizable and easily interpretable. Although, sparse regression models have been
applied widely in many disciplines, it’s application to climate has remained very
limited, especially to statistical downscaling. In a recent paper (Ebtehaj et al., 2012),15

sparse regularization has been shown to be effective for downscaling rainfall fields for
weather forecasting, whereas sparse variable selection has been used for statistical
downscaling of climate variables (Phatak et al., 2011) in a separate paper. To our
knowledge, there is no other published work on use of sparse regularization for
statistical downscaling.20

However, large complex climate datasets often exhibit dynamic behavior (Kannan
and Ghosh, 2010) which may not be modeled well by a single regression model.
Here we propose a nonparametric model for mixture of sparse regressions that
can accommodate multiple sparse linear relationship inherent in the dataset.
Nonparametric models are more flexible than the finite mixture models (Bishop and25

Svenskn, 2002) since they assume no prior knowledge about the number of distinct
components in the data. We used a Dirichlet process mixture (DPM) (Antoniak, 1974)
with stick-breaking construction (Ishwaran and James, 2001) to accommodate an
unknown number of sparse regression models in the data. DPMs start by assuming
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infinite components in the data but ends up discovering a finite number of components
supported by the data. We used the Bayesian version of sparse regression (Park and
Casella, 2008) to smoothly integrate the sparse regression model with the DPM, which
is a nonparametric Bayesian approach where each component is represented by a set
of distribution parameters specific to the corresponding component.5

Although the number of different components may not be known, prior knowledge
often exists about whether a pair of observations belong to the same component. For
example, it is reasonable to assume that two observations close in time from the same
location may exhibit similar behavior. We allow soft “must link” constraints between
pairs of data-points that encourage the pair to belong to the same mixture component.10

Such constraints are incorporated in our Bayesian model with the help of a Markov
random field (MRF) prior over the cluster indicator variables (Ross and Dy, 2013; Basu
et al., 2006).

Variational Bayes inferences has been shown to be much faster than stochastic
alternatives for nonparametric Bayesian models (Blei and Jordan, 2006). The major15

contribution of this paper is to develop a fully Bayesian formulation for nonparametric
mixture of sparse regression model and designing an efficient variational inference
algorithm to obtain posterior distributions over the regression coefficients of potentially
multiple regression components as well as the component membership probabilities of
each data-point.20

We have extensively demonstrated the performance of our algorithm on the synthetic
data. We have also applied our method for the feature selection problem for statistical
downscaling of annual average rainfall over two regions in the west coast of United
States. Preliminary results from the application of our algorithm to select features for
regression based statistical downscaling shows that our method may lead to improved25

prediction and discovery of new insights.
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2 Background

In this section, we provide brief descriptions of the methods in the context they were
used to build our model.

2.1 Bayesian sparse regression

Let us assume that we are given a dataset D = {xn,yn : n = 1, ...N} which has been5

generated from a linear model identified by sparse coefficients vector β. In a non-
Bayesian setting, sparsity is enforced by a constraint on the L1-norm of the coefficients
which is given by

yn = β>xn +ε, subject to ||β||11 ≤ t (1)

where ε ∼N (µ,τ−1).10

However, in a Bayesian setting, the sparsity can be imposed by a Laplace prior (also
known as double exponential distribution) on β which is given by Park and Casella
(2008)

p(β|γ,τ) =
D∏
j=1

√
γjτ

2
exp
(
−
√
γjτ|βj |

)
(2)

However, due to the analytical intractability of the Laplace prior, it is often represented in15

the following scale-mixture (of Gaussians) form using an additional random variable α .

p(β|τ,γ) =
D∏
j=1

√
γjτ

2
exp
(
−
√
γjτ|βj |

)
=

D∏
j=1

∫
N
(
βj ;0,τ−1α−1

j

)
InvGa

(
αj ;1,

γj
2

)
dαj

For a fully hierarchical Bayesian setting, Gamma prior is imposed on parameter τ
as well as on individual penalty parameters γj . So the joint distribution over all the
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parameters can be given by

p(β,τ,α ,γ) = Ga(τ;c0,d0)
D∏
j=1

{
N
(
βj ; ,0,τ−1α−1

j

)
× InvGa

(
αj ;1,

γj
2

)
Ga(γj ;a0,b0)

}
(3)

2.2 Markov random fields

A Markov random field (MRF) is represented by an undirected graphical model in
which the nodes represent variables or groups of variables and the edges indicate5

dependence relationships. An important property of MRFs is that a collection of
variables is conditionally independent of all others in the field given the variables in
their Markov blanket. The Hammersley–Clifford theorem states that the distribution,
p(Z), over the variables in a MRF factorizes according to

p(Z) =
1
Z

exp

(
−
∑
c∈C

Hc(zc)

)
(4)10

where Z is a normalization constant called the partition function, C is the set of all
cliques in the MRF, zc are the variables in clique c, and Hc is the energy function over
clique c (Geman and Geman, 1984). Cliques are sets of variables or nodes in the
graphical model that fully connected and the smallest clique is an edge. The energy15

function captures the desired configuration of local variables. Partition function Z
normalizes the probability measure and it is computed by summing the exponentiated
energy functions of all possible configurations.

2.3 Dirichlet Process mixture

The Dirichlet Process (DP) was first introduced in statistics literature as a measure on20

measures (Ferguson, 1973). It is parameterized by a base measure, G0, and a positive
621
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scaling parameter λ:

G|{G0,λ} ∼ DP(G0,λ) (5)

The notion of a Dirichlet process mixture (DPM) arises if we treat the kth draw from G
as a parameter of the distribution over some observation (Antoniak, 1974) representing
a particular mixture component. DPMs can be interpreted as mixture models with an5

infinite number of mixture components in the sense that data exhibits a finite number
of components but previously unseen components represented by new data can still
be accommodated. More recently, a variational inference algorithm for DPMs was
introduced (Blei and Jordan, 2006) using the stick-breaking construction (Sethuraman,
1994) which uses two infinite collections of random variables Vk ∼ Beta(1,λ) and10

η
∗
k ∼ G0 to construct G as

θk = Vk

k−1∏
j=1

(1− Vj )

G(η) ∼
∞∑
k=1

θkδ(η,η∗
k).

(6)

For a mixture of sparse regression models, if the parameters for each components are
given by ηk , the subsequent data generation process for such a mixture model can be15

described in following steps using a stick-breaking construction:

1. Draw vk ∼ Beta(1,λ) k = {1,2, ...∞}.

2. Draw ηk ∼ G0, k = {1,2, ...∞}.

3. Generate θk = vk
k−1∏
m=1

(1− vm).

4. For each data point n:20
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(a) Draw zn ∼ Mult(θ ).

(b) Draw yn ∼N (yn;xn,ηzn
).

We can truncate the construction process at k = K by enforcing Vk−1 = 0 which
forces all θk for k > K to be zero (see step 3). The resulting construction is called
a truncated Dirichlet process (TDP) which can be shown to approximate the true5

Dirichlet process quite well given K is large relative to the number of the data-points
(Ishwaran and James, 2001).

3 Methodology

Now, let us assume that we are given a dataset D = {xn,yn : n = 1, ...N} which has been
generated from a mixture of K different sparse models identified by sparse coefficients10

β
(1),β(2), ...,β(K ). Let us also assume that the number of components K is unknown.

We use a Bayesian formulation of the sparse regression model for each component
β

(k), with k = 1,2, ...K . Let us first state the Bayesian version of the kth sparse model.
The linear regression model of the kth component can be represented by the following
Gaussian distribution.15

p
(
yn|xn,β(k)

)
∼N

(
yn;β

(k)>xn,τ
−1
k

)
(7)

3.1 Mixture of sparse regressions

We introduce K -dimensional latent indicator variables {zn : n = 1, ...N} to represent the
component membership of each data-point {xn,yn}. If the data-point belongs to the kth
component, then znk will be 1 and all other elements of zn will be 0. We further denote20

Z = [z1 z2 . . . zn]. We can now rewrite Eq. (7) in terms of zn as

p
(
yn|xn,{β(k)}

)
∼

K∏
k=1

{
N
(
yn;β

(k)>xn,τ
−1
k

)}znk
(8)
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For this mixture of sparse regression model, each component has separate
parameter set {β(k),τk}. Moreover, after adding the parameters related to the scale-
mixture representation of the Laplace prior on β

(k) (refer Sect. 2.1), the set of
parameters is finally given by ηk = {β(k),τk ,αk ,γk}. The prior distribution G0 from
which these parameters can be drawn jointly is given in Eq. (3). We can now use5

the stick-breaking construction described in Sect. 2.3 to formulate our mixture model.
The overall generative process is then:

p(y,Z,v ,{β(k)},τ,{α (k)},{γ(k)},λ|X) = p(y|X,{β(k)},τ)p(Z|v )p(v |λ)p(λ|m0)

×p({β(k)}|τ,{α (k)})p({α (k)}|{γ(k)})
×p({γ(k)}|a0,b0)p

(
τ|c0,d0

)
(9)10

The graphical model that represents the dependence relationships between all the
parameters involved in this current mixture model is shown in Fig. 1. The shaded
circles denote observed variables whereas the unshaded circles denote unobserved
variables. We have used a Gamma prior on λ having a hyper-parameter m0. We15

have omitted the hyper-parameters a0, b0, c0, d0, and m0 from the list of conditioning
variables in the left side to avoid clutter. The individual distributions in Eq. (9) are given
below

y|X,{β(k)},τ ∼
N∏
n=1

K∏
k=1

{
N
(
yn;x

>
nβ

(k),τ−1
k

)}znk
(10a)

Z|v ∼
N∏
n=1

K∏
k=1

vk
k−1∏
j=1

(
1− vj

)
znk

(10b)20

v |λ ∼
K∏
k=1

Beta(vk ;1,λ) (10c)

λ ∼ Ga(λ;m0,1) (10d)
624
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{β(k)}|τk ,{α (k)} ∼
K∏
k=1

D∏
j=1

N
(
β(k)
j ;0,

(
τkα

(k)
j

)−1
)

(10e)

τ ∼
K∏
k=1

Ga(τk ;c0,d0) (10f)

({α (k)},{γ(k)}) ∼
K∏
k=1

D∏
j=1

InvGa

α(k)
j ;1,

γ(k)
j

2

×Ga
(
γ(k)
j ;a0,b0

)
(10g)

3.2 Accommodating “must link” constraints5

Prior knowledge about must link constraints between pairs of data-points can be
enforced via a MRF prior on the indicator variables zn where each data point is
considered a node and each constraint between a pair of data point is regarded as
an edge between the respective nodes. We denote the collection of edges by C and
the MRF prior is given by Eq. (4). We define the energy function as:10

H(zi ,zj ) =

{
−1, z

>
i zj = 1 and (i , j ) is ML

0, otherwise
(11)

Here ML means must link. This prior encourages similar values of indicator variables
zi and zj if they happen to share a “must link” edge. Since the MRF prior is assigned
only on the indicator variables Z, it only alters Eq. (10b) and the new prior on Z is given15

by

Z|v ∼ 1
Z

exp

−
∑

(i ,j )∈C
H(zi ,zj )

×
N∏
n=1

K∏
k=1

vk
k−1∏
j=1

(
1− vj

)
znk

(12)
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3.3 Variational inference

Let us consider all the unknown parameters in our model as latent variables and denote

all the latent variables by H =
{

Z,v ,{β(k)},τ,{α (k)},{γ(k)},λ
}

. Moreover, from now on,

we will ignore feature variables X from the list of conditioning variables as they are
observed. Using Jensen’s inequality, we can find a lower-bound of the log-marginal5

lnp(y) which is given as

lnp(y) >
∫
q(H) ln

{
p(y,H)

q(H)

}
dH (13)

For any arbitrary distribution q(H). The variational inference is performed by restricting
q(H) within a parametric family so that the maximization of the lower bound given in10

Eq. (13) is tractable. We consider only those q(H) which factorize over some disjoint
groups of the component random variables of H in the following way

q(H) =
L∏
j=1

qj (hj ) (14)

We can now maximize the lower bound given in Eq. (13) with respect to each
components qj (hj ) in Eq. (14) and obtain the parametric form of qj (hj ) given by15

q∗
j (hj ) =

exp
(
Ei 6=j [lnp (y,H)]

)∫
exp
(
Ei 6=j [lnp(y,H)]

)
dhj

(15)

where the expectation is taken with respect to all the other factors {qi} for i 6= j . It
can be shown that the q(H) obtained this way is the closest approximation of the
actual posterior p(H|y) in terms of KL-divergence out of all possible alternatives of
the form Eq. (14). Therefore this is a deterministic but approximate posterior inference20

method unlike stochastic inference methods like MCMC which samples from the actual
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posterior. However, variational inference is much faster and approximates the true
posterior reasonably well for practical purposes.

Once we apply Eq. (15) to the joint distribution described in Eqs. (9) and (10), we
can get the update equations for the approximate posterior distributions for each of the
latent variables involved.5

1. Distribution of z:

qZ(Z) =
∏
V ∈V

[
1
ZV

exp

−
∑
(i ,j )∈C
i ,j∈V

H(zi ,zj )

∏
n∈V

K∏
k=1

ρznknk

]
(16)

with

ρnk =
rnk∑
k rnk

(17)10

lnrnk =
1
2
〈lnτk〉 −

1
2

ln2π−
〈τk〉
2

(
y2
n −2〈β(k)〉>xnyn +x>

n 〈β(k)(β(k))>〉xn
)

+ 〈lnvk〉+
k−1∑
j=1

〈ln(1− vj )〉 (18)

2. Distribution of {β(k)}:

qβ({β(k)}) =
K∏
k=1

N
(
{β(k)};µk ,Σ(k)

)
(19)15

with

Σ(k) =

(
〈τk〉

N∑
n=1

xnx
>
nE[Z]nk + 〈τk〉diag

(
〈α (k)〉

))−1

(20)
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µk = Σ(k)

(
N∑
n=1

xnynE[Z]nk

)
〈τk〉 (21)

Here diag(〈α (k)〉) corresponds to the LASSO (Tibshirani, 1994) shrinkage. The
moments are given by1

〈β(k)〉 = µk ;
〈(
β(k)
p

)2
〉
= Σ (k)

pp +µ2
kp5

〈β(k)(β(k))>〉 = Σ(k) +µkµ
>
k

3. Distribution of τ:10

qτ(τ) =
K∏
k=1

Ga(τk ;ck ,dk) (22)

with

ck = c0 +
1
2

(
N∑
n=1

E[Z]nk +p

)
(23)

d = d0 +
I
2
+
J
2

(24)
15

where

I =
N∑
n=1

(
y2
nE[Z]nk −2E[Z]nkx

>
nyn〈β(k)〉+E[Z]nkx

>
n 〈β(k)(β(k))>〉xn

)
1〈f (s)〉 means expected value of f (s) with respect to the distribution of s.
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J =
D∑
p=1

〈
α(k)
p

〉〈(
β(k)
p

)2
〉

The relevant moments are

〈τk〉 = ck/dk and 〈lnτk〉 = ψ(ck)− ln(dk)

4. Distribution of v5

qv (v ) =
K∏
k=1

Beta(vk ;ξk ,κk) (25)

with

ξk = 1+
N∑
n=1

E[Z]nk and κk = 〈λ〉+
K∑

j=k+1

N∑
n=1

E[Z]nj

Relevant moments are given by 〈lnvk〉 = ψ(ξk)−ψ(ξk + κk) and 〈ln(1− vk)〉 =
ψ(κk)−ψ(ξk + κk).10

5. Distribution of {α (k)}:

qα ({α (k)}) =
K∏
k=1

D∏
p=1

InvGaussian
(
α(k)
p ;gkp,hkp

)
(26)

with

gkj =

√√√√√√√
〈
γ(k)
j

〉
〈τk〉
〈(
β(k)
j

)2
〉
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hkj =
〈
γ(k)
j

〉
where InvGaussian

(
α(k)
j ;gkj ,hkj

)
denotes inverse Gaussian distribution with

mean gkj and shape parameter hkj having the following density function.

pIG

(
α(k)
j ;gkj ,hkj

)
=

√√√√√√ hkj

2π
(
α(k)
j

)3
×exp

−
hkj
(
α(k)
j −gkj

)2

2
(
gkj
)2
α(k)
j

(α(k)
j > 0

)
5

The relevant moments are given by〈
α(k)
j

〉
= gkj and

〈(
α(k)
j

)−1
〉
=
(
gkj
)−1

+
(
hkj
)−1

6. Distribution of {γ(k)}:

qγ({γ(k)}) =
D∏
p=1

Ga
(
γ(k)
j ;akj ,bkj

)
(27)

with10

akj = a0 +1

bkj = b0 +
1
2

〈(
α(k)
j

)−1
〉

and the relevant moment is 〈γ(k)
j 〉 = akj /b

k
j

15
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7. Distribution of λ:

qλ(λ) = Ga(λ;u,w) (28)

where

u =m0 +K ; w = −
K∑
k=1

〈ln (1− vk)〉

Relevant moment is 〈λ〉 = u
w .5

The first part of the variational posterior of qZ (Z) in Eq. (16) arises from the MRF
prior and contributes towards enforcing “must link” constraints. Note that V in Eq. (16)
is a set of sets and V is a component set of connected nodes within V. Basically,
V denotes the set of connected components within the constraint graph described10

in Sect. 3.2. Therefore the partition function ZV needs to be computed only for the
connected components, not for the entire graph. Computing ZV becomes tractable if
the connected components are small, i.e. the constraint set is sparse.

In order to automatically generate a sparse constraints set, we first implemented
all the constraints in form of edges and then used a graph partitioning algorithm15

(Hespanha, 2004) to partition the constraint graph in such a way that none of the
partitions are left with more than a predefined number of nodes. At the time of inference
we used a “backtracking” algorithm (Tarjan, 1972) to find the strongly connected
components within the graph. To compute the expectation E[z], we first computed
the multinomial probabilities ρnk and then did an MRF update on each connected20

component by computing the probabilities of each possible state combination and
summing the probability-weighted state matrices. The partition function is computed
by summing the exponentiated sum of energy function of each state matrix. Note that,
isolated nodes (not part of the any connected components) will not need their ρnk
updated.25
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The parameters of each of the distributions has dependency on moments of one
or more of the other variables. We can only find an optimum solution via iterative
updates, starting with random initial values of the relevant moments and stop when the
probabilities E[z] stop changing any more. Note that, once the approximate solution
is reached, we can compute the marginal distributions over coefficients β(k)

p which is5

a Gaussian with mean µ(k)
p and variance Σ(k)

pp for each k. We can thereby perform
a t test to determine whether the corresponding feature has a non-zero coefficient.

3.4 Computational considerations

One computational bottleneck of the proposed VB algorithm is the inversion of the
D×D matrix in Eq. (20). If D < N, then faster matrix inversion can be achieved10

by first applying a Cholesky decomposition and then inverting the resulting upper
triangular matrix. However if D > N, we can first apply a fast (approximate) singular

value decomposition on Σ(k)−1
and then use Woodbury matrix inversion identity so that

we now have to invert a N ×N matrix instead.
We have truncated the infinite Dirichlet Process at K = 20 for most of our15

experiments. The speed of the algorithm can be further improved by parallelizing
the updates for each of K components which is straightforward as they are updated
independent of each other. Another major computational challenge was the MRF
updates. Apart from controlling the maximum size of the connected components, we
parallelized the MRF updates over each subgraph by making the state generation20

independent of the previous state.

4 Experiments

We have evaluated our method both on synthetic and climate datasets. Typical values
used for the hyper-parameters were a0 = b0 = c0 = d0 = 0.01 and λ = 1. Selecting
these values within a reasonable range does not affect the results significantly. We25
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made sure that the cardinality of the largest connected component in the constraints
graph never exceeds 8.

4.1 Synthetic dataset

We compared the performance of both constrained and unconstrained version of our
method with non-parametric mixture of linear regression (NPMLR) model without any5

regularization. We set-up three experiments: (1) to test whether or not our algorithm
can learn the number of clusters; (2) to evaluate the efffect of constraints; and (3) to
check the sensitivity of our approach to noise.

For all our experiments involving synthetic data, we used N = 1000 data points and
D = 30 features. In our first set of experiments we tested our method for K = 2 . . . 510

actual clusters. Each column of the N ×D input matrix X is generated from a uniform
distribution. For each value of K , we partitioned the input matrix X in K equal parts
X1 . . . XK . Then for each partition Xk , we generate sparse coefficients βk by randomly
selecting 10 out of 30 components to be non-zero. We typically assign a value of 5k to
the non-zero components. We then generate the output yk for the kth cluster using the15

linear regression model of 1. The fixed noise variance τ−1
k for the first experiment was

generated by randomly choosing a number between 0 and 0.1 to introduce diversity.
Final dataset was obtained by merging {Xk ,yk} for all k = 1 . . .K . The process is
repeated 30 times and mean and variance of the evaluation metrics were reported in
form of errorbars for each value of K in Fig. 2. For all these experiments total number20

of constraints were kept at 20 per cluster while the size of largest subgraph was kept
below 7.

Second experiment was performed to evaluate the effect of number of “must link”
constraints on the performance of the constrained version of the algorithm. Here, the
actual number of clusters were fixed at K = 3 along with the base noise variance (0.1)25

and the number of constraints per clusters were varied from 0 to 30 incremented by 5,
although the actual number of constraints may be less that since we removed some
constraints to achieve sparsity in the constraint graph. The result is reported in Fig. 3.
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In our third experiment, we evaluated the effect of noise on the performance of
our algorithm. Again, we kept the number of clusters fixed at K = 3 and number of
constraints fixed at 20 per cluster (for the constrained version). We varied the base
noise level in each cluster from 0 to 0.5 and added a randomly generated value
between 0 and 0.1 with the base noise level for each cluster to maintain diversity among5

the clusters. Average and variance of 30 repetitions are reported in Fig. 4.

4.1.1 Evaluation metrics

We measured two aspects of the performance of our algorithm. First, whether it
can cluster the datapoints correctly. We put a data point into one of the possible
20 components (since we truncated the infinite Dirichlet process at K = 20 for all10

experiments) depending on the value of the row E[Z]n (a vector) in theN×20 matrix E[Z]
estimated by the variational inference algorithm. The estimated cluster membership
ĉn (a scalar) is given by ĉn = argmax

k
E[Z]nk . We retain all the valid components out

of 20 possible, which have at least one member initially. Then we run an update
algorithm to merge very small clusters with the closest larger ones. Note that, the15

estimated cluster indices (a value between 1 and 20) may not correspond directly
to the actual cluster indices (a value between 1 to actual value of K ) since the
variational inference algorithm is not aware of the actual order of the cluster indices
(e.g. actual cluster index 1 may correspond to estimated cluster index 9). So we use
a metric called normalized mutual information (NMI) that evaluates the match between20

estimated cluster memberships ĉ and actual ones c without needing there be direct
correspondence. NMI is given by NMI(c, ĉ) = H(c)−H(c|ĉ)√

H(c)H(ĉ)
, where H(·) is the entropy.

Higher NMI values mean that the clustering results are more similar to ground-truth.
The metric reaches its maximum value of one when there is perfect agreement.

The second metric is used to evaluate the quality of the sparse regression model25

estimated within each discovered cluster. Here we are only interested in finding
whether our algorithm picks the non-zero coefficients correctly. We use F score to
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measure the match between actual and estimated non-zero coefficients within each
cluster. F score for the kth component is given by Fk =

2PkRk
Pk+Rk

where Pk is the precision
and Rk is the recall of the estimated coefficients for the kth component. We reported
the average of Fk values over all components discovered by our algorithm. Unlike
the previous metric, here we need to know the direct correspondence between the5

cluster indices so that we can match the actual and estimated coefficient vectors. We
developed an algorithm to find such a correspondence.

4.1.2 Discussion of results

We can see the performance of all three algorithms are comparable in terms
of identifying the clusters correctly, although the NMI value of NPMLR degrades10

significantly for K = 5. However, as desired, our method outperforms NPMLR in terms
of correctly retrieving the sparse structure of regression coefficients within each cluster.
There is general downward trend of performance for all algorithms with increasing
number of actual components in the data. This is an inherent problem with the DPM
models as it tends to attach each new data-point to the largest current component15

and thereby favoring models with less components. Also, as the number of actual
components grow, probability of two components to be similar increases.

The increased flexibility of non-parametric methods comes at a cost of hitting
local optima more likely and finding solutions that are not interpretable. Adding more
constraints may decrease this probability but at the same time restricts the variational20

method from finding solutions leading to a larger lower bound, especially in the
presence of more components in the data. Therefore increasing number of constraints
may result more interpretable solutions, but not improved performance. It is also
encouraging to see that our method is relatively robust to added noise, a major
challenge with the real datasets, especially in terms of correctly identifying the sparse25

structure.
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4.2 Feature selection for downscaling rainfall

A grand challenge in climate science relevant for adaptation and policy remains
our inability to provide credible stakeholder-relevant “statistical downscaling”, or
developing statistical techniques for more accurate, precise and interpretable high-
resolution projections with lower-resolution climate model data (Benestad et al., 2008).5

Regression models of statistical downscaling (Benestad et al., 2008; Ghosh, 2010)
works by first selecting a set of climate variables that have information about the target
variable, and then fitting a regression model to predict the target variable at higher
resolution. In this application, selecting the right set of predictors are as important as
building a prediction model since even a good prediction with a model that is physically10

not interpretable is less desirable as it may not generalize well. We focus on the feature
selection problem for statistical downscaling of annual average rainfall. Existence of
multiple states or patterns is acknowledged in regression-based statistical downscaling
literature for rainfall (e.g. Kannan and Ghosh, 2010) where parametric methods like K -
means was used to find distinct clusters. Here we used our model to simultaneously15

find clusters, if any, and select features for the purpose of statistical downscaling
of station observed annual average rainfall over two climatologically homogeneous
regions over continental US. Figure 5 shows the climatologically homogeneous regions
over United States.

Since rainfall follows log-normal distribution, the target variable we used is logarithm20

of annual average rainfall. In Fig. 6, we have shown the distribution of average rainfall
over all sites in western US before and after taking logarithm.

Potential features used can fall under one of two broad categories – local
atmospheric variables and large-scale climate indices. Local covariates originate from
each station and exhibits both spatial and temporal variability. Annual and seasonal25

averages of maximum temperature falls in this category along with elevation, sea level
pressure (SLP) and convective available potential energy (CAPE). A dependence on
any of these variables roughly indicates dominance of local convective rainfall in the
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region. Daily rainfall station data obtained from United States Historical Climatology
Network (USHCN) (Easterling et al., 1996). All other features are described in Table 1.

Climate indices are global variables that represent large-scale signals in climate
variables. A list of covariates used of each category is given in Table 1. A dependence
on any of these variables roughly indicates rainfall due to large-scale circulation.5

We could use the covariates between 1979 and 2011 as SLP and CAPE is available
only for that period. Also, if more than 50 % of the daily observations out of a year
are found to be missing for any of variables at a specific location, we simply discarded
all variables for that year and for that specific location. We averaged monthly climate
indices and daily local variables over a year. Finally the annual/seasonal average time-10

series of predictors for each station were merged for a homogeneous region under
consideration. West (CA,NV) and Northwest (WA, OR, ID) regions are shown by gray
shaded areas over US map in Fig. 7 (left and right panels, respectively).

4.2.1 Results and discussion

When we applied “must link” constraints over pairs of data-points from the same15

location in form of a broken chain (broken for sparsity), all data-points tended to merge
into a single cluster. However, as we started to relax the constraints, more than one
components started to emerge in most regions except the southern region. Here we
show only the clusters in western and northwestern regions, since in these regions
stations were somewhat split into obtained clusters. In other regions, almost all stations20

had mixed membership. We assign a station to a cluster if more than 80 % its data-
points belong to that cluster.

A quick look at the histogram of target variable (right panel in Fig. 6) also supports
the possibility of two distinct rainfall modes in the region. Interestingly in the north-west
region there is only a single member station for the first component which exhibits25

dependence on the local temperature variables and SLP whereas the larger cluster
shows dependence on a larger number of climate indices. In the western region,
first cluster shows dependence on local temperature variables and second cluster
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shows more dependence on large scale variables. Both clusters show dependence on
elevation. While dependence on large scale indices are not surprising for both these
regions due to the known effect of westerlies in these coastal regions, dependence
of smaller clusters (especially in the northwest) on local variables may hint towards
existence of some regional small scale atmospheric mechanisms. While spatially5

coherent clusters are more natural, geographical features (e.g. mountains, lakes etc.)
of the region must also be taken into consideration while interpreting the results.
However, before we can build statistical downscaling models, more rigorous statistical
and physical analysis is required based on these preliminary insights obtained using
our method.10

5 Conclusions

In this paper, we proposed a nonparametric Bayesian mixture of sparse regression
models for simultaneous clustering and discovery of covariates within each cluster
using Dirichlet process mixture model. Moreover, our model can accommodate prior
knowledge about “must link” constraints between the pair of data-points using a Markov15

Random Field prior on the cluster membership variables. Our major contribution is
to develop an efficient and scalable variational inference algorithm for inference on
the fully Bayesian model. We applied our method both on synthetic and successfully
discovered multiple underlying behaviors in the data. Preliminary results of application
our method towards feature selection for statistical downscaling of rainfall shows20

promise towards finding new climate insights with appropriate caveats. Going forward,
we would like to incorporate priors for diversity among the clusters in order to
discourage merging of close but dissimilar clusters. We intend to further extend our
model for predictive analysis and build a full-scale statistical downscaling method using
the features selected by the current model.25
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Table 1. Potential features used for statistical downscaling of rainfall.

Atmospheric: (Easterling et al., 1996; Mesinger et al., 2006) Mean Annual Maximum
Temperature (MATmax), Mean Winter Maximum Temperature (DJFTmax), Mean Spring
Maximum Temperature (MAMTmax), Mean Summer Maximum Temperature (JJATmax),
Mean Autumn Maximum Temperature (SONTmax) (Easterling et al., 1996), Sea Level
Pressure (SLP), Convective Available Potential Energy (CAPE) (Mesinger et al., 2006)

Climate Indices: (NOAA) North Atlantic Oscillation (NAO), East Atlantic Pattern (EA),
West Pacific Pattern (WP), East Pacific/North Pacific Pattern (EPNP), Pacific/North
American Pattern (PNA), East Atlantic/West Russia Pattern (EAWR), Scandinavia Pattern
(SCA), Tropical/Northern Hemisphere Pattern (TNH), Polar/Eurasia Pattern (POL), Pacific
Transition Pattern (PT), Nino 1+2, Nino 3, Nino 3.4, Nino 4, Southern Oscillation
Index (SOI), Pacific Decadal Oscillation (PDO), Northern Pacific Oscillation (NP),
Tropical/Northern Atlantic Index (TNA), Tropical/Southern Atlantic Index (TSA), Western
Hemisphere Warm Pool (WHWP), Global Mean Temperature Anomaly (GlobalMeanTemp)
(NOAA)
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4 D. Das et al.: Non-parametric Bayesian mixture of sparse regressions

k-th sparse model. The linear regression model of the k-th
component can be represented by the following Gaussian dis-
tribution.250

p
(
yn|xn,β(k)

)
∼N

(
yn;β(k)>xn, τ

−1
k

)
(7)

3.1 Mixture of Sparse Regressions.

We introduce K-dimensional latent indicator variables {zn :
n= 1, ...N} to represent the component membership of each
data-point {xn,yn}. If the data-point belongs to the k-th255

component, then znk will be 1 and all other elements of zn
will be 0. We can now rewrite (7) in terms of zn as

p
(
yn|xn,

{
β(k)

})
∼

K∏
k=1

{
N
(
yn;β(k)>xn, τ

−1
k

)}znk

(8)

For this mixture of sparse regression model, each compo-
nent has separate parameter set {β(k), τk}. Moreover, after260

adding the parameters related to the scale-mixture represen-
tation of the Laplace prior on β(k) (refer section 2.1), the
set of parameters is finally given by ηk = {β(k), τk,αk,γk}.
The prior distribution G0 from which these parameters can
be drawn jointly is given in (3). We can now use the stick-265

breaking construction described in 2.3 to formulate our mix-
ture model. The overall generative process is then:

p
(
y,z,v,{β(k)},τ ,{α(k)},{γ(k)},λ|X

)
= p

(
y|X,{β(k)},τ

)
p(z|v)p(v|λ)p(λ|m0)270

× p
(
{β(k)}|τ ,{α(k)}

)
p
(
{α(k)}|{γ(k)}

)
× p
(
{γ(k)}|a0, b0

)
p(τ |c0,d0) (9)

The graphical model that represents the dependence rela-
tionships between all the parameters involved in this current275

mixture model is shown in Figure 1. The shaded circles de-
note observed variables whereas the unshaded circles denote
unobserved variables. We have used a Gamma prior on λ
having a hyper-parameter m0. We have omitted the hyper-
parameters a0, b0, c0,d0 and m0 from the list of conditioning280

variables in the left side to avoid clutter. The individual dis-

tributions in (9) are given below

y|X,{β(k)},τ ∼
N∏
n=1

K∏
k=1

{
N
(
yn;X>nβ(k), τ−1

k

)}znk

(10a)

z|v ∼
N∏
n=1

K∏
k=1

vk
k−1∏
j=1

(1− vj)


znk

(10b)

v|λ∼
K∏
k=1

Beta(vk;1,λ) (10c)285

λ∼ Beta(λ;m0,1) (10d)

{β(k)}|τk,{α(k)} ∼
K∏
k=1

D∏
p=1

N
(
β

(k)
j ;0,

(
τkα

(k)
p

)−1
)

(10e)

τ ∼
K∏
k=1

Ga(τk;c0,d0) (10f)

(
{α(k)},{γ(k)}

)
∼

K∏
k=1

D∏
p=1

InvGa

(
α

(k)
j ;1,

γ
(k)
j

2

)
×Ga

(
γ

(k)
j ;a0, b0

) (10g)

290

Fig. 1. Graphical representation of the of complete Bayesian hierar-
chical model

3.2 Accommodating ’Must Link’ Constraints.

Prior knowledge about must link constraints between pairs of
data-points can be enforced via a MRF prior on the indicator
variables zn where each data point is considered a node and295

each constraint between a pair of data point is regarded as an
edge between the respective nodes. We denote the collection
of edges by C and the MRF prior is given by (4). We define
the energy function as

H(zi,zj) =

{
−1, z>i zj = 1 and (i , j ) is ML
0, Otherwise (11)300

Fig. 1. Graphical representation of the of complete Bayesian hierarchical model.
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8 D. Das et al.: Non-parametric Bayesian mixture of sparse regressions

Fig. 2. Left: Ability of nonparametric unregularized and sparse regressions (unconstrained and constrained) to correctly identify clusters
in presence of increased number of actual components in the data. Right: Ability of nonparametric unregularized and sparse regressions
(unconstrained and constrained) to correctly retrieve the sparse structure within each cluster.

Fig. 3. Performance of the constrained version of the algorithm (in
terms of NMI(more the better)) with number of ’must link’ con-
straints

ational inference algorithm. The estimated cluster member-535

ship ĉn (a scalar) is given by ĉn = argmax
k

E[z]nk. We retain

all the valid components out of 20 possible, which have at
least one member initially. Then we run an update algorithm
to merge very small clusters with the closest larger ones.
Note that, the estimated cluster indices (a value between 1540

to 20) may not correspond directly to the actual cluster in-
dices (a value between 1 to actual value of K) since the vari-
ational inference algorithm is not aware of the actual order
of the cluster indices (e.g. actual cluster index 1 may cor-

respond to estimated cluster index 9). So we use a metric545

called normalized mutual information (NMI) that evaluates
the match between estimated cluster memberships ĉ and ac-
tual ones c without needing there be direct correspondence.
NMI is given by NMI(c, ĉ) = H(c)−H(c|ĉ)√

H(c)H(ĉ)
, where H(·) is

the entropy. Higher NMI values mean that the clustering re-550

sults are more similar to ground-truth. The metric reaches its
maximum value of one when there is perfect agreement.

The second metric is used to evaluate the quality of the
sparse regression model estimated within each discovered
cluster. Here we are only interested in finding whether our555

algorithm picks the non-zero coefficients correctly. We use
F -score to measure the match between actual and estimated
non-zero coefficients within each cluster. F -score for the k-
th component is given by Fk = 2PkRk

Pk+Rk
where Pk is the pre-

cision and Rk is the recall of the estimated coefficients for560

the k-th component. We reported the average of Fk values
over all components discovered by our algorithm. Unlike the
previous metric, here we need to know the direct correspon-
dence between the cluster indices so that we can match the
actual and estimated coefficient vectors. We developed an al-565

gorithm to find such a correspondence.

4.1.2 Discussion of Results.

We can see the performance of all three algorithms are com-
parable in terms of identifying the clusters correctly, al-
though the NMI value of NPMLR degrades significantly570

for K = 5. However, as desired, our method outperforms
NPMLR in terms of correctly retrieving the sparse structure
of regression coefficients within each cluster. There is gen-
eral downward trend of performance for all algorithms with

Fig. 2. Left: ability of nonparametric unregularized and sparse regressions (unconstrained
and constrained) to correctly identify clusters in presence of increased number of actual
components in the data. Right: ability of nonparametric unregularized and sparse regressions
(unconstrained and constrained) to correctly retrieve the sparse structure within each cluster.
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8 D. Das et al.: Non-parametric Bayesian mixture of sparse regressions

Fig. 2. Left: Ability of nonparametric unregularized and sparse regressions (unconstrained and constrained) to correctly identify clusters
in presence of increased number of actual components in the data. Right: Ability of nonparametric unregularized and sparse regressions
(unconstrained and constrained) to correctly retrieve the sparse structure within each cluster.

Fig. 3. Performance of the constrained version of the algorithm (in
terms of NMI(more the better)) with number of ’must link’ con-
straints

ational inference algorithm. The estimated cluster member-535

ship ĉn (a scalar) is given by ĉn = argmax
k

E[z]nk. We retain

all the valid components out of 20 possible, which have at
least one member initially. Then we run an update algorithm
to merge very small clusters with the closest larger ones.
Note that, the estimated cluster indices (a value between 1540

to 20) may not correspond directly to the actual cluster in-
dices (a value between 1 to actual value of K) since the vari-
ational inference algorithm is not aware of the actual order
of the cluster indices (e.g. actual cluster index 1 may cor-

respond to estimated cluster index 9). So we use a metric545

called normalized mutual information (NMI) that evaluates
the match between estimated cluster memberships ĉ and ac-
tual ones c without needing there be direct correspondence.
NMI is given by NMI(c, ĉ) = H(c)−H(c|ĉ)√

H(c)H(ĉ)
, where H(·) is

the entropy. Higher NMI values mean that the clustering re-550

sults are more similar to ground-truth. The metric reaches its
maximum value of one when there is perfect agreement.

The second metric is used to evaluate the quality of the
sparse regression model estimated within each discovered
cluster. Here we are only interested in finding whether our555

algorithm picks the non-zero coefficients correctly. We use
F -score to measure the match between actual and estimated
non-zero coefficients within each cluster. F -score for the k-
th component is given by Fk = 2PkRk

Pk+Rk
where Pk is the pre-

cision and Rk is the recall of the estimated coefficients for560

the k-th component. We reported the average of Fk values
over all components discovered by our algorithm. Unlike the
previous metric, here we need to know the direct correspon-
dence between the cluster indices so that we can match the
actual and estimated coefficient vectors. We developed an al-565

gorithm to find such a correspondence.

4.1.2 Discussion of Results.

We can see the performance of all three algorithms are com-
parable in terms of identifying the clusters correctly, al-
though the NMI value of NPMLR degrades significantly570

for K = 5. However, as desired, our method outperforms
NPMLR in terms of correctly retrieving the sparse structure
of regression coefficients within each cluster. There is gen-
eral downward trend of performance for all algorithms with

Fig. 3. Performance of the constrained version of the algorithm (in terms of NMI (more the
better)) with number of “must link” constraints.
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D. Das et al.: Non-parametric Bayesian mixture of sparse regressions 9

Fig. 4. Left: Ability of nonparametric unregularized and sparse regressions (unconstrained and constrained) to correctly identify clusters (in-
dicated by NMI) with increasing noise. Right: Ability of nonparametric unregularized and sparse regressions (unconstrained and constrained)
to correctly retrieve the sparse structure within each cluster (indicated by average F-score).

increasing number of actual components in the data. This is575

an inherent problem with the DPM models as it tends to at-
tach each new data-point to the largest current component
and thereby favoring models with less components. Also, as
the number of actual components grow, probability of two
components to be similar increases.580

The increased flexibility of non-parametric methods
comes at a cost of hitting local optima more likely and find-
ing solutions that are not interpretable. Adding more con-
straints may decrease this probability but at the same time
restricts the variational method from finding solutions lead-585

ing to a larger lower bound, especially in the presence of
more components in the data. Therefore increasing number
of constraints may result more interpretable solutions, but not
improved performance. It is also encouraging to see that our
method is relatively robust to added noise, a major challenge590

with the real datasets, especially in terms of correctly identi-
fying the sparse structure.

4.2 Feature Selection for Downscaling Rainfall.

A grand challenge in climate science relevant for adapta-
tion and policy remains our inability to provide credible595

stakeholder-relevant ”statistical downscaling”, or develop-
ing statistical techniques for more accurate, precise and in-
terpretable high-resolution projections with lower-resolution
climate model data (Benestad et al., 2008). Regression mod-
els of statistical downscaling (Benestad et al., 2008; Ghosh,600

2010) works by first selecting a set of climate variables that
have information about the target variable, and then fitting a
regression model to predict the target variable at higher reso-
lution. In this application, selecting the right set of predictors
are as important as building a prediction model since even605

a good prediction with a model that is physically not inter-
pretable is less desirable as it may not generalize well. We fo-
cus on the feature selection problem for statistical downscal-
ing of annual average rainfall. Existence of multiple states
or patterns is acknowledged in regression-based statistical610

downscaling literature for rainfall(e.g. (Kannan and Ghosh,
2010)) where parametric methods like K-means was used to
find distinct clusters. Here we used our model to simultane-
ously find clusters, if any, and select features for the purpose
of statistical downscaling of station observed annual average615

rainfall over two climatologically homogeneous regions over
continental US. Figure 5 shows the climatologically homo-
geneous regions over United States.

Fig. 5. Map showing climatologically homogeneous regions over
continental United States

Since rainfall follows log-normal distribution, the target
variable we used is logarithm of annual average rainfall. In620

Fig. 4. Left: ability of nonparametric unregularized and sparse regressions (unconstrained and
constrained) to correctly identify clusters (indicated by NMI) with increasing noise. Right: ability
of nonparametric unregularized and sparse regressions (unconstrained and constrained) to
correctly retrieve the sparse structure within each cluster (indicated by average F score).
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D. Das et al.: Non-parametric Bayesian mixture of sparse regressions 9

Fig. 4. Left: Ability of nonparametric unregularized and sparse regressions (unconstrained and constrained) to correctly identify clusters (in-
dicated by NMI) with increasing noise. Right: Ability of nonparametric unregularized and sparse regressions (unconstrained and constrained)
to correctly retrieve the sparse structure within each cluster (indicated by average F-score).

increasing number of actual components in the data. This is575

an inherent problem with the DPM models as it tends to at-
tach each new data-point to the largest current component
and thereby favoring models with less components. Also, as
the number of actual components grow, probability of two
components to be similar increases.580

The increased flexibility of non-parametric methods
comes at a cost of hitting local optima more likely and find-
ing solutions that are not interpretable. Adding more con-
straints may decrease this probability but at the same time
restricts the variational method from finding solutions lead-585

ing to a larger lower bound, especially in the presence of
more components in the data. Therefore increasing number
of constraints may result more interpretable solutions, but not
improved performance. It is also encouraging to see that our
method is relatively robust to added noise, a major challenge590

with the real datasets, especially in terms of correctly identi-
fying the sparse structure.

4.2 Feature Selection for Downscaling Rainfall.

A grand challenge in climate science relevant for adapta-
tion and policy remains our inability to provide credible595

stakeholder-relevant ”statistical downscaling”, or develop-
ing statistical techniques for more accurate, precise and in-
terpretable high-resolution projections with lower-resolution
climate model data (Benestad et al., 2008). Regression mod-
els of statistical downscaling (Benestad et al., 2008; Ghosh,600

2010) works by first selecting a set of climate variables that
have information about the target variable, and then fitting a
regression model to predict the target variable at higher reso-
lution. In this application, selecting the right set of predictors
are as important as building a prediction model since even605

a good prediction with a model that is physically not inter-
pretable is less desirable as it may not generalize well. We fo-
cus on the feature selection problem for statistical downscal-
ing of annual average rainfall. Existence of multiple states
or patterns is acknowledged in regression-based statistical610

downscaling literature for rainfall(e.g. (Kannan and Ghosh,
2010)) where parametric methods like K-means was used to
find distinct clusters. Here we used our model to simultane-
ously find clusters, if any, and select features for the purpose
of statistical downscaling of station observed annual average615

rainfall over two climatologically homogeneous regions over
continental US. Figure 5 shows the climatologically homo-
geneous regions over United States.

Fig. 5. Map showing climatologically homogeneous regions over
continental United States

Since rainfall follows log-normal distribution, the target
variable we used is logarithm of annual average rainfall. In620

Fig. 5. Map showing climatologically homogeneous regions over continental United States.
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10 D. Das et al.: Non-parametric Bayesian mixture of sparse regressions

figure 6, we have shown the distribution of average rainfall
over all sites in western US before and after taking logarithm.

Fig. 6. (left) Distribution of average rainfall over all sites in the
western US. (right) Distribution of average rainfall after transfor-
mation.

Potential features used can fall under one of two broad cat-
egories - local atmospheric variables and large-scale climate
indices. Local covariates originate from each station and ex-625

hibits both spatial and temporal variability. Annual and sea-
sonal averages of maximum temperature falls in this category
along with elevation , sea level pressure (SLP) and convec-
tive available potential energy (CAPE). A dependence on any
of these variables roughly indicates dominance of local con-630

vective rainfall in the region. Daily rainfall station data ob-
tained from United States Historical Climatology Network
(USHCN) (Easterling et al., 1996). All other features are de-
scribed in table 1.

Climate indices are global variables that represent large-635

scale signals in climate variables. A list of covariates used of
each category is given in table 1. A dependence on any of
these variables roughly indicates rainfall due to large-scale
circulation.

We could use the covariates between 1979 to 2011 as640

SLP and CAPE is available only for that period. Also, if
more than 50% of the daily observations out of a year are
found to be missing for any of variables at a specific lo-
cation, we simply discarded all variables for that year and
for that specific location. We averaged monthly climate in-645

dices and daily local variables over a year. Finally the an-
nual/seasonal average time-series of predictors for each sta-
tion were merged for a homogeneous region under consid-
eration. West (CA,NV) and Northwest (WA,OR,ID) regions
are shown by gray shaded areas over US map in figure 7 (left650

and right panels, respectively).

4.2.1 Results and Discussion.

When we applied ’must link’ constraints over pairs of data-
points from the same location in form of a broken chain (bro-
ken for sparsity), all data-points tended to merge into a single655

cluster. However, as we started to relax the constraints, more
than one components started to emerge in most regions ex-
cept the southern region. Here we show only the clusters in
western and northwestern regions, since in these regions sta-

tions were somewhat split into obtained clusters. In other re-660

gions, almost all stations had mixed membership. We assign
a station to a cluster if more than 80% its data-points belong
to that cluster.

A quick look at the histogram of target variable (right
panel in 6) also supports the possibility of two distinct rain-665

fall modes in the region. Interestingly in the north-west re-
gion there is only a single member station for the first com-
ponent which exhibits dependence on the local temperature
variables and SLP whereas the larger cluster shows depen-
dence on a larger number of climate indices. In the west-670

ern region, first cluster shows dependence on local temper-
ature variables and second cluster shows more dependence
on large scale variables. Both clusters show dependence on
elevation. While dependence on large scale indices are not
surprising for both these regions due to the known effect of675

westerlies in these coastal regions, dependence of smaller
clusters (especially in the northwest) on local variables may
hint towards existence of some regional small scale atmo-
spheric mechanisms. While spatially coherent clusters are
more natural, geographical features (e.g. mountains, lakes680

etc.) of the region must also be taken into consideration while
interpreting the results. However, before we can build statis-
tical downscaling models, more rigorous statistical and phys-
ical analysis is required based on these preliminary insights
obtained using our method.685

5 Conclusion.

In this paper, we proposed a nonparametric Bayesian mixture
of sparse regression models for simultaneous clustering and
discovery of covariates within each cluster using Dirichlet
process mixture model. Moreover, our model can accommo-690

date prior knowledge about ’must link’ constraints between
the pair of data-points using a Markov Random Field prior
on the cluster membership variables. Our major contribution
is to develop an efficient and scalable variational inference
algorithm for inference on the fully Bayesian model. We ap-695

plied our method both on synthetic and successfully discov-
ered multiple underlying behaviors in the data. Preliminary
results of application our method towards feature selection
for statistical downscaling of rainfall shows promise towards
finding new climate insights with appropriate caveats. Go-700

ing forward, we would like to incorporate priors for diver-
sity among the clusters in order to discourage merging of
close but dissimilar clusters. We intend to further extend our
model for predictive analysis and build a full-scale statisti-
cal downscaling method using the features selected by the705

current model.

Acknowledgements. This work was funded by the NSF Expedi-
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Fig. 6. (Left) Distribution of average rainfall over all sites in the western US. (Right) Distribution
of average rainfall after transformation.
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D. Das et al.: Non-parametric Bayesian mixture of sparse regressions 11

Table 1. Potential features used for statistical downscaling of rainfall

Atmospheric: (Easterling et al., 1996; Mesinger et al., 2006) Mean Annual Maximum Temperature (MATmax), Mean Winter Maximum
Temperature (DJFTmax), Mean Spring Maximum Temperature (MAMTmax), Mean Summer Maximum Temperature (JJATmax), Mean
Autumn Maximum Temperature (SONTmax) (Easterling et al., 1996), Sea Level Pressure (SLP), Convective Available Potential Energy
(CAPE)(Mesinger et al., 2006)

Climate Indices: (NOA) North Atlantic Oscillation (NAO), East Atlantic Pattern (EA), West Pacific Pattern (WP), East Pacific/North
Pacific Pattern (EPNP), Pacific/North American Pattern (PNA), East Atlantic/West Russia Pattern (EAWR), Scandinavia Pattern (SCA),
Tropical/Northern Hemisphere Pattern (TNH), Polar/Eurasia Pattern (POL), Pacific Transition Pattern (PT), Nino 1+2, Nino 3, Nino 3.4,
Nino 4, Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), Northern Pacific Oscillation (NP), Tropical/Northern Atlantic
Index (TNA), Tropical/Southern Atlantic Index (TSA), Western Hemisphere Warm Pool (WHWP), Global Mean Temperature Anomaly
(GlobalMeanTemp)(NOA)

Fig. 7. Left: Location of stations and their cluster membership in the western region. Right:Location of stations and their cluster membership
in the northwestern region.
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