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Abstract

In this study, we discuss the role of the nonlinear terms and linear (heating) term
in the energy cycle of the three-dimensional (X–Y –Z) non-dissipative Lorenz model
(3D-NLM). (X ,Y ,Z) represent the solutions in the phase space. We first present the
closed-form solution to the nonlinear equation d2X/dτ2 + (X 2/2)X = 0, τ is a non-5

dimensional time, which was never documented in the literature. As the solution is
oscillatory (wave-like) and the nonlinear term (X 2) is associated with the nonlinear
feedback loop, it is suggested that the nonlinear feedback loop may act as a restoring
force. We then show that the competing impact of nonlinear restoring force and
linear (heating) force determines the partitions of the averaged available potential10

energy from Y and Z modes, respectively, denoted as APEY and APEZ . Based on
the energy analysis, an energy cycle with four different regimes is identified with the
following four points: A(X ,Y ) = (0,0), B = (Xt,Yt), C = (Xm,Ym), and D = (Xt,−Yt). Point
A is a saddle point. The initial perturbation (X ,Y ,Z) = (0,1,0) gives (Xt,Yt) = (

√
2σr ,r)

and (Xm,Ym) = (2
√
σr ,0). σ is the Prandtl number, and r is the normalized Rayleigh15

number. The energy cycle starts at (near) point A, A+ = (0,0+) to be specific, goes
through B, C, and D, and returns back to A, i.e., A− = (0,0−). From point A to point
B, denoted as Leg A–B, where the linear (heating) force dominates, the solution X
grows gradually with {KE ↑, APEY ↓, APEZ ↓}. KE is the averaged kinetic energy. We
use the upper arrow (↑) and down arrow (↓) to indicate an increase and decrease,20

respectively. In Leg B–C (or C–D) where nonlinear restoring force becomes dominant,
the solution X increases (or decreases) rapidly with {KE ↑, APEY ↑, APEZ ↓} (or {KE ↓,
APEY ↓, APEZ ↑}). In Leg D–A, the solution X decreases slowly with {KE ↓, APEY ↑,
APEZ ↑}. As point A is a saddle point, the aforementioned cycle may be only half of
a “big” cycle, displaying the wing pattern of a glasswinged butterfly, and the other half25

cycle is antisymmetric with respect to the origin, namely B = (−Xt,−Yt), C = (−Xm,0),
and D = (−Xt,Yt).
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1 Introduction

It has been fifty years since Lorenz published his breakthrough modeling study (Lorenz,
1963) which has changed the view on the predictability of weather and climate
(Solomon et al., 2007) and later laid the foundation for chaos theory (e.g., Gleick,
1987; Anthes, 2011). His model with three Fourier modes, which represent the solution5

to the 2-D Rayleigh–Benard equation (Saltzman, 1962; Lorenz, 1963), is referred to
as the three-dimensional Lorenz model (3DLM). We use 3D-NLM to refer to as the
non-dissipative version which will be introduced later. It is now accepted that weather
is chaotic with a finite predictability and that the source of chaos is nonlinearity. As
the degree of nonlinearity is finite in the 3DLM, the impact of increased nonlinearity10

on systems’ solutions and/or their stability has been studied using the generalized
LMs with additional Fourier modes (e.g., Curry, 1978; Curry et al., 1984; Howard and
Krishnamurti, 1986; Hermiz et al., 1995; Thiffeault and Horton, 1996; Musielak et al.,
2005; Roy and Musielak, 2007a). As compared to the 3DLM, some of the generalized
LMs suggested larger Rayleigh number values (or heating parameters) for the onset15

of chaos, while the other showed smaller values. This discrepancy may be attributed
to different mode truncations (e.g., Curry et al., 1984; Thiffeault and Horton, 1996;
Roy and Musielak, 2007a, b, c; Shen, 2014a, b) that lead to the different degree of
nonlinearity and different systems whose energy may be or may not be conserved
(e.g., Roy and Musielak, 2007a). Among the studies with the generalized LMs, the20

pioneering study of Prof. Curry (Curry et al., 1984) suggested that chaotic responses
disappeared when sufficient modes were included. Recent studies by Prof. Musielak
and his colleagues (Musielak et al., 2005; Roy and Musielak, 2007a, b, c) examined
the transition to chaos and fractal dimensions of generalized LMs, and emphasized
the importance of proper mode truncation in the energy conservation. A more recent25

study (Shen, 2014a) discussed the importance of proper Fourier mode selection in
extending the nonlinear feedback loop of the 3DLM. The feedback loop is defined
as a pair of downscale and upscale transfer processes associated with the Jacobian
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function (in Eq. 2). It was suggested that the original feedback loop may help stabilize
the solution for 1 < r < 24.74 in the 3DLM and that the extended nonlinear feedback
loop in a five-dimensional LM (5DLM) can provide negative nonlinear feedback to
produce non-trivial stable critical points when 1 < r < 43.5. It was then hypothesized
that a system’s stability can be improved further with more modes that can provide5

negative nonlinear feedback. While the impact of the increased degree of nonlinearity
with more Fourier modes is important and studies are being conducted, the competing
role of the nonlinear terms with the linear (heating) term and/or dissipative terms
deserves to be examined to understand the conditions under which the nonlinear
processes may lead to stable or chaotic solutions.10

It has been shown (e.g., Roupas, 2012) that the 3DLM in the dissipative limit, which
is referred to as the 3D-NLM, contains two conserved quantities that represent the
conservation of (KE+PE) and (KE+APE), respectively. Here, KE, PE, and APE are
the domain-averaged kinetic energy, potential energy and available potential energy,
respectively. These two quantities are related to the Nambu Hamiltonians. (Nambu,15

1973; Nevir and Blender, 1994; Floratos, 2011; Roupas, 2012; Blender and Lucarini,
2013). As a result of the conservation properties, the collective impact of the nonlinear
feedback loop and linear (heating) term may effectively act as a “restoring” force. The
simplicity of the 3D-NLM enables us to examine how the nonlinear feedback loop
and linear (heating) term work together to produce oscillatory solutions (in the phase20

space). This will be addressed in conjunction with how the available potential energy
are partitioned among two different Fourier modes, one of which (Z) is included to
enable the nonlinear feedback loop.

The paper is organized as follows. In Sect. 2, we present the governing equations
and the 3D-NLM, introduce the nonlinear feedback loop, and derive the energy25

conservation laws. In Sect. 3, we illustrate the role of nonlinear terms in playing
a restoring force and present an energy cycle with four regimes based on the tendency
of KE and the partition of APE at different scales. Concluding remarks are given near
the end.
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2 Governing equations and the non-dissipative Lorenz model

The following governing equations for a 2D (x,z), Boussinesq flow are introduced
to derive the non-dissipative Lorenz model (3D-NLM) and calculate its kinetic and
potential energy

∂
∂t

∇2ψ = −J(ψ ,∇2ψ)+gα
∂θ
∂x

+�
��ν∇4ψ , (1)5

∂θ
∂t

= −J(ψ ,θ)+
∆T
H
∂ψ
∂x

+���κ∇2θ, (2)

where ψ is the streamfunction that gives the u = −ψz and w = ψx, which represent the
horizontal and vertical velocity perturbations, respectively, and θ is the temperature
perturbation. ∆T represents the temperature difference at the bottom and top10

boundaries. The constants, g, α, ν, and κ denote the acceleration of gravity,
the coefficient of thermal expansion, the kinematic viscosity, and the thermal
diffusivity, respectively. The Jacobian of two arbitrary functions is defined as J(A,B) =
(∂A/∂x)(∂B/∂z)− (∂A/∂z)(∂B/∂x). The crossout symbol indicates the negligence of
a term in the dissipationless limit. Equations (1) and (2) with the dissipative terms were15

first used in Saltzman (1962) and Lorenz (1963).
The non-dissipative Lorenz model (3D-NLM) is written as:

dX
dτ

= σY , (3)

dY
dτ

= −XZ + rX , (4)

dZ
dτ

= XY . (5)20

Here (X ,Y ,Z) represent the amplitude of the Fourier modes. τ = κ(1+a2)(π/H)2t is
the dimensionless time. a is a ratio of the vertical scale of the convection cell to
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its horizontal scale. H is the domain height, and 2H/a represents the domain width.
σ = ν/κ (the Prandtl number), and r = Ra/Rc (the normalized Rayleigh number, or the
heating parameter). Ra is the Rayleigh number, Ra = gαH

3∆T/νκ and Rc is its critical
value for the free-slip Rayleigh–Benard problem, Rc = π

4(1+a2)3/a2. The “forcing”
terms on the right-hand side of Eqs. (4) and (5) are referred to as a linear force or5

heating term (rX ) and nonlinear force terms (−XZ and XY ).
The 3D-NLM is integrated forward in time with the Runge–Kutta scheme. Without

loss of generality, we only chose two different values of the normalized Rayleigh
number r (r = 25, and r = 45) with other parameters kept as constant, including σ = 10
and a = 1/

√
2. A dimensionless time interval (4τ) of 0.01 is used, and a total number10

of time steps is 10 000, giving a total dimensionless time (τ) of 100. A smaller τ is used
to improve accuracy in Figs. 1 and 2. Initial conditions are given as

(X ,Y ,Z) = (0,1,0). (6)

These settings were used to examine the stability of the 5DLM in Shen (2014a, b)
which also discussed the dependence of solution on different r and σ.15

2.1 The nonlinear feedback loop and energy conservation laws

It has been shown that the nonlinear terms in the 3D-NLM (and 3DLM) are from the
Jacobian term J(ψ ,θ) in Eq. (2). The nonlinear interaction of two wave modes via the
Jacobian term can generate or impact a third wave mode through a downscale (or
upscale) transfer process; its subsequent upscale (or downscale) transfer process can20

provide feedback to the incipient wave mode(s). It was illustrated (Shen, 2014a) that
XY and −XZ represent the downscale and upscale transfer processes, respectively,
forming a nonlinear feedback loop. The feedback loop can be extended as new modes
are properly included. In the following, we discuss the role of the nonlinear feedback
loop of the 3D-NLM in the energy conservations and partition of available potential25

energy, which in turn help produce oscillatory solutions.
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The domain-averaged kinetic energy (KE), potential energy (PE), and available
potential energy (APE) are defined as follows (e.g., Thiffeault and Horton, 1996;
Blender and Lucarini, 2013; Shen, 2014a, b):

KE =
1
2

2H/a∫
0

H∫
0

(u2 +w2)dzdx, (7)

PE = −
2H/a∫
0

H∫
0

gα(zθ)dzdx, (8)5

APE = −
gαH
2∆T

2H/a∫
0

H∫
0

(θ)2dzdx. (9)

Through straightforward derivations, we obtain the following:

KE =
Co
2
X 2, (10)

PE = −CoσZ , (11)10

APE = −
Co
2
σ
r

(Y 2 +Z2), (12)

here Co = π
2κ2
(

1+a2

a

)3
. APE is non-negative, as any perturbation reduces the energy

transformable to KE.
Equations (10) and (11) lead to15

KE+PE = Co

(
X 2

2
−σZ

)
= C1, (13)
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while Eqs. (10) and (12) give

KE+APE =
Co
2

(
X 2 − σ

r
(Y 2 +Z2)

)
= C2. (14)

With Eqs. (3)–(5), the time derivative of both Eqs. (13) and (14) is zero, so these two
equations present the energy conservations. Both C1 and C2 are constants and are5

determined by the initial conditions. Thus, if we express Z and Y 2 as functions of X ,
they are single valued. To facilitate our discussions, the contribution to the APE from an
individual mode is defined as APEI = −CoσI

2/2r , here I = Y or Z . Therefore, APE =
APEY +APEZ . Note that Eqs. (13) and (14) are related to the two Nambu Hamiltonians,
C = −X 2/2+σZ and H = Y 2/2+Z2/2− rZ (Nambu, 1973; Nevir and Blender, 1994;10

Floratos, 2011; Roupas, 2012; Blender and Lucarini, 2013).
From the initial conditions in Eq. (6), we have C1 = 0 and C2/Co = −σ/2r , the latter

of which is −0.2 for r = 25 and −0.11 for r = 45. Figure 1 shows the time evolution
of the conserved quantities: (KE+PE) and (KE+APE) in Eqs. (13) and (14) from the
3D-NLM. At a larger r (e.g., r = 45), a finer 4τ is required to improve the numerical15

accuracy of simulated total energy (Fig. 1c). In this study, unless stated otherwise, C1
and C2 are assumed to be zero.

3 Discussions

In this section, we discuss the competing role of the nonlinear terms and the linear
forcing term in the transient solutions and the energy cycle of the the 3D-NLM. From20

Eqs. (3), (4), and (13), we obtain

d2X
dτ2

+M2X = 0, (15a)
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and

M2 =
X 2

2
−
(
σr +

C1

Co

)
. (15b)

The three terms on the right-hand side of Eq. (15b) represent the impact of nonlinearity,
linear (heating) force and initial conditions, respectively. Their competing impact (i.e.,5

their differences) determines the sign ofM2, and thus the characteristics of the solution.
Based on the relative magnitude of the initial state which may lead to (σr +C1/Co) ≤ 0
or > 0, two types of solutions can be identified (Roupas, 2012). The characteristics of
the two-type solutions are discussed using the selected ICs, giving C1 = 0, in Sects. 3.2
and 3.3, respectively. To understand the role of the nonlinear terms (i.e., the nonlinear10

feedback loop), we begin our discussions with solving the solution to the equation with
no nonlinear terms.

3.1 Linear solutions with M2 = −σr

Assuming no nonlinear terms in the 3D-NLM, we have two equations: dX/dτ = σY and
dY/dτ = rX and only one conservation law, as follows:15

KE+APE =
Co
2

(
X 2 − σ

r
Y 2
)
= C2. (16)

This linear case givesM2 = −σr , and Eq. (15) becomes d2X/dτ2−σrX = 0. Therefore,
the solution is

X = X1e
−
√
σrτ +X2e

+
√
σrτ, (17)20

here, X1 and X2 are constant coefficients. The origin, (X ,Y ) = (0,0), is a saddle
point, and the trajectory is hyperbolic with solutions exhibiting exponential growth
and decay. The initial condition, which determines dX/dY (= σY/rX ), can help select
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the proper mode(s). For example, (X ,Y ) = (
√
σ/r ,1) only gives the growing mode

with (X1,X2) = (0,
√
σ/r), while (X ,Y ) = (

√
σ/r ,−1) leads to the decaying mode with

(X1,X2) = (
√
σ/r ,0). The former and latter show the properties of the unstable and

stable manifolds, respectively (Ide et al., 2002). In the nonlinear case, a “current”
state may vary with time, so either mode may appear at different stages, as shown5

in Sect. 3.3. Based on Eqs. (16) and (17), although the time change of (KE+APE)
remains zero, the KE produced with only the linear (heating) force has no upper limit.
This could violate the linear assumption, and thus nonlinearity should be included.

3.2 Nonlinear solutions with M2 = X2/2 and nonlinear restoring force

Here, we consider a special case with r = 0, leading to M2 = X 2/2. Thus, Eq. (15)10

becomes

d2X
dτ2

+
X 2

2
X = 0. (18)

As compared to the case with r 6= 0 in Eqs. (13) and (14), the energy conservation laws
with r = 0 are:15

X 2

2
−σZ = 0, (19)

Y 2 +Z2 = 1, (20)

which in turn leads to

Y 2 +
X 4

4σ2
= 1. (21)20
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The solutions to the above equation are:

X 2 = 2σ sin(φ), (22a)

Y = cos(φ), (22b)

Z = sin(φ), (22c)
5

where the phase function φ can be determined from Eqs. (18) and (22a) and is written
as

φ =

τ∫
0

Xdτo, (23a)

which can be also displayed as10

φ =

τ∫
0

τ∫
0

σY dτ1dτ2. (23b)

To illustrate the solution’s characteristics, Eqs. (22b) and (23b) are solved using the
following iterated method:

Yn = cos(φn), n = 0,1,2 . . .N (24a)15

φn+1 =

τ∫
0

τ∫
0

σYndτ1dτ2, (24b)

here N is the number of iterations. During a period of time, an initial guess for the phase
function is given as φ0(τ) = τ. We insert the first phase function φ0 into Eq. (24a)
to obtain Y0, and then calculate the next phase function φ1 using Y0 and Eq. (24b).20

The integral of Eq. (24b) is calculated using the trapezoidal rule. We then repeat the
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above calculations for N times. Numerical results with N = 100 are shown in Fig. 2. The
phase function oscillates with time and varies between 0 and π, which is consistent
with Eq. (22a) as a result of sin(φ) ≥ 0. Therefore, the solution to Eq. (18) is oscillatory
instead of growing or decaying exponentially (shown in Fig. 2b and c). It is suggested
that the nonlinear term in Eq. (18) may be viewed as a nonlinear restoring force. This is5

consistent with the view (Shen, 2014a) that the pair of the nonlinear terms (−XZ and
XY ), leading to the nonlinear term (X 2/2), can form a nonlinear feedback loop in the
3DLM. As a result of the simple method for the integral calculation, a fine 4τ may be
required to obtain accurate resolutions. This is shown by the red and green lines for
the results with 4τ = 0.0001 and 0.01, respectively (see Fig. 2a).10

To verify the integral form of the solutions in Eq. (24a) and (24b), the numerical
solutions of the 3D-NLM with r = 0 (e.g., Eqs. 3–5) are shown in Fig. 3. In panel (a), the
blue “dot” shows the initial temporal evolution of the phase function that is calculated
by performing time integration of X using Eq. (23a) where X is from the 3D-NLM, while
the red line shows the phase function calculated with Eq. (24a) and (24b). They are in15

good agreement. The simulated trajectories in the X–Y and X–Z sections are elliptic
and parabolic (Fig. 3b and c), respectively, which are consistent with the analytical
relations in Eqs. (21) and (19), respectively. Figure 3d shows the time evolution of
oscillatory Y (red) and X (blue), which are consistent with the results in Fig. 2b and c,
respectively.20

3.3 Nonlinear solutions with M2 = X2/2−σr and an energy cycle

In the previous sections, we have illustrated the individual impact of the linear
(heating) force and nonlinear feedback loop using the cases with M2 < 0 and M2 ≥
0, respectively, neither of which change the sign during the integration. Here, we
consider the general case with M2 = (X 2/2−σr), whose sign may vary during the25

time integration, depending on the relative magnitude of the nonlinearity and the linear
(heating) force. M2 has two zeros at X = ±Xt and Xt =

√
2σr , which are called turning

points. Based on the analysis with the WKB approximation (Bender and Orszag, 1978),
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there appears to be a growing or decaying solution for |X | < Xt and an oscillatory (wave-
like) solution for |X | > Xt. The former is impacted largely by the linear (heating) force
while the latter by the nonlinear restoring force. Additional analyses are given below.

Equations (13) and (14) with C2 ≈ 0 gives:

Y 2 =
1

σ2

(
σrX 2 − X

4

4

)
. (25)5

Y 2 ≥ 0 leads to |X | ≤ 2
√
σr , which gives a maximum of X (Xmax = 2

√
σr). Taking the

partial derivative of Eq. (25) with respect to X tells us that Y has extrema when
X = ±

√
2σr = ±Xt. At X = ±Xt, we observe Z = r and Y = ±r from Eqs. (13) and (14),

respectively, and thus APEY=APEZ , namely equal contributions to APE from Y and Z10

modes. Furthermore, Eq. (25) suggests that Y 2 increases initially in association with
the increase of X 2 but later decreases in association with the increase of X 4. The
former is consistent with the linear case in Eq. (16), while the latter is consistent with
the simplified nonlinear case in Eqs. (19) and (20). The distribution of Y as a function
of X (i.e., Eq. 25) with the aforementioned four points is shown in Fig. 4. The energy15

cycle starts at point A, goes through B, C, and D, and returns back to A. The segment
from point P to point Q is denoted as Leg P –Q, here P and Q are either one of
the following: A(X ,Y ) = (0,0), B = (Xt,Yt), C = (Xm,Ym), and D = (Xt,−Yt). Point A is
a saddle point as discussed in Sect. 3.1. The initial perturbation (X ,Y ,Z) = (0,1,0)
gives (Xt,Yt) = (

√
2σr ,r) and (Xm,Ym) = (2

√
σr ,0). The analysis is then inter-compared20

with the numerical results of the 3D-NLM below.
With the selected ICs, Fig. 5a shows the big cycle with two “small cycles” that are

anti-symmetric with respect to the saddle point A. The big cycle resembles the wing of
a glasswinged butterfly. The right-hand side wing shares the same characteristics as
the cycle in Fig. 4, while the left-hand side wing is antisymmetric with respect to the25

origin. While the trajectories in X–Y are shown in Fig. 5a, the distribution of the APEY
and APEZ as a function of X is shown in Fig. 5c. From the perspective of the APE
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partition, the APEY (red) dominates in Leg A–B (D–A) while APEZ dominates in Leg
B–C (C–B) where nonlinearity is stronger. Alternatively, KE is converted predominantly
from APEY when X 2 is small, and it is mainly converted from APEZ when X 2 is large.
Therefore, the inclusion of Z mode can lead to the oscillatory solution by enabling the
partition of APE on different scales at different stages (i.e., linear and nonlinear stages).5

Figure 6 shows time evolution of APEY and APEZ . The energy cycle starts at (near)
point A, A+ = (0,0+) to be specific, goes through B, C, and D, and returns back to A,
i.e., A− = (0,0−). In Leg A–B, where the linear (heating) force dominates, the solution
X grows gradually with {KE ↑, APEY ↓, APEZ ↓} and |APEY | > |APEZ |. In Leg B–C (or
C–D) where nonlinear restoring force becomes dominant, the solution X increases10

(or decreases) rapidly with {KE ↑, APEY ↑, APEZ ↓} (or {KE ↓, APEY ↓, APEZ ↑}) and
|APEY | < |APEZ |. In Leg D–A, the solution X decays slowly with {KE ↓, APEY ↑, APEZ ↑}
and |APEY | > |APEZ |. After the trajectory returns back to point A−, it may experience
another small cycle, going to B−, C−, and D−, and returning back to point A+. Here,
B− = (−Xt,−Yt), C

− = (−Xm,Ym), and D− = (−Xt,Yt). The two “small cycles” form the big15

cycle, which resembles the wing of a glasswinged butterfly, and the time evolution of
energy is the same for both wings.

4 Concluding remarks

Over 50 years ago, Lorenz showed that chaos may appear in the presence of
nonlinearity using the forced, dissipative Lorenz mode, suggesting that nonlinearity20

may be the source of chaos. In this study, we discussed how nonlinearity may
act as a restoring force to produce oscillatory solutions using the non-dissipative
Lorenz model (3D-NLM). We first presented the closed-form solution of the nonlinear
equation d2X/dτ2 + (X 2/2)X = 0, which is derived from the 3D-NLM with r = 0.
The corresponding solution is oscillatory (wave-like) and the nonlinear term (X 2)25

is associated with the nonlinear feedback loop. Therefore, it is suggested that the
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nonlinear feedback loop may act as a restoring force. To our best knowledge, these
(i.e., the closed-form solution) have not been documented in the literature. Compared
to the linear system, the inclusion of Z mode in the 3D-NLM not only introduces
more APE to be transferred to KE but also limits KE to be finite. We illustrated that
the relative impact of nonlinear restoring force and linear (heating) force determines5

the partitions of the averaged available potential energy associated with the Y and
Z modes, respectively. Based on the energy analysis, an energy cycle with four
different regimes is identified with the following four points: A(X ,Y ) = (0,0), B = (Xt,Yt),
C = (Xm,Ym), and D = (Xt,−Yt). With the initial perturbation (X ,Y ,Z) = (0,1,0), we have
(Xt,Yt) = (

√
2σr ,r) and (Xm,Ym) = (2

√
σr ,0). The energy cycle may start at (near) point10

A, goes through B, C, and D, and returns back to A. As point A is a saddle point,
the “cycle” is only half of the big cycle, which resembles the wing of the glasswinged
butterfly. A summary on the energy cycle and the big cycle is given near the end of
Sect. 3. The dependence of solutions on initial perturbations (i.e., Hamiltonian chaos)
in the conservative 3D-NLM is being examined, and will be compared to that in the15

3DLM to understand the role of the dissipative terms in solutions’ stability.
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Figure 1: Time evolution of (KE+PE) and (KE+APE) from the 3D-NLM and 5D-NLM. Panels (a) and (b) are
for r = 25, and r = 45, respectively. Results from the 5D-NLM are presented to show the dependence of (spatial)
resolutions. In comparison, (c) shows the dependence of the temporal resolution with △τ = 0.0001. All fields are

normalized by the constant Co (=π2κ2( 1+a
2

a
)3).

Fig. 1. Time evolution of (KE+PE) and (KE+APE) from the 3D-NLM and 5D-NLM (Shen,
2014b). Panels (a) and (b) are for r = 25, and r = 45, respectively. Results from the 5D-NLM
are presented to show the dependence of (spatial) resolutions. In comparison, (c) shows
the dependence of the temporal resolution with ∆τ = 0.0001. All fields are normalized by the

constant Co

(
= π2κ2

(
1+a2

a

)3
)

.
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Figure 2: Solutions of Eqs. 24ab with the iterated method. (a) The phase function(φ) with △τ = 0.01 (green)
△τ = 0.0001 (red) (Eq. 24b) (b) Y = cos(φ) (Eq. 22b) and (c) X2 = 2σsin(φ). (Eq. 22a). (d) The phase
function with a different value of σ (=20).

Fig. 2. Solutions of Eq. (24a) and (24b) with the iterated method. (a) The phase function (φ) with
∆τ = 0.01 (green) ∆τ = 0.0001 (red) (Eq. 24b), (b) Y = cos(φ) (Eq. 22b) and (c) X 2 = 2σ sin(φ).
(Eq. 22a). (d) The phase function with a different value of σ (= 20).
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Figure 3: Solutions from the 3D-NLM (Eqs. 3-5) with r=0. (a) A comparison of the phase functions, which are
calculated from the 3D-NLM (blue dot) and Eqs. 24ab (red). (b) X-Y plot. (c) X-Z plot. (d) Time evolution of
X (blue) and Y (red).

Fig. 3. Solutions from the 3D-NLM (Eqs. 3–5) with r = 0. (a) A comparison of the phase
functions, which are calculated from the 3D-NLM (blue dot) and Eq. (24a) and (24b) (red).
(b) X–Y plot. (c) X–Z plot. (d) Time evolution of X (blue) and Y (red).
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Figure 4: An energy cycle in the 3D non-dissipative Lorenz model (3D-NLM) as shown in the X-Y plot. The four
points with the selected ICs are identified as follows: A(X,Y)=(0,0), B=(

√
2σr, r), C=(2

√
σr, 0), and D=(

√
2σr,

-r). (σ, r)=(10, 25). The energy cycle starts at (near) point A, A+ = (0, 0+) to be specific, goes through B, C,
and D, and returns back close to A, i.e., A− = (0, 0−). KE increases as APE decreases along the upper curve
(Legs A-B and B-C) and KE decreases as APE increases along the lower curve (Legs C-D and D-A). From a
perspective of potential energy partition, |APEY | ≥ |APEZ | in Legs A-B and D-A where linear force dominates,
and |APEY | ≤ |APEZ | in Legs B-C and C-D where nonlinear restoring force dominates.

Fig. 4. An energy cycle in the 3-D non-dissipative Lorenz model (3D-NLM) as shown in the
X–Y plot. The four points with the selected ICs are identified as follows: A(X ,Y ) = (0,0), B =
(
√

2σr ,r), C = (2
√
σr ,0), and D = (

√
2σr ,−r). (σ,r) = (10,25). The energy cycle starts at (near)

point A, A+ = (0,0+) to be specific, goes through B, C, and D, and returns back close to A, i.e.,
A− = (0,0−). KE increases as APE decreases along the upper curve (Legs A–B and B–C)
and KE decreases as APE increases along the lower curve (Legs C–D and D–A). From a
perspective of potential energy partition, ‖APEY ‖ ≥ ‖APEZ‖ in Legs A–B and D–A where linear
force dominates, and ‖APEY ‖ ≤ ‖APEZ‖ in Legs B–C and C–D where nonlinear restoring force
dominates.
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Figure 5: Solutions from the 3D-NLM (Eqs. 3-5). (a) X-Y plot. (b) X-Z plot. (c) X-APE plot. The black, red,
blue lines show normalized −KE, APEY and APEZ , respectively. Green lines are plotted at X = ±Xt = ±

√
2σr

where Y 2 = Z2.

Fig. 5. Solutions from the 3D-NLM (Eqs. 3–5). (a) X–Y plot. (b) X–Z plot. (c) X -APE plot. The
black, red, blue lines show normalized −KE, APEY and APEZ , respectively. Green lines are
plotted at X = ±Xt = ±

√
2σr where Y 2 = Z2.
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Figure 6: Time evolution of the KE and APE in the 3D-NLM (Eqs. 13-14). While the black open circles display
KE, the red, blue and green lines show −APEY , −APEZ and KE + APE, respectively. All of the fields are
normalized by Co. The gray line is plotted at a value of σr/2, which is equal to −APEY /Co and −APEZ/Co at
X = Xt. These panels show that solutions are oscillatory and periodic.

Fig. 6. Time evolution of the KE and APE in the 3D-NLM (Eqs. 13 and 14). While the black
open circles display KE, the red, blue and green lines show −APEY , −APEZ and KE+APE,
respectively. All of the fields are normalized by Co. The gray line is plotted at a value of σr/2,
which is equal to −APEY /Co and −APEZ/Co at X = Xt. These panels show that solutions are
oscillatory and periodic.
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