
NPGD
1, 1691–1713, 2014

Statistical
optimization for
passive scalar

transport

M. Mihelich et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Nonlin. Processes Geophys. Discuss., 1, 1691–1713, 2014
www.nonlin-processes-geophys-discuss.net/1/1691/2014/
doi:10.5194/npgd-1-1691-2014
© Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Nonlinear Processes
in Geophysics (NPG). Please refer to the corresponding final paper in NPG if available.

Statistical optimization for passive scalar
transport: maximum entropy production
vs. maximum Kolmogorov–Sinay entropy

M. Mihelich1, D. Faranda2, B. Dubrulle1, and D. Paillard2

1Laboratoire SPHYNX, CEA/IRAMIS/SPEC, CNRS – URA2464, 91191 Gif-sur-Yvette, France
2Laboratoire des Sciences du Climat et de l’Environnement, IPSL, Orme des Merisiers,
91191 Gif-sur-Yvette, France

Received: 18 September 2014 – Accepted: 27 October 2014 – Published: 18 November 2014

Correspondence to: M. Mihelich (martin.mihelich@ens.fr)
and B. Dubrulle (berengere.dubrulle@cea.fr)

Published by Copernicus Publications on behalf of the European Geosciences Union & the
American Geophysical Union.

1691

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1691/2014/npgd-1-1691-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1691/2014/npgd-1-1691-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 1691–1713, 2014

Statistical
optimization for
passive scalar

transport

M. Mihelich et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

We derive rigorous results on the link between the principle of maximum entropy pro-
duction and the principle of maximum Kolmogorov–Sinai entropy using a Markov model
of the passive scalar diffusion called the Zero Range Process. We show analytically
that both the entropy production and the Kolmogorov–Sinai entropy seen as functions5

of f admit a unique maximum denoted fmaxEP
and fmaxKS

. The behavior of these two
maxima is explored as a function of the system disequilibrium and the system reso-
lution N. The main result of this article is that fmaxEP

and fmaxKS
have the same Taylor

expansion at first order in the deviation of equilibrium. We find that fmaxEP
hardly de-

pends on N whereas fmaxKS
depends strongly on N. In particular, for a fixed difference10

of potential between the reservoirs, fmaxEP
(N) tends towards a non-zero value, while

fmaxKS
(N) tends to 0 when N goes to infinity. For values of N typical of that adopted

by Paltridge and climatologists (N ≈10∼100), we show that fmaxEP
and fmaxKS

coincide
even far from equilibrium. Finally, we show that one can find an optimal resolution N∗
such that fmaxEP

and fmaxKS
coincide, at least up to a second order parameter propor-15

tional to the non-equilibrium fluxes imposed to the boundaries. We find that the optimal
resolution N∗ depends on the non equilibrium fluxes, so that deeper convection should
be represented on finer grids. This result points to the inadequacy of using a single
grid for representing convection in climate and weather models. Moreover, the applica-
tion of this principle to passive scalar transport parametrization is therefore expected20

to provide both the value of the optimal flux, and of the optimal number of degrees of
freedom (resolution) to describe the system.

1 Introduction

A major difficulty in the modeling of nonlinear geophysical or astrophysical processes
is the taking into account of all the relevant degrees of freedom. For example, fluid25

motions obeying Navier–Stokes equations usually require of the order of N = Re9/4
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modes to faithfully describe all scales between the injection scale and the dissipative
scale (Frisch, 1995). In atmosphere, or ocean, where the Reynolds number exceeds
109, this amount to N = 1020, a number to large to be handled by any existing comput-
ers (Wallace and Hobbs, 2006). The problem is even more vivid in complex systems
such as planetary climate, where the coupling of lito-bio-cryo-sphere with ocean and5

atmosphere increases the number of degrees of freedom beyond any practical fig-
ure. This justifies the long historical tradition of parametrization and statistical model
reduction, to map the exact equations describing the system onto a set of simpler
equations involving few degrees of freedom. The price to pay is the introduction of free
parameters, describing the action of discarded degrees of freedom, that needs to be10

prescribed.
When the number of free parameters is small, their prescription can be successfully

done empirically through calibrating experiments or by a posteriori tuning (Rotstayn,
2000). When the number of parameters is large, such as in climate models where it
reaches several hundreds (Yang et al., 2012), such empirical procedure is inapplica-15

ble, because it is impossible to explore the whole parameter space. In that respect, it
is of great interest to explore the alternate road to parametrization via application of
a statistical optimization principle, such as minimizing or maximizing of a suitable cost
functional. As discussed by Turkington (2013), this strategy usually leads to closed re-
duced equations with adjustable parameters in the closure appearing as weights in the20

cost functional and can be computed explicitly. A famous example in climate is given
by a principle of maximum entropy production (MEP) that allowed Paltridge (1975) to
derive the distribution of heat and clouds at the Earth surface with reasonable ac-
curacy, without any parameters and with a model of a dozen of degrees of freedom
(boxes). Since then, refinements of Paltrige model have been suggested to increase25

its generality and range of prediction (Herbert et al., 2011). Rigorous justifications of
its application have been searched using e.g. information theory (Dewar, 2003) with-
out convincing success. More recently, we have used the analogy of the climate box
model of Paltridge with the asymmetric exclusion Markov process (ASEP) to establish
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numerically a link between the MEP and the principle of maximum Kolmogorov–Sinai
entropy (MKS) (Mihelich et al., 2014). The MKS principle is a relatively new concept
which extends the classical results of equilibrium physics Monthus (2011). This prin-
ciple applied to Markov Chains provides an approximation of the optimal diffusion co-
efficient in transport phenomena (Gómez-Gardeñes and Latora, 2008) or simulates5

random walk on irregular lattices (Burda et al., 2009). It is therefore a good candidate
for a physically relevant cost functional in passive scalar modeling.

The goal of the present paper is to derive rigorous results on the link between MEP
and MKS using a Markov model of the passive scalar diffusion called the Zero Range
Process (Andjel, 1982). We find that there exists an optimal resolutionN∗ such that both10

maxima coincide to second order in the distance to equilibrium. The application of this
principle to passive scalar transport parametrization is therefore expected to provide
both the value of the optimal flux, and of the optimal number of degrees of freedom
(resolution) to describe the system. This suggests that the MEP and MKS principle
may be unified when the Kolmogorov–Sinai entropy is defined on opportunely coarse15

grained partitions.

2 From passive scalar equation to ZRP model

The equation describing the transport of a passive scalar like temperature in a given
velocity field u(x,t) reads:

∂tT +u∇T = κ∆T , (1)20

with appropriate boundary conditions. Here κ is the diffusivity. To solve this equation,
one must know both the velocity field and the boundary conditions, and use as many
number of modes as necessary to describe all range of scales up to the scales at

which molecular diffusivity takes place i.e. roughly (RePr)3/2 modes, where Re is the
Reynolds number of the convective flow, and Pr is its Prandtl number. In geophysical25

flows, this number is too large to be handled even numerically (Troen and Mahrt, 1986).
1694
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Moreover, in typical climate studies, the velocity flow is basically unknown as it must
obey a complicated equation involving the influence of all the relevant climate com-
ponents. In order to solve the equation, one must necessarily prescribe the heat flux
f = −u+ κ∇T . The idea of Paltridge was then to discretize the passive scale equation
in boxes and prescribe the heat flux fi j between boxes i and j by maximizing the as-5

sociated thermodynamic entropy production Ṡ =
∑
i fi j/Ti . Here, we slightly modify the

Paltridge discretization approximation to make it amenable to rigorous mathematical
results on Markov Chains. For simplicity, we stick to a one dimensional case (corre-
sponding to boxes varying only in latitude) and impose the boundary conditions through
two reservoirs located at each end of the chain (mimicking the solar heat flux at pole10

and equator). We consider a set of N boxes that can contain an arbitrary number n ∈N
of particles. We then allow transfer of particles in between two adjacent boxes via decor
related jumps (to the right or to the left) following a 1-D Markov dynamics governed by
a coupling with the two reservoirs imposing a difference of chemical potential at the
ends. The resulting process is called the Zero Range Process (Andjel, 1982). The dif-15

ferent jumps are described as follow. At each time step a particle can jump right with
probability pwn or jump left with probability qwn. wn is a parameter depending of the
number of particles inside the box. Physically it represents the interactions between
particles. At the edges of the lattice the probability rules are different: At the left edge
a particle can enter with probability α and exit with probability γwn whereas at the right20

edge a particle can exit with probability βwn and enter with probability δ. Choices of
different wn give radically different behaviors. For example wn = 1+b/n where b ≥ 0
described condensation phenomena (Großkinsky et al., 2003) whereas w1 = w and
wn = 1 if n ≥ 2 has been used to modeled road traffic. We will consider in this article
the particular case where w = 1 by convenience of calculation. Moreover without loss25

of generality we will take p ≥ q which corresponds to a particle flow from the left to
the right and note f = p−q. After a sufficiently long time the system reaches a non-
equilibrium steady state. The interest of this toy model is that it is simple enough so
that exact computations are analytically tractable.
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Taking the continuous limit of this process, it may be checked that the fugacity z,
which is related to the average particle density (see definition below), of stationary
solutions of a system consisting of boxes of size 1

N follows the continuous equation
(Levine et al., 2005) :

f
∂z
∂x
− 1

2N
∂2z
∂x2

= 0, (2)5

corresponding to stationary solution of a passive scalar equation with velocity f and
diffusivity 1

2N . Therefore, the fugacity of the Zero Range Process is a passive scalar
obeying a convective-diffusion equation. We thus see that f = 0 corresponds to a purely
conductive regime whereas the larger f the more convective the regime. In the se-
quel, we calculate the entropy production and the Kolmogorov–Sinai entropy function10

of f . These two quantities reach a maximum noted respectively fmaxEP
and fmaxKS

. The
MEP principle (resp. the MKS principle) states that the system will choose f = fmaxEP

(resp. f = fmaxKS
).

We will show first of all in this article that numerically fmaxEP
≈ fmaxKS

even far from
equilibrium for a number of boxes N roughly corresponding to the resolution taken by15

Paltridge (1975) in his climate model. This result is similar to what we found for the
ASEP model (Mihelich et al., 2014) and thus gives another example of a system in
which the two principles are equivalent. Moreover we will see analytically that fmaxEP

and fmaxKS
have the same behavior in first order in the difference of the chemical po-

tentials between the two reservoirs for N large enough. These results provide a better20

understanding of the relationship between the MEP and the MKS principles.

3 Notations and useful preliminary results

This Markovian Process is a stochastic process with a infinite number of states in
bijection with NN . In fact, each state can be written n = (n1,n2, . . .,nN ) where ni is the
number of particule lying in site i . We call Pn the stationnary probability to be in state25
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n. In order to calculate this probability it is easier to use a quantum formalism than
the Markovian formalism as explain in the following articles (Domb, 2000; Levine et al.,
2005).

The probability to find m particles in the site k is equal to: pk(nk =m) =
zmk
Zk

where
Zk is the analogue of the grand canonical repartition function and zk is the fugacity5

between 0 and 1. Moreover Zk =
∑∞
i=0z

i
k =

1
1−zk

. So, finally

pk(nk =m) = (1− zk)zmk . (3)

We can show that the probability P over the states is the tensorial product of the prob-
ability pk over the boxes:

P = p1 ⊗p2 ⊗ . . .⊗pN .10

Thus events (nk =m) and (n′k =m
′) for k 6= k′ are independent and so:

P (m1,m2, . . .,mN ) = p1(n1 =m1) · . . . ·pN (nN =mN ). (4)

So finally

P (m1,m2, . . .,mN ) =
N∏
k=1

(1− zk)zmk
k . (5)

Moreover, with the Hamiltonian equation we can find the exact values of zk function of15

the system parameters:

zk =

(p
q

)k−1
[(α+δ)(p−q)−αβ+γδ]−γδ +αβ

(p
q

)N−1

γ(p−q−β)+β(p−q+γ)
(p
q

)N−1
, (6)
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and the flux of particles c:

c = (p−q)
−γδ +αβ

(p
q

)N−1

γ(p−q−β)+β(p−q+γ)
(p
q

)N−1
. (7)

Finally, the stationary density is related to the fugacity by the relation:

ρk = zk
∂ logZk
∂zk

=
zk

1− zk
. (8)

3.1 Entropy production5

For a system subject to internal forces Xi and associated fluxes Ji the macroscopic
entropy production is well known (Balian, 1992) and takes the form:

σ =
∑
i

Ji ·Xi .

The Physical meaning of this quantity is a measure of irreversibility: the larger σ the
more irreversible the system.10

In the case of the zero range process irreversibility is created by the fact that p 6=
q. We will parametrize this irreversibility by the parameter f = p−q and we will take
p+q = 1. In the remaining of the paper, we take, without loss of generality, p ≤ q which
corresponds to a flow from right to left. Moreover, the only flux to be considered is here
the flux of particules c and the associated force is due to the gradient of the density of15

particules ρ : X = ∇ logρ.
Thus, when the stationary state is reach ie when c is constant:

σ =
N−1∑
i=1

c · (log(ρi )− log(ρi+1)) = c · (log(ρ1)− log(ρN )). (9)
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Thus, according to Eqs. (6)–(9) when N tends to +∞ we obtain:

σ(f ) =
αf
f +γ

(
log
(

α
f +γ −α

)
− log

(
(α+δ)f +γδ

f (β−α−δ)+βγ −γδ

))
. (10)

Because f ≥ 0 the entropy production is positive if and only if ρ1 ≥ ρN if z1 ≥ zN . This
is physically coherent because fluxes are in the opposite direction of the gradient. We
remark that if f = 0 then σ(f ) = 0. Moreover, when f increases ρ1(f ) decreases and5

ρ2(f ) increases till they take the same value. Thus it exists f , large enough, for which
σ(f ) = 0. Between these two values of f the entropy production has at least one maxi-
mum.

3.2 Kolmogorov–Sinai entropy

There are several ways to introduce the Kolmogorov–Sinai entropy which is a math-10

ematical quantity introduced by Kolmogorov and picked up by famous mathematician
as Sinai and Billingsley (Billingsley, 1965). Nevertheless, for a Markov process we can
give it a simple physic interpretation: the Kolmogorov–Sinai entropy is the time deriva-
tive of the Jaynes entropy (entropy over the path).

SJaynes(t) = −
∑
Γ[0,t]

pΓ[0,t]
· log
(
pΓ[0,t]

)
. (11)15

For a Markov Chain we have thus:

SJaynes(t)−SJaynes(t−1) = −
∑
(i ,j )

µistat
pi j log(pi j ), (12)

where µstat = µistat
i = 1. . .N is the stationary measure and where the pi j are the transi-

tion probabilities.
Thus the Kolmogorov–Sinai entropy takes the following form:20

hKS = −
∑
(i ,j )

µistat
pi j log(pi j ). (13)
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For the Zero Range Process, we show in appendix that it can be written as:

hKS =− (α logα+δ logδ +γ logγ +β logβ+ (N −1)(p log(p)+q log(q)))

+ (p log(p)+q log(q))
N∑
i=1

(1− zi )+ (γ log(γ)+p log(p))(1− z1)

+ (β log(β)+q log(q))(1− zN ). (14)

4 Results5

We will start first by pointing to some interesting properties of fmaxEP
and fmaxKS

, then by
presenting numerical experiments on the ZRP model and finally concluding with some
analytical computations.

Let us first note that for N,α,β,γ,δ fixed the entropy production as well as the Kol-
mogorov–Sinai entropy seen as functions of f admit both a unique maximum. When N10

tends to infinity and f = 0, using Eq. (6) (i.e. the symmetric case), we find that z1 =
α
γ

and zN = δ
β . Thus, the system is coupled with two reservoirs with respective chemical

potential αγ (left) and δ
β (right). For αγ 6=

δ
β the system is out of equilibrium. We assume,

without loss of generality, z1 ≥ zN which corresponds to a flow from left to right. As
a measure of deviation from equilibrium we take s = z1 − zN : the larger s, the more15

density fluxes we expect into the system.
First we remark that fmaxEP

hardly depends on N whereas fmaxKS
depends strongly on

N. This is easily understood because σ depends only on z1 and zN whereas hKS de-
pends on all the zi . Moreover, the profile of the zi depends strongly on N. In particular,
for a fixed difference of potential between the reservoirs , fmaxEP

(N) tends towards20

a non-zero value, while fmaxKS
(N) tends to 0 when N goes to infinity.

Moreover, fmaxEP
and fmaxKS

coincide even far from equilibrium for N corresponding
to the choice of Paltridge (1975) N ≈ 10 ∼ 100. for N fixed, as large as one wants, and
for all ε, as small as one wants, it exists ν such that for all s ∈ [0;ν] |fmaxEP

− fmaxKS
| ≤ ε.
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These observations are confirmed by the results presented in Fig. 1 where EP and
KS are calculated using Eqs. (6) and (14) for s = 0.13 and three different partitions:
N = 20 N = 100 and N = 1000. The figure shows that fmaxEP

and fmaxKS
coincide with

good approximation for N = 20 and N = 100. But then when N increases fmaxKS
(N)

tends to 0 whereas fmaxEP
(N) tends to a non-zero value.5

In Fig. 2 we represent the Entropy Production (top) and KS Entropy (bottom) function
of f for N = 1000 and for three value of s: s = 0.13; s = 0.2; s = 0.04. This supports the
claim that for N fixe, we could tried different values of s such that s ∈ [0;ν] |fmaxEP

−
fmaxKS

| ≤ ε.
Such numerical investigations suggest to understand why fmaxKS

(N) and fmaxEP
(N)10

have different behaviors function of N, and why for N large enough fmaxKS
and fmaxEP

have the same behavior of first order in the deviation from equilibrium measured by the
parameter s. We will see that we can get a precise answer to such questions by doing
calculations and introducing a sort of Hydrodynamics approximation.

Taylor expansion15

From Eq. (14) it is apparent that fmaxKS
depends on N whereas from Eq. (9) we get that

fmaxEP
hardly depends on N. Indeed there is a difference between fmaxEP

and fmaxKS
, i.e.

a difference between the two principles for the Zero Range Process. Nevertheless, we
have seen numerically that there is a range of N, namely N ≈ 10 ∼ 100 for which the
maxima fairly coincide.20

Using Eqs. (14), (6) and (10) we compute analytically the Taylor expansion of fmaxEP

and fmaxKS
in s. We will show the main result: fmaxEP

and fmaxKS
have the same Taylor

expansion in first order in s for N large enough. Their Taylor expansions are different
up to the second order in s but it exists an N, i.e. a resolution, such that fmaxEP

and
fmaxKS

coincident up to the second order.25
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Let us start by compute fmaxKS
. It is not depends of the constant terms of hKS in

Eq. (14) and therefore we need only concern ourselves with :

−(p log(p)+q log(q))

(
N∑
i=1

(zi )−1

)
+ (γ log(γ)+p log(p))(1− z1)

+ (β log(β)+q log(q))(1− zN ) = N ·H(f ,N,α,γ,β,δ). (15)

Using Eq. (6), the expression of H(f ,N,α,γ,β,δ) takes an easy form. To simplify the5

calculations, we restrict the space of parameter by assuming α+γ = 1 and β+δ = 1 and
we parametrize the deviation from equilibrium by the parameter s̄ = α−δ. Moreover
let’s note a = 1

N . Thus, we have H(f ,N,α,γ,β,δ) = H(f ,a,α, s̄). In order to know the
Taylor expansion to the first order in s̄ of fmaxKS

we develop H(f ,a,α, s̄) up to the second

order in f ; i.e. we have H(f ,a,α, s̄) = C+Bf +Af 2 +o(f 2) then we find fmaxKS
= −B/2A10

that we will develop in power of s̄. This is consistent if we assume f � a.
After some tedious but straightforward calculations, we get at the first order in s̄

fmaxKS
(s̄) =

1
4

(1−α)−a(α+2)

α(1−α)+2aα(α−1)
s̄+o(s̄). (16)

And so,

fmaxKS
(s̄) =

1
4α
s̄+

3a
4(α−1)

s̄+o(s̄)+o(as̄). (17)15

We repeat the same procedure starting from Eq. (10) and we obtain:

fmaxEP
(s̄) =

s̄
4α

+o(s̄)+o(a). (18)

Thus, since a = 1
N � 1 the behaviour of fmaxKS

(s̄) and fmaxEP
(s̄) is the same for s̄ small

enough.
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We remark than we can strictly find the same result by solving the hydrodynamics
continuous approximation given by Eq. (2). This equation is a classical convection-
diffusion equation. We remark that, by varying f , we change the convective behavior:
f = 0 corresponds to a purely diffusive regime whereas by increasing f we enhance
the role of convection. If the system is at equilibrium then fmaxEP

= fmaxKS
= 0 and the5

system is purely diffusive. When the system is out of equilibrium fmaxEP
and fmaxKS

are
different than 0 and corresponds to an (optimal) trade-off between purely diffusive and
convective behavior.

One can verify this numerically: We first calculate the exact values of the Entropy
Production function of f using Eq. (6) and the Kolmogorov–Sinai Entropy function of10

f using Eqs. (6) and (14). Then we approximate these two curves with a cubic spline
approximation in order to find fmaxEP

and fmaxKS
.

In order to find the optimal resolution N∗ we can go one step further by expanding
fmaxEP

and fmaxKS
up to the second order in s̄:

fmaxEP
(s̄) =

s̄
4α

+
s̄2(α+1)

8α2(α−1)
+o(s̄2)+o(a). (19)15

fmaxKS
(s̄) =

1
4

(1−α)−a(α+2)

α(1−α)+2aα(α−1)
s̄+

(1−α)2 +a(α2 −2α+1)

8α2(α−1)2(1−2a)
s̄2 +o(s̄2). (20)

Thus, fmaxEP
and fmaxKS

coincide in second order in s̄ if a satisfies the equation of second
degrees:(
4α−6α2 +6α3 −4s̄+3α2s̄

)
a2 − 1

2

(
8α−8s̄+3α2s̄−6α2 +6α3)a− (1−α). (21)

This equation has a unique positive solution because the dominant coefficient is posi-20

tive for s small enough (4α−6α2+6α3−4s̄+3α2s̄) ≥ 0 and the constant term is negative
−(1−α) ≤ 0. We remark that the optimal resolution N∗ =

1
a∗ depends on the parameters

of the system namely on the degree of non-equilibrium. This fact can be the expla-
nation for two well known issues in climate/weather modeling. First, it explains that,
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when downgrading or upgrading the resolution of convection models, the relevant pa-
rameters must be changed as they depend on the grid size. Second, it suggests that if
the resolution is well tuned to represent a particular range of convective phenomena,
it might fails in capturing the dynamics out of this range: since finer grids are needed
to better represent deep convection phenomena, the deviations between model and5

observations observed in the distribution of extreme convective precipitation may be
due to an inadequacy of the grid used.

5 Conclusions

We have shown how a simple 1-D Markov Process, the Zero Range Process, can be
used to obtain rigorous results on the problem of parametrization of the passive scalar10

transport problem, relevant to many geophysical applications including temperature
distribution in climate modeling. Using this model, we have derived rigorous results on
the link between a principle of maximum entropy production and the principle of maxi-
mum Kolmogorov–Sinai entropy using a Markov model of the passive scalar diffusion
called the Zero Range Process. The Kolmogorov–Sinai entropy seen as functions of15

the convective velocity admit a unique maximum. We show analytically that both have
the same Taylor expansion at the first order in the deviation of equilibrium. The behav-
ior of these two maxima is explored as a function of the resolution N (equivalent to
the number of boxes, in the box approximation). We found that for a fixed difference of
potential between the reservoirs, the maximal convective velocity predicted by the max-20

imum entropy production principle tends towards a non-zero value, while the maximum
predicted using Kolmogorov–Sinai entropy tends to 0 when N goes to infinity. For val-
ues of N typical of that adopted by climatologists (N ≈ 10 ∼ 100), we show that the two
maxima nevertheless coincide even far from equilibrium. Finally, we show that there
is an optimal resolution N∗ such that the two maxima coincide to second order in s̄,25

a parameter proportional to the non-equilibrium fluxes imposed to the boundaries. The
fact that the optimal resolution depends on the intensity of the convective phenomena
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to be represented, points to new interesting research patterns, e.g. the introduction of
convective models with adaptive grids optimized with maximum entropy principles on
the basis of the convective phenomena to be represented.

On another hand, the application of this principle to passive scalar transport
parametrization is therefore expected to provide both the value of the optimal flux,5

and of the optimal number of degrees of freedom (resolution) to describe the system.
It would be interesting to apply it to more realistic passive scalar transport problem, to
see if it yield to model that can be numerically handled (i.e. corresponding to a number
of bow that is small enough to be handled by present computers). Moreover, on a theo-
retical side, it will be interesting to study whether for general dynamical systems, there10

exists a smart way to coarse grain the Kolmogorov–Sinai entropy such that its prop-
erties coincide with the thermodynamic entropy production. This will eventually justify
the use of the MEP principle and explain the deviations as well as the different repre-
sentations of it due to the dependence of the dynamic (Kolmogorov–Smirnov, Tsallis,
Jaynes) entropies on the kind of partition adopted.15

Appendix A: Computation of the K–S entropy

In this appendix, we compute the Kolmogorov–Sinai entropy for the Zero Range Pro-
cess, starting from its definition Eq. (13). In the frame of our Zero Range Process, we
use Eqs. (13) and (5) to write it as:
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hKS = −
∑
i

µistat

∑
j

pi j log(pi j )

= −
+∞∑
m1=0

. . .
+∞∑
mN=0

P (m1,m2, . . .,mN )
∑
j

p(m1,...,mN )→j log(p(m1,...,mN )→j )

= −
+∞∑
m1=0

P (m1). . .
+∞∑
mN=0

P (mN )
∑
j

p(m1,...,mN )→j log(p(m1,...,mN )→j ). (A1)

We thus have to calculate
∑
jp(m1,...,mN )→j log(p(m1,...,mN )→j ) that we will refer to as (∗).

We will take p+q = α+δ = β+γ = 1 and dt = 1
N in order to neglect the probabilities

to stay in the same state compare to the probabilities of changing state. There are five
different cases to consider:

1. If ∀i mi ≥ 1 so the possible transitions are:5

(m1,m2, . . .,mN )→ (m1 ±1,m2, . . .,mN ) with respective probabilities α and δ
(m1,m2, . . .,mN )→ (m1,m2, . . .,mN ±1) with respective probabilities γ and β
and (m1, . . .,mk , . . .,mN )→ (m1, . . .,mk ±1, . . .,mN ) with respective probabilities p
and q.

10

Thus,

(∗) = α logα+δ logδ +γ logγ +β logβ+ (N −1)(p log(p)+q log(q)). (A2)

2. If m1 ≥ 1 and mN ≥ 1 and let i be the number of mi between 2 and N −1 equal to
0. With the same argument as previously we have:

(∗) = α logα+δ logδ +γ logγ +β logβ+ (N −1− i )(p log(p)+q log(q)). (A3)15
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3. If m1 = 0 and mN ≥ 1 and let i the number of mi between 2 and N −1 equal to 0
we have:

(∗) = α logα+δ logδ +β logβ+ (N −2− i )p log(p)+ (N −1− i )q log(q). (A4)

4. The same applies if m1 ≥ 1 and mN = 0 and let i the number of mi between 2 and
N −1 equal to 0 we have:5

(∗) = α logα+δ logδ +γ logγ + (N −1− i )p log(p)+ (N −2− i )q log(q). (A5)

5. Finally, if m1 = 0 and mN = 0 and let i the number of mi between 2 and N −1
equal to 0 we have:

(∗) = α logα+δ logδ + (N −2− i )(p log(p)+q log(q). (A6)

Using Eq. (3) we find that P (mk = 0) = 1− zk and
∑+∞
i=1P (mk = i ) = zk .10

We thus obtain than hKS writes:

hKS =− (α logα+δ logδ +γ logγ +β logβ+ (N −1)(p log(p)+q log(q))

+ (p log(p)+q log(q))

 N∑
r=0

r
∑
i1...iN

∏
i=i1,...ir

(1− zi )
∏

i 6=i1...ir

zi


+ (γ log(γ)+p log(p))zN (1− z1)

 ∑
i2...iN−1

∏
i=i2,...ir

(1− zi )
∏

i 6=i2...ir

zi


+ (β log(β)+q logq)z1(1− zN )

 ∑
i2...iN−1

∏
i=i2,...ir

(1− zi )
∏

i 6=i2...ir

zi

15

+ (β log(β)+γ logγ +p logp+q logq)

 ∑
i2...iN−1

∏
i=i2,...ir

(1− zi )
∏

i 6=i2...ir

zi

 . (A7)
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This expression, though complicated at first sight, can be simplified. Indeed interested
in the function F (a) =

∏N
1 (zk +a(1− zk)) and by deriving subject to a we show that:

N∑
r=0

r
∑
i1...iN

∏
i=i1,...ir

(1− zi )
∏

i 6=i1...ir

zi =
N∑
i=1

(1− zi ). (A8)

Thus we can simplify the last equation and we obtain:

hKS =− (α logα+δ logδ +γ logγ +β logβ+ (N −1)(p log(p)+q log(q)))5

+ (p log(p)+q log(q))
N∑
i=1

(1− zi )+ (γ log(γ)+p log(p))(1− z1)

+ (β log(β)+q log(q))(1− zN ). (A9)
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Figure 1. Entropy Production calculate using Eq. (10) (left panels) and KS Entropy calculate
using Eqs. (6) and (14) (right panels) function of f for s = 0.13 and respectively N = 20 N = 100
and N = 1000.
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Figure 2. Entropy Production (left panels) and KS Entropy (right panels) function of f for N =
1000 and respectively s = 0.13; s = 0.2; s = 0.04.
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Figure 3. fmaxEP
(left panel) and fmaxKS

(right panel) function of s̄ for α = 0.5 and N = 100. We
remark than fmaxKS

and fmaxEP
have both a linear behaviour with slope respectively 0.48 and 0.49

which is really close to 1
4α = 0.5.
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Figure 4. We plot the slope of fmaxKS(s̄) (left panel) and fmaxEP(s̄) (right panel) function of α and
in black the curve f (s̄) = 1

4α s̄. We remark than the approximation fmaxKS
(s̄) ≈ fmaxEP

(s̄) ≈= 1
4α s̄ is

good.
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