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Abstract

Numerical climate models constitute the best available tools to tackle the problem of
climate prediction. Two assumptions lie at the heart of their suitability: (1) a climate
attractor exists, and (2) the numerical climate model’s attractor lies on the actual climate
attractor, or at least on the projection of the climate attractor on the model's phase
space. In this contribution, the Lorenz 63 system is used both as a prototype system
and as an imperfect model to investigate the implications of the second assumption. By
comparing results drawn from the Lorenz '63 system and from numerical weather and
climate models, the implications of using imperfect models for the prediction of weather
and climate are discussed. It is shown that the imperfect model’s orbit and the system’s
orbit are essentially different, purely due to model error and not to sensitivity to initial
conditions. Furthermore, if a model is a perfect model, then the attractor, reconstructed
by sampling a collection of initialised model orbits (forecast orbits), will be invariant to
forecast lead time. This conclusion provides an alternative method for the assessment
of climate models.

1 Introduction

One of the principal aims of numerical climate models is to provide a reliable tool
for the prediction of climate change following pre-defined future forcing scenarios.
The suitability of numerical climate models to study the climate is based on two
assumptions. The first assumption is the existence of a climate attractor. There is no
rigorous proof that this attractor exists (e.g. Lorenz, 1991). However, the observations
available on long-term records provide some certainty about the validity of this
assumption (e.g. Essex et al., 1987). The second assumption is that the solutions
provided by a numerical climate model lie on the actual climate attractor, or at least
on the projection of the infinite-dimensional climate attractor on the model’s phase
space. Only under this assumption, numerical climate model solutions can be used
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to study the properties of the climate under present-day conditions. In order to study
climate change, an additional assumption must be made: it must be assumed that the
model climate attractor responds in the same way as the actual climate attractor does
under changing forcing conditions. The last assumption has been subject to extensive
investigation through studies that have shown that, rather than producing new patterns
of variability, the effects of anthropogenic forcing project onto already existing patterns
of natural variability (e.g. Palmer, 1993b; Corti et al., 1999).

The presence of biases in climate models with respect to observations and
reanalysis datasets under present-day conditions (Randall et al., 2007) indicates that
the actual climate attractor (as inferred from observations and reanalysis datasets)
and the attractors of available climate models are different even if just slightly, i.e. the
second assumption is not fully satisfied. While climate models will never be perfect,
we can make use of the limit posed by the second assumption to devise useful
measures for the assessment of climate models. The relation between errors in the
parameterisation of fast physics processes and errors in long-term simulations has
been investigated through techniques such as “initial tendencies” (see Klocke and
Rodwell, 2013, and references therein). However, there is no mathematically rigorous
theory to explain the relationship between phenomena developing in short timescales
and observed long term trends. Such a theory would also help to relate errors in
weather prediction and biases in climate projections. For example, it would help to
explain why climate models exhibit biases in the tilt of cyclone tracks (Zappa et al.,
2013) even though they are capable to simulate realistic extratropical cyclones (Catto
et al., 2010).

The objective of this contribution is to show the implications of the second
assumption for long-term integrations of a “simple” dynamical system in a three-
dimensional phase space: the Lorenz 63 system (Lorenz, 1963). The Lorenz ’63
system has been used as an archetype system in several previous studies of weather
and climate (e.g. Palmer, 1993a, b; Mu et al.,, 2002). Palmer (1993a) used the
Lorenz ’63 system (including several modified versions) to investigate extended-range
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predictability of nonlinear systems. Palmer (1993a) also introduces the concept of
state-dependent predictability by showing that the predictability of the Lorenz 63
system strongly depends on the initial position on the Lorenz attractor. Palmer (1993b)
showed that the effects of climate change are expected to modify already existing
patterns of atmospheric variability. Mu et al. (2002) investigates three problems on
predictability related to maximum prediction time, maximum prediction error and
maximum admissible errors in initial values and parameter values. Unlike those studies,
in which the Lorenz '63 system was used to infer properties of the climate or the
properties of climate models separately, in this contribution the Lorenz ’63 system
is used to investigate relationships between a system and an imperfect model (e.g.
a model with a similar structure to that of the system but with different parameters).
This is similar to the approach taken by Orrell et al. (2001), who used system/model
combinations to investigate shadowing of target orbits in low- and high-dimensional
systems. Instead of trajectory shadowing, the focus in this study are the cumulative
effects of model error for long-term integrations, so that no orbit could be expected to
shadow any target trajectory.

To avoid confusion, in this article the term “prototype system” refers to a system as
part of a system/model combination. Thus, a prototype system and its model are both
dynamical systems and in this work they will be instances of the Lorenz ‘63 system,
differing only on the values of their parameters. The methodology is fully described in
Sect. 2 while the results for the Lorenz 63 system are discussed in Sect. 3.

Clearly, there are several important differences between the prototype sys-
tem/imperfect model combination using the Lorenz '63 system and the combination
formed by the climate system and numerical climate models. For example, the
Lorenz ’63 system is perfectly known whereas our knowledge of the climate system
relies on observations which are of limited temporal extent and subject to observational
error. Another important difference is that the imperfect model for the Lorenz '63 system
(as constructed here) share its dimensionality whereas numerical weather and climate
models have necessarily a lower dimensionality than the climate system. Despite these

134

NPGD
1,131-153, 2014

Implications of model
error for numerical
climate prediction

O. Martinez-Alvarado

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< |
<4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/131/2014/npgd-1-131-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/131/2014/npgd-1-131-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

and other differences, there are several implications that can be transferred between
both systems. These implications are discussed in Sect. 4. Finally, a summary and
concluding remarks are given in Sect. 5.

2 Methodology

The Lorenz '63 system is defined by the equations (Lorenz, 1963)

X =0y -x), (1)
y=rx-y-xz, (2)
Z=xy-bz. (3)

The variables x, y and z define the phase space of the system while g, b and r are
constant parameters. For a range of these parameters the trajectories of the system
tend asymptotically towards the well-known two-winged Lorenz attractor. The shape of
the attractor depends on the values given to the parameters o, b, and r. Thus, two fixed
points (defined as the points in phase space for which x =0,y =0,z =0) forr > 1 are

located at (xq, Yo, Zo) = (:I: Vo(r=1),£\/b(r-1),r - 1). A third fixed point is located at
the origin. The three fixed points are unstable for

o+b+3
c-b-1

In this region of the parameter space the system has no other attractors but a strange
attractor.

The standard values of these parameters (as used by Lorenz, 1963) are 6 = 10, b =
8/3, and r = 28. In this work, the Lorenz '63 system characterized by these parameter
values will be regarded as the prototype system. To construct an imperfect model of the
prototype system the values of 6 = 10 and b = 8/3 will be kept but the value r = 25 will
be used instead. By doing so, r, = 24.74 is valid for both the prototype system and the

135

r>ro=0

(4)

NPGD
1,131-153, 2014

Implications of model
error for numerical
climate prediction

O. Martinez-Alvarado

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< |
<4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/131/2014/npgd-1-131-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/131/2014/npgd-1-131-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

imperfect model. However, the position of the fixed points differs between the prototype
system and the imperfect model. For the prototype system 018’2 = (x1,2,y1,2,z1,2)8 =

(£8.49, £8.49,27) while for the imperfect model CY', = (X1 2,y 2,21 5)" = (£8,£8,24).

The prototype system and the imperfect model have been initialised with the same
random initial conditions drawn from a uniform distribution between 0 and 1 for the
three phase-space variables. Then, the system and the imperfect model have been
integrated for 100t.u. (1t.u. = 1 time unit) with a sampling rate of At = 0.01t.u. The
first 20t.u. have been discarded from both orbits to eliminate initial transients. The
remaining points in each integration are considered here as the attractors of the system
and the imperfect model.

The separation between any two points in phase space is measured throughout
this work using the Euclidean distance (which is referred to simply as distance). The
distance between the given point and the attractor is defined here as the minimum
distance between a given point in phase space and the points in an attractor.

3 Model error in the prototype system/imperfect model combination

The attractors of the prototype system and the imperfect model are shown in Fig. 2a.
The structures of both attractors appear similar, but the size of the imperfect model
attractor appears smaller. Thus, the second assumption is not satisfied in this case, i.e.
the attractor of the model does not lie on the attractor of the system.

Let us assume that we observe the prototype system at regular intervals (e.g. every
5t.u.). Figure 2a shows these observations on the x subspace as black points on
top of the prototype system’s orbit (black line). Let us attempt to forecast the state
of the prototype system using the imperfect model and those observations as initial
conditions. Given that the prototype system is perfectly known, the observations are
perfectly accurate apart from round-off error. Under these conditions, the forecast will
tend to move away from the prototype system attractor towards the imperfect model’'s
attractor due to two separate albeit related effects. First, the accurate initialisation of
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the imperfect model with respect to the prototype system’s orbit moves the forecast
trajectory away from the imperfect model’s attractor. Figure 2b shows that the distance
between observations and the imperfect model’s attractor is small but not negligible.
The initialisation of the imperfect model from a point on the prototype system’s attractor
induces a transient period during which the orbit tends towards the imperfect model’s
attractor. Second, sensitivity to initial conditions will pull the imperfect model orbit away
from the prototype system orbit and into a different segment on the imperfect model’'s
attractor. This effect is particularly evident when the initial conditions are close to the
imperfect model attractor, as occurs at t = 85 t.u. in Fig. 2, for example.

Figure 2a also shows the orbits of the imperfect model at every forecast cycle
projected onto the x subspace (red lines). These orbits appear to closely follow the orbit
of the system very well for about 1t.u. immediately after each initialisation. However,
computing the distance between the prototype system’s orbit and the imperfect model
forecast orbit reveals that the forecast error is actually much larger than the apparent
distance in x (red line, Fig. 2c). For comparison, a perfect model, given by a Lorenz ’93
system with the same parameter values as the prototype system, was also used to
forecast the state of the prototype system. The perfect model was initialised with
imperfect initial conditions given by the observations randomly perturbed assuming
that the observational error in each variable x, y, and z is independent and normally
distributed with standard deviation o5 =0.11.u. (1lLu. = 1length unit). The perfect
model forecast orbits projected onto the x subspace are also shown in Fig. 2a (grey
lines). Even though in this case we should expect the orbits to diverge from the
prototype system’s orbit due to sensitivity to initial conditions, the divergence appears
to be much slower than in the imperfect model case. This effect becomes clearer
when looking at the distance between the prototype system’s orbit and the perfect
model forecast orbits (black lines in Fig. 2c): the perfect model forecast orbits remain
close to the prototype system’s orbit for about 2 t.u. immediately after each initialisation.
After this initial interval, sensitivity to initial conditions takes over and the perfect model
forecast orbits move away from the prototype system’s orbit.
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In order to show that these results are robust, similar analyses were conducted for an
imperfect model with r = 27 and for initial conditions with o5 = 0.21.u., o5 = 0.51.u. and
0o = 11.u. Figure 3a shows the evolution of the probability density functions (PDFs),
represented by median and interquartile range, of the distance between the prototype
system’s orbit and the forecasts obtained with these models. For long lead times (i.e.
t, = 5t.u.) the effects of a relatively large observational error (e.g. oo =1l.u.) and a
relatively small model error (e.g. r = 27) are apparently similar (see Fig. 3a). At shorter
lead times, however, there are important behaviour differences between models. The
two imperfect models show a short period of very fast divergence from the prototype
system’s orbit followed by a plateau and a second period of fast divergence. The
first period of fast divergence is induced by the approach of the imperfect model
forecast orbit to the imperfect model’s attractor. In contrast, the forecasts produced by
a perfect model with imperfect initial conditions show periods of slow divergence from
the prototype system’s for short lead times. In fact, Fig. 3b, which shows the rate of
change of the median of the distance between the prototype system’s orbit and model
orbits with respect to forecast lead time, reveals that the perfect model runs undergo
a short period during which the distance between model orbit and prototype system’s
orbit tends to decrease. Indeed, this shrinking period occurs as a consequence of
the prototype system’s orbit being part of the prototype system’s attractor and having
initial conditions with finite observational error. Figure 3b provides a summary of the
difference between imperfect models with perfect initial conditions and perfect models
with imperfect initial conditions. At the beginning of the forecast cycle, the imperfect
models are characterised by a positive and comparatively large rate of change in the
median of the distance between the orbits of the prototype system and the model with
respect to forecast lead time; on the other hand, the perfect models are characterised
by a negative and comparatively small rate of change in the same variable.

One might argue, by pointing at the gray and red lines in Fig. 3a, that having small
model error (r = 27) or large observational error (o = 11.u.) leads to very similar model
behaviour. Following this line of thought, one could try to eliminate the initial period
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of fast divergence in the imperfect model by following a suitable strategy to project
“unbalanced” initial conditions onto the surface on which the attractor of the imperfect
model evolves (e.g, the strategy suggested by Anderson, 1995). However, focusing
on the distance between orbits alone gives only a partial view of the situation: two
points could be at a similar distance from a third point, and nevertheless be placed
at very dissimilar locations. Figure 4 highlights a different aspect of the comparison
between perfect and imperfect models: the location of the attractor in phase space.
This aspect is fundamental for climate prediction, in which we are not interested in
predicting the state of a system at a particular time, but in the statistical properties
of the system during a time interval of a given duration at a particular starting time.
Figure 4 shows the evolution of the PDF of z, represented by median and interquartile
range and computed using forecasts, as forecast lead time increases. For comparison,
it also shows these same quantities computed using the attractors of the prototype
system and the imperfect model shown in Fig. 1. At ¢ =0t.u., both perfect and
imperfect models produce very similar statistics to those produced by the prototype
system. The small difference between statistics at #, = Ot.u. is due to the difference
in sample size between the prototype system’s attractor and the forecasts. As forecast
lead time increases the differences between perfect and imperfect model become more
apparent. The imperfect model forecast orbits tend to the imperfect model’s attractor
so that in less than about 0.5 t.u. the statistics produced by the imperfect model for #, >
0.5t.u. are closer to those produced by the imperfect model's attractor than to those
produced by the prototype system’s attractor. In contrast, the perfect model forecast
orbits tend towards the prototype system’s attractor. Therefore, the statistics produced
by the perfect model forecasts remain around those produced by the prototype system
throughout the whole forecasting cycle even though this model was initialised with
imperfect initial conditions. These results show a fundamental property of a perfect
model: if a model is a perfect model, then the attractor, reconstructed by sampling a
collection of initialised model orbits (forecast orbits), will be invariant to forecast lead
time, provided two conditions: (1) that the model is initialised with good estimates of the
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system’s true state based on observations and (2) that the collection of forecast orbits
is a representative sample of the region in phase space accessible to the system. This
property marks a clear difference between perfect and imperfect models and provides
an alternative means for climate model evaluation. Furthermore, it has the advantage
over the distance between the orbits of the prototype system and the models that no
prior knowledge of the prototype system’s orbit is required (apart from initial states at
suitable times). Moreover, it avoids the false impression that a perfect model and an
imperfect model exhibit similar behaviour.

4 Implications for climate prediction
4.1 Attractor reconstruction

Reconstructing even part of the attractor of a system is equivalent to knowing at least
part of its climate. It would be desirable to reconstruct the full climate attractor in
order to completely know the climate. However, this task is impossible given the very
large dimensionality of the climate system. In principle, it would be enough to collect a
sufficiently large number of observations to be able to represent the system’s attractor
in phase space and infer its properties. However, if the only source of data available
was the imperfect model, then the most we could achieve would be to represent the
imperfect model’s attractor in model phase space. This is related to the existence of
biases in climate models when evaluated against observations and reanalysis datasets
(e.g. Kim et al., 2009; Matsueda et al., 2009; Zappa et al., 2013). As discussed in
Sect. 1, these biases are an expression of the mismatch between the climate attractor
and the attractors of climate models. Evidence of the existence of biases can be found
even using short-term forecasts by comparing two different times in a forecast cycle,
analysis time (T + 0d) and T + 15d, in an analogous way to that used to study the
prototype system/imperfect model combination based on the Lorenz '63 system in
Sect. 3. Figure 5 shows interquartile ranges of daily zonally-averaged 320-K potential
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vorticity (PV) for the period between December 2009 and February 2010 for these two
lead times and for three forecast datasets produced with three different models: (1) the
Met Office Global and Regional Ensemble Prediction System (MOGREPS, Bowler
et al., 2008), (2) the European Centre for Medium-Range Weather Forecasts (ECMWF)
Ensemble Prediction System (EPS, Molteni et al., 1996) and (3) the National Centers
for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS, Toth
and Kalnay, 1997). These datasets have been archived by the THORPEX Interactive
Grand Global Ensemble (TIGGE, Park et al., 2008).

As shown in Sect. 3, if the models were perfect, the statistics between the forecasts
at T + 0dand T + 15d would be similar or, in the limit of infinitely large samples,
the same. However, the three datasets reveal clear statistical differences between
analyses and T + 15d forecasts. It must be noted that even though the three ensemble
prediction systems (EPS) produce different statistics at analysis time and at T + 15d,
the deviation shown by the ECMWF EPS (Fig. 5b) seems systematically smaller than
that produced by MOGREPS (Fig. 5a) or NCEP GEFS (Fig. 5¢). This effect might occur
as a result of the optimisation of the ECMWF model for the specific purpose of medium-
range weather prediction. However, this is only one metric and more research would
be needed to give a complete comparison between these and other TIGGE models.

There are two potential caveats in these results. The first potential caveat is that the
results are shown only for the season December—February (DJF) 2009—2010 in the
Northern Hemisphere, which was characterized by exceptional conditions in terms of
atmospheric circulation in the North-Atlantic European sector (e.g. Santos et al., 2013).
However, five other DJF periods have been analysed (from 2006—2007 to 2011-2012)
on both hemispheres and all of them show the same qualitative results. Moreover,
recent research performed on this same data confirms the existence of systematic
model error in the three datasets (Gray et al., 2014).

The second potential caveat is that only the control members (unperturbed analyses
with no stochastic physics included in the forecast model) in each EPS have been
considered in this analysis. However, the ensemble members tend to follow the
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behaviour of the control member. For example, Fig. 6a shows the 2-PVU contours on
the 320-K isentropic surface in the analysis and the control members in five forecasts
produced with MOGREPS for the same validation time (00:00 UTC, 25 November
2009) but different lead times (T + 1dto T + 5d). Figure 6b shows the 2-PVU contours
on the 320-K isentropic surface in the analysis and the ensemble members for the T
+ 4d forecast for the same validation time. There are two remarks to make regarding
this figure. The first remark is that the apices of the upper-level ridge (over Scandinavia
in the analysis) in the control members tend towards the southeast with increasing
lead time (Fig. 6a) (Sideri, 2013). The second remark is that the ensemble at the lead
time shown (Fig. 6b), and in fact any other between 1d and 5d, clusters around the
corresponding control member while failing to include the analysis (Sideri, 2013).

4.2 Short-term forecast

It has been shown that initialising the imperfect model with perfect initial conditions
with respect to the system can be viewed as initialising the model with initial conditions
away from its own attractor. This induces a transient period during which the model
approaches its own attractor. Data assimilation blends information from the model
and observations in order to provide initial conditions for the next forecast. Using data
assimilation to initialise a numerical prediction model has a similar effect to initialising
the imperfect model with perfect initial conditions by moving the initial model state away
from the model’s attractor. This induces a transient (spin-up) period until the numerical
model reaches a new balance (Daley, 1991). The new balance is achieved when the
model’s orbit is close to the model’s attractor.

The transient period and the subsequent evolution on the model attractor imply
divergence between the model’s orbit and the true system’s orbit. This divergence is
not only due to sensitivity to initial conditions. Instead, it is partly due to fundamental
differences between the system and the imperfect model. The forecast of the upper-
level ridge on 25 November 2009 introduced in Sect. 4.1 provides one example of
this model-error related divergence (Fig. 6). As mentioned before, the apices in the
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forecasts tend towards the southeast as lead time increases (Fig. 6a), thus indicating
that the model is diverging from the system’s orbit. The fact that no member in the
ensemble is close to the actual behaviour of the system (Fig. 6b) might be due to the
same effect: in this particular event, an ensemble around accurate initial conditions
generates an ensemble forecast with every member tending towards the model’s
attractor and away from the true future state of the system. This occurs even though
MOGREPS incorporates a representation of model error variability in the ensemble
(Bowler et al., 2008). There are many other examples of this type of behaviour in
other models (e.g. Rodwell et al., 2013). One might argue that even though analysis
and forecasts diverge from each other, they could still be part of the same attractor.
However, the evidence presented (Fig. 5 and subsequent discussion) strongly suggests
that indeed model and system have different attractors.

5 Summary and concluding remarks

It has been shown that, in the prototype system/imperfect model combination based on
the Lorenz ’63 system, imperfections in the model translated into differences in attractor
structure (fixed points and apparent size) between the system and the imperfect model
(Fig. 1). As a result, the second assumption for the suitability of a model (i.e. the
assumption that the solutions provided by a model lie on the system’s attractor, or
at least on the projection of the system’s attractor on the model's phase space) was
not satisfied. Under these circumstances, even a perfectly accurate initialisation of
the system induces a transient period during which the model orbit diverges from
the system’s orbit and approaches the model attractor (Fig. 2). Thus, the orbit of the
model and the actual system’s orbit become essentially different. This difference is
purely due to model error and not to sensitivity to initial conditions. This was shown
through a comparison of two imperfect models initialised with perfect initial conditions
and a perfect model initialised with imperfect initial conditions subject to four levels
of observational error (Fig. 3). It was shown that, even though at long lead times
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small model error and large observational error produced apparently similar results
(Fig. 3a), there were noticeable differences at very short lead times: while imperfect
model forecast orbits tend to quickly diverge from the prototype system’s orbit, perfect
model forecast orbits tend to undergo a short period at the beginning of the forecast
cycle during which they approach the prototype system’s orbit (Fig. 3b). However, these
methods require the prior knowledge of the actual state of the system and its evolution,
which is an unaffordable luxury for climate scientists, who are bound to deal with a
system of very large dimensionality.

The investigation of the prototypical system/imperfect model combination provides
a new, alternative framework for the interpretation of output from numerical climate
models with implications for two widely recognized needs in climate science: the need
for climate model improvement (e.g. Stevens and Bony, 2013) and the need for new
methods for the interpretation of current available climate models when contrasted
against observations (e.g. Brands et al., 2012). It has been shown that climate model
biases can be interpreted as an expression of a mismatch between the climate system
attractor and the numerical climate model attractor. Furthermore, it has been shown
that such a mismatch can be detected even in short-term forecasts by relying on the
following fundamental property of a perfect model: if a model is a perfect model, then
the attractor, reconstructed by sampling a collection of initialised model orbits (forecast
orbits), will be invariant to forecast lead time, provided two conditions: (1) that the model
is initialised with good estimates of the system’s true state based on observations and
(2) that the collection of forecast orbits is a representative sample of the region in
phase space accessible to the system. Deviations from this condition would constitute
an alternative measure for the suitability of a climate model. This was shown for the
Lorenz ’63 system (Fig. 4) and for three operational ensemble prediction systems
(Fig. 5). This approach provides a link between the fields of weather and climate
prediction as it relies on the availability of forecast orbits produced by climate models.

The results presented in this contribution are consistent with the discussions by Judd
and Smith (2001, 2004). They have shown that, given a set of imperfect observations
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in a perfect models scenario, it is possible to find a set of indistinguishable states
consistent with the observations (Judd and Smith, 2001). In contrast, in an imperfect
model scenario, almost certainly no trajectory of the imperfect model is consistent with
any set of observations (Judd and Smith, 2004). Judd and Smith (2004) also introduce
the concept of pseudo-orbits that intrinsically take into account the existence of model
error. Although the discussion in Judd and Smith (2001, 2004) do require the availability
of observations, the concept of pseudo-orbits might prove useful for the interpretation
of climate projections; however, | can only speculate at this point, leaving this for future
investigation.
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Fig. 2. (a) Prototype system orbit (black), orbits of the imperfect model with perfect IC (red)
and orbits of a perfect model with imperfect IC (grey). Also shown are perfect observations
on the system’s orbit (black dots), forecasts from the imperfect model with perfect ICs (red x)
and forecasts from the perfect model with imperfect ICs (black x). Observations and forecasts
are given at regular intervals of 5t.u. (b) Minimum distance from perfect ICs to points on
the imperfect model attractor (a,,) at every observation time. (c) Error between the prototype
system orbit and those from the imperfect model with perfect ICs (red) and the perfect model
with imperfect ICs (black).
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