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Abstract

Data assimilation transfers information from observations of a complex system to
physically-based system models with state variables x(t). Typically, the observations
are noisy, the model has errors, and the initial state of the model is uncertain, so the
data assimilation is statistical. One can thus ask questions about expected values of5

functions 〈G(X)〉 on the path X = {x(t0), . . . ,x(tm)} of the model as it moves through an
observation window where measurements are made at times {t0, . . . ,tm}. The proba-
bility distribution on the path P (X) = exp[−A0(X)] determines these expected values.
Variational methods seeking extrema of the “action” A0(X), widely known as 4DVar
(Talagrand and Courtier, 1987; Evensen, 2009), are widespread for estimating 〈G(X)〉10

in many fields of science. In a path integral formulation of statistical data assimilation,
we consider variational approximations in a standard realization of the action where
measurement and model errors are Gaussian. We (a) discuss an annealing method
for locating the path X0 giving a consistent global minimum of the action A0(X0), (b)
consider the explicit role of the number of measurements at each measurement time in15

determining A0(X0), and (c) identify a parameter regime for the scale of model errors
which allows X0 to give a precise estimate of 〈G(X0)〉 with computable, small higher
order corrections.

1 Introduction

In a broad spectrum of scientific fields, transferring information in L observed data20

time series yl (tn); l = 1, . . . ,L;n = 0, . . . ,m to a physically-based model of the processes
producing those observations allows estimation of unknown parameters and unob-
served states of the model within an observation window {t0, . . . ,tm}. As a sample
of these fields we note applications in meteorology (Talagrand and Courtier, 1987;
Evensen, 2009; Lorenc and Payne, 2007), geochemistry (Eibern and Schmidt, 1999),25
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fluid dynamics (Zadeh, 2008) and plasma physics (Mechhoud et al., 2013), among
many others.

The probability distribution P (X) = exp[−A0(X)] allows evaluation of expected values
of physically interesting functions G(X) along the path. A0(X) has terms giving a mea-
surement’s influence on P (X), terms propagating the model between the measurement5

times tn, and a term − log[P (x(0))] representing the uncertainty in the initial state (Abar-
banel, 2013).

We discuss the familiar case where measurement errors are independent at each tn
and Gaussian with covariance R−1

m (l , l ′,t); l , l ′ = 1, . . . ,L.
The model is a physical differential equation, discretized in space and time10

and satisfying the D-dimensional stochastic discrete time map xa(n+1) = fa(x(n))+

R−1/2
f (a,b)ηb(n); a,b = 1, . . . ,D and Gaussian noise error ηa(n) ∼N (0,1). We take

Rm(l , l ′,n) = Rm(n)δl ,l ′ and Rf (a,b) = Rfδa,b. Rm(n) is zero except near observation
times tn.

With these conditions the action takes a familiar form15

A0(X) =
m∑
n=0

Rm(n)

2

L∑
l=1

[xl (n)− yl (n)]2

+
Rf

2

m−1∑
n=0

D∑
a=1

[xa(n+1)− fa(x(n))]2 − log[P (x(0))]. (1)

The expected value 〈G(X)〉 of a function G(X) is

〈G(X)〉 =
∫

dXG(X)exp[−A0(X)]∫
dX exp[−A0(X)]

. (2)20

One interesting function G(X) is X itself. Its expected value gives us the average path
over the measurement window [t0,tm = T ]. Estimates of the parameters and P (x(T ))
permit prediction for t > T .
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To approximate the integral 〈G(X)〉 we follow the stationary path method of
Laplace (Laplace, 1774) and seek extremum paths Xq; labeled by q = 0,1 . . . satis-
fying ∂A0(X)/∂Xα = 0. The index α is a label for the state and time α = {a,n}. Paths
are sorted by increasing action levels A0(Xq): A0(X0) ≤ A0(X1) ≤ · · · .

2 Evaluating 〈G(X)〉5

We take the the usual data assimilation technique (Talagrand and Courtier, 1987;
Evensen, 2009; Lorenc and Payne, 2007) several steps further by

1. showing how to find a consistent global minimum of the action using an annealing
method,

2. demonstrating the importance of the number of measurements at each observa-10

tion time, and

3. explaining how to make systematic perturbative corrections to the value of
〈G(X0)〉.

In the neighborhood of Xq, we expand A0(X) as

A0(X) = A0(Xq)+ (X −X q)α1
γ2
α1α2

(Xq)(X −X q)α2
15

+
∑
r=3

A(r)(Xq)α1...αr

r !
(X −X q)α1

. . . (X −X q)αr
. (3)

Changing variables to Uα = γαβ(Xq)(X−X q)β leads to a contribution to the numerator
of 〈G(X)〉 in Eq. (2) from each Xq

exp
[
−A0(Xq)

]
detγ(Xq)

∫
dUexp

(
−U2 − V (Xq)

)
20 [

G(Xq)+W (Xq)
]

(4)
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where

V (Xq) =
∑
r=3

A(r)(Xq)α1...αr

r !

(γ(Xq)−1U)α1
. . . (γ(Xq)−1U)αr

,

W (X q) =
∑
k=1

G(k)(Xq)α1...αk

k!

(γ(Xq)−1U)α1
. . . (γ(Xq)−1U)αk

.5

In the denominator of Eq. (2), G(X) is replaced by unity. We sum over the contribution
of each Xq to evaluate 〈G(X)〉.

If the lowest action level A0(X0) is much smaller than all others, it totally dominates
the integral, and10

〈G(X0)〉 =

∫
dUexp

(
−U2 − V (X0)

)[
G(X0)+W (X0)

]
∫

dUexp
(
−U2 − V (X0)

] , (5)

plus exponentially small corrections.

3 Annealing to find a consistent global minimum action level A0(X0)

We now turn to an annealing method to find the path X0, and within this method ex-15

amine the importance of the number L of measurements at each observation time
tn. We then present an argument that in the integral Eq. (4) the terms V (Xq),W (Xq)
behave as inverse powers of Rf as Rf/Rm becomes large. This would leave us with
〈G(X)〉 ≈ G(X0) with corrections which are a power series in R−1

f . The implication is
that all statistical data assimilation questions, as Rf/Rm becomes large, can be ap-20

proximated by the contribution of the path X0 with the lowest action level A0(X0) along
1607
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with corrections one can evaluate via standard perturbation theory. Variations about
〈G(X0)〉 would be small and computable.

The term P (x(0)) in the action is often written assuming Gaussian variation about
some base state xbase, so − log[P (x(0)] ∝ (x(0)−xbase)2Rbase/2, and this has the form
of the measurement term evaluated at n = 0. We incorporate this expression into the5

term with coefficient Rm in the action and no longer display it.
The annealing method is based on the observation (Quinn, 2010) that the equation

for the extrema Xq simplifies at Rf = 0. The solution is xl (n) = yl (n); l = 1,2, . . . ,L for
all observation times. The other (D−L) components of the model state vector are
undetermined, and the solution is degenerate. As we increase Rf , the action levels10

split, and depending on Rm, Rf , L and the precise form of the dynamical vector field
f(x), there will be 1,2, . . . minima of A0(X).

As Rf/Rm grows large, the errors in the model diminish relative to the measurement
errors and impose high precision x(n+1) ≈ f(x(n)) on the model dynamics. The noise in
the measurement has been taken to be Gaussian N (0,σ2), so the measurement error15

term in the action satisfies a χ2 distribution with mean Rmσ
2(m+1)L/2 and standard

deviation Rmσ
2
√

(m+1)L/2.
The action level for large Rf approximately approaches a lowest value

A0(X0) →
Rmσ

2

2
L(m+1)

1± 1√
(m+1)L/2

 . (6)

20

σ2 is the noise level in yl (n) and (m+1) is the number of measurement times tn. This
provides a consistency condition on the identification of the path X0 by giving a consis-
tent global minimum action value A0(X0).

If the action levels revealed by our annealing procedure do not give this, it is a sign
that the data is inconsistent with the model.25
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3.1 Annealing procedure

The annealing process proceeds as follows: with very small initial Rf , we call it Rf0,
solve the (m+1)D-dimensional search problem with an optimization algorithm that
seeks minima of A0(X). Start the search with a set of trial paths whose components
are selected from a uniform distribution within limits suggested by examining the times5

series generated by the model x→ f(x) (or any other selection process for the initial
guess). This will generate a collection of approximate paths X q. Increase Rf by a small
increment (we choose Rf = {Rf02β}, where β = 0,1, . . . ), and using the paths found for
the previous Rf as initial guesses, find a new set of approximate Xq.

Continue this process until the lowest action level path X0 produces an A0(X0) near10

Eq. (6). If the action level A0(X0) is substantially less than the action level on the next
path A0(X0) � A0(X1), all expected values 〈G(X)〉 are given by X0, and corrections due
to fluctuations about that path. The contribution to the expected values of the path X1

with the next action level is exponentially small, of order exp[−(A0(X1)−A0(X0))].
The annealing procedure discussed above is different from standard simulated an-15

nealing (Aguiar e Oliviera et al., 2012). We call this annealing because varying Rf is
similar to varying a temperature in a statistical physics problem where Rf is inversely
proportional to the temperature. At high temperatures, small Rf , the dynamics among
the degrees of freedom xa(n) is essentially irrelevant, and we have a universal solution
where the observed degrees of freedom match the observations. As the temperature20

is decreased, the dynamics plays a more and more significant role, and allowed paths
“freeze” out. Action levels play the role of energy levels in statistical physics, and as the
action is positive definite, the paths are directly analogous to instantons in the Euclidian
field theory represented by A0(X) (Zinn-Justin, 2002).
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4 Examples from the Lorenz96 Model

We now present the results of a set of calculations on the Lorenz96 (Lorenz, 2006)
model used frequently in geophysical data assimilation discussions as a testbed for
proposed methods. The model has D degrees of freedom xa(t) satisfying the differen-
tial equation5

ẋa(t) = xa−1(t)(xa+1(t)−xa−2(t))−xa(t)+ f ; (7)

a = 1, . . . ,D; x−1(t) = xD−1(t), x0(t) = xD(t), xD+1(t) = x1(t); f = 8.17, for which the xa(t)
are chaotic (Kostuk, 2012). We studied D = 20 and added f as an additional degree of
freedom satisfying ḟ = 0.10

We performed a twin experiment in which we solved these equations with an arbitrary
choice of initial conditions using a fourth order Runga–Kutta solver with ∆t = 0.025 over
160 steps in time. Here, t0 = 0 and tm = T = 4. We then added iid Gaussian noise with
zero mean and variance σ2 = 0.25 to each time series. L = 1,2, . . . of the data series
were then represented in the action at each measurement time tn during our annealing15

procedure.
In the action we selected Rm = 4, the inverse variance of the noise added to the

data in our twin experiment, so the minimum action level we expect is 80.5L±8.97
√
L.

The paths are (m+1)(D+1) = 3381-dimensional. Our search for minimum paths used
a BFGS routine (Press et al., 2012) to which we provided an analytical form of the20

gradient of A0(X). The search was initialized with 100 times with initial paths from
a uniform distribution of values in the interval [-10,10].

In Fig. 1 we display the computed action levels for L = 5,7,8 and 9. For L = 5 there
are many close action levels associated with the extremum paths of the action Eq. (1);
as L increases, the lowest action level visibly separates from the others. At the bottom25

of each panel, we indicate the lowest action level value and its standard deviation. The
next-lowest action level A0(X1), for L = 5,7,8, and 9, is at 403.8, 749.8, 1161.6, and
2256.1, respectively. This means for L = 5 we would have to sum over the contributions
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of many paths Xq to evaluate the expected value 〈G(X)〉. At L = 7 or higher, X0 domi-
nates the integral. Our estimate for the forcing parameter, set to 8.17, was 8.22 at large
β.

It is important to note that if we begin our search for the extremum states Xq at large
values of Rf we are almost sure to miss the actual path X0 which gives the lowest5

action level, since the Hessian matrix of A0 is ill-conditioned when Rf is large. See
Fig. 4.6 in (Quinn, 2010).

The real test of an estimation procedure data assimilation is not accuracy in the
estimation, but accuracy in prediction beyond the observation window. As this is a twin
experiment, we show in Fig. 2 the data, the estimated state variable, and the predicted10

state variable for an an observed variable x3(t) and for an unobserved variable x12(t) for
L = 8. In a real experiment, we could not compare our estimates for the parameters or
the unobserved state variables. Although the estimation procedure for the path X 0 with
the minimum action value is rather good, in estimating 12 unobserved states and one
parameter, there are, of course, errors in our knowledge of the full state x(t = 4). The15

predictions lose their accuracy in time because of the chaotic nature of the trajectories
at f = 8.17.

To see how well our procedure works for several unknown parameters, we intro-
duced 10 different forcing parameters fa into the Lorenz96 model at D = 10: ẋa(t) =
xa−1(t)(xa+1(t)−xa−2(t))−xa(t)+ fa. For D = 10, the lowest action level stands out from20

the rest at L = 4. In Table 1 we show our estimates for the ten forcing parameters for
L = 4, 5, and 6, as well as the actual value used in the calculations of the data. In
these estimates, and for the single forcing parameter reported above for D = 20, there
is a known source of bias (Kostuk et al., 2012). As one can see in the examples it is
small here.25

To give some sense of what one might expect if the model were totally wrong ,
we presented data from a collection of 1963 Lorenz model (Lorenz, 1963) oscillators
oscillators to a Lorenz96 D = 10 model.
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Twelve time series data are generated by four individual Lorenz63 (Lorenz, 1963)
systems with different initial conditions. Gaussian white noise with zero mean and stan-
dard deviation σ = 0.5 are added to each time series. All these “data” yl (t) are rescaled
to lie within [−10,10].

We then place these signals as “data” in the action with the model taken as Lorenz965

D = 10, the single forcing parameter is treated as a time-dependent state variable obey-
ing ḟ = 0. We use L = 5 and 6 as measurements using the data time series taken in the
order y1(t),y3(t),y5(t),y7(t),y9(t),y2(t),y4(t) for the two cases. In Fig. 3 we display the
action levels associated with this for L = 5 and 6. Results for other values of L are con-
sistent with these. This example provides a graphic illustration of the inconsistency of10

the data and the model and how this makes its appearance in the annealing procedure.
We now have seen that a consistent global minimum action level can be identified

via an annealing process and the dependence of the action levels on the number of
measurements has been demonstrated. We use “consistent” as we have no formal
proof it is a global minimum, only the consistency condition Eq. (6).15

5 Corrections to the contribution of the extremum path to 〈G(X)〉

We turn back to the evaluation of the path integral for 〈G(X)〉. In that integral for our
action we have

γ2
αβ(X) = Rm(n)δa,lδb,l ′ +Rfhαβ(X)

A(r)
0 (X) = Rfg

(r−2)(X),20

for r ≥ 3. The functions h(X) and g(X) are derivable from the form of A0(X). These are
to be evaluated at X = Xq for the qth extremum path.

In the form of the integral Eq. (4) we see that the term in the exponential with order r
in U has order of magnitude about Rf/(Rm +Rfh(X q))r/2 for r ≥ 3. Similarly in the ex-25

pansion of G(X) the term of order k has a denominator of order 1/(Rm+Rfh(Xq))k/2 for
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k ≥ 1. Taking into account that only terms with even powers of U are nonzero in the in-
tegral because of symmetry, we have a collection of terms which, as Rf becomes large
with respect to Rm, decrease as 1/Rf or faster. As a rule of thumb in the calculations
we presented for Lorenz96 D = 20, we see that for β = 15 or larger, or Rf/Rm ≈ 100
or larger, the terms in the path integral beyond the quadratic term in the expansion of5

the action become small. A stronger estimate would come from evaluating the leading
term in 1/Rf .

In summary, we have examined the path integral formulation of data assimilation
and asked how well a variational approximation, which looks for Laplace like estimates
of the path integral by seeking extremum paths of the action, works to evaluate the10

expected values of functions on the path. This approximation is widely used in me-
teorology and other fields where it is known as weak 4DVar (Talagrand and Courtier,
1987; Evensen, 2009; Lorenc and Payne, 2007). The action is the cost function which
is minimized.

In previous work with variational principles for data assimilation, we are unaware of15

any procedure such as our annealing method using Rf to identify a consistent global
minimum action. Nor are we aware of a systematic exploration of the dependence of
the action levels on the number of measurements at each observation time. (Of course,
there is the discussion in Quinn, 2010, which generated this work.) Finally, we do not
know of a discussion of the corrections to the variational approximation, which here is20

shown to consist of small perturbations when the resolution of the model error term in
the action is increased, namely Rf becomes large.

6 Conclusions

We have worked within a framework where the measurement errors and the model
errors in the data assimilation are Gaussian, with the inverse covariance of the model25

errors taken to be of order Rf . We have shown that the path which gives a consistent
global minimum action can be traced by an annealing procedure starting with a setting
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where the dynamical model essentially plays no role, Rf ≈ 0, then systematically in-
creasing the influence of the model dynamics. As the scale of the model error reaches
about 100 times the scale of the measurement error, the path X0 associated with a con-
sistent global minimum action level dominates the path integral with corrections of order
1/Rf . The important role of the number of measurements L at each measurement time5

is also demonstrated.
In this paper we do not address the typical situation where the number of measure-

ments actually available is less than that needed to allow the ground level of the action
to lie well below the next level. For a solution to that problem we have used information
from the waveform of the measurements as shown in some detail in (Rey et al., 2014).10

The results here justify the use of the variational approximation in data assimilation,
focus on the role of the number of measurements one requires for accuracy in that
approximation, and permits the evaluation of systematic corrections to the approxima-
tion. We anticipate that our use of Gaussian model error and measurement error is
a convenience and that other distributions of these errors will permit the same set of15

statements about the value of variational approximations to statistical data assimilation.
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Table 1. Known and estimated forcing parameters for the Lorenz96 Model at D = 10, L = 4, 5,
and 6.

Known fa L = 4 L = 5 L = 6

5.7 5.742 5.737 5.768
7.1 7.096 7.080 7.094
9.6 9.696 9.686 9.654
6.2 6.156 6.174 6.131
7.5 7.605 7.592 7.604
8.4 8.353 8.330 8.349
5.3 5.310 5.278 5.214
9.7 9.679 9.703 9.643
8.5 8.632 8.629 8.626
6.3 6.334 6.336 6.308
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Figure 1. Action levels as a function of Rf for Lorenz96 model, D = 20, Rf0 = 0.01. (a) At L = 5
we used y1(t), y3(t), y5(t), y7(t), y9(t) in the action; (b) at L = 7, y11(t), y13(t) are added; (c)
at L = 8, y15(t) is added; (d) at L = 9, y17(t) is added. The expected values of the lowest action
level are denoted by black dashed lines.
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Figure 2. Data, estimated, and predicted time series for the Lorenz96 model (Lorenz, 2006)
with D = 20, L = 8. (a) x3(t) was an observed state variable, and (b) x12(t) was unobserved.
The data (black) the estimated state variable (red) and the predicted state variable (blue) are
shown for each of them.
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Figure 3. Action levels as a function of Rf for Lorenz96 model, D = 10, Rf0 = 0.01. (a) L = 5
and (b) L = 6 when the wrong data is used for the Lorenz96 model. We actually used data from
four realizations of the Lorenz63 model (Lorenz, 1963). The structure of the action levels vs.
Rf shows no trace of the minimum allowed level Eq. (6). This indicates the data and the model
are incompatible. The action levels are also quite large, and, for L = 6, numerous and not well
separated.
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