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Abstract. In a spirit akin to the sandpile model of self-
organized criticality, we present a simple statistical model
of the cellular-automaton type which simulates the role of
an asperity in the dynamics of a one-dimensional fault.
This model produces an earthquake spectrum similar to the
characteristic-earthquake behaviour of some seismic faults.
This model, that has no parameter, is amenable to an alge-
braic description as a Markov Chain. This possibility illumi-
nates some important results, obtained by Monte Carlo sim-
ulations, such as the earthquake size-frequency relation and
the recurrence time of the characteristic earthquake.

1 Introduction

If there is a well-established fact about regional seismicity
it is the relationship between the magnitude of an earth-
quake and its frequency, known as the Gutenberg-Richter law
(Gutenberg and Richter, 1956). This law is of the power-law
type when magnitudes are expressed in terms of rupture area

N ∝ S−b, (1)

whereN is the number of observed earthquakes with rupture
area greater thanS, andb is the so-calledb-value, which is a
“universal constant” in the range 0.5–1.5 (Kanamori and An-
derson, 1975; Kagan, 1999; Turcotte, 1999). The Gutenberg-
Richter law implies that earthquakes are, on a regional or
world-wide scale, a self-similar phenomenon lacking a char-
acteristic scale (but see Knopoff, 2000).

It is important to notice, however, that the Gutenberg-
Richter law is a property of regional seismicity, appearing
when we average seismicity over big enough areas and long
enough time intervals. In the last ten years, a wealth of data
has been collected to extract statistics on individual systems
of earthquake faults (Wesnousky, 1994; Sieh, 1996; Petersen
et al., 1996). Interestingly, it has been found that the dis-
tribution of earthquake magnitudes may vary substantially
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from one fault to another and that, in general, this type of
size-frequency relationship is different from the Gutenberg-
Richter law. Many single faults or fault zones display power-
law distributions only for small events (small compared with
the maximum earthquake size a fault can support, given its
area), which occur in the intervals between roughly quasi-
periodic earthquakes of much larger size which rupture the
entire fault. These large and quasi-periodic earthquakes are
termed “characteristic” (Schwartz and Coppersmith, 1984),
and the resulting size-frequency relationship, Characteristic
Earthquake distribution.

There is much debate about the origin of the characteris-
tic earthquake distribution (Dahmen et al., 1998). Because
of the short period of instrumental earthquake records and
the scarcity of paleoseismic studies (Wesnousky, 1994; Sieh,
1996; Petersen et al., 1996), the statistics of naturally occur-
ring earthquakes in single faults are poor. This fact justifies
the development of “synthetic seismicity” models, in which
long catalogues of events are generated by computer models
of seismogenesis. Such models can be tuned by requiring
that they reproduce what is known of the statistics of past
seismicity to a reasonable degree, and then use them to fore-
cast statistical inferences about the behaviour of seismicity
using much longer and homogeneous catalogues of synthetic
events.

Many different seismicity models have been presented in
the past twenty years or so. Robinson and Benites (1995)
classify these modelling approaches into five groups: (1) cel-
lular automata models, (2) spring-block models, (3) models
of single faults in which slip is discretized into patches and
obey simplified friction laws, (4) continuum models that uti-
lize realistic constitutive friction laws, and (5) actual physical
models.

Cellular automata models appeared in seismological liter-
ature in the late 80s and early 90s, hand in hand with the
concept of self-organized criticality (Bak and Tang, 1989;
Ito and Matsuzaki, 1990; Chen et al., 1991; Matsuzaki and
Takayasu, 1991; Nakanishi, 1990; Olami et al., 1992). A cel-
lular automaton is a mathematical model of a complex nat-
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ural system which contains a large number of simple iden-
tical components with local interactions among themselves
(Wolfram, 1994). All cellular automata consist of three basic
parts: (i) the underlying lattice, which defines the topology
of the spatial discretization, (ii) the neighbourhood, which
defines the interaction range between elements; and (iii) the
transition rule, which tells us how the state of the system
at discrete timet will change at timet + 1. The link be-
tween cellular automata models and seismicity works by dis-
cretizing a fault as a one- or two-dimensional plane made
up of a large number of patches. These models are usu-
ally nondeterministic and neglect the details of both elas-
ticity and fault friction, substituting them by simple cellu-
lar automata rules. Despite their simplicity, they are able to
reproduce various types of size-frequency statistics, includ-
ing Gutenberg-Richter and Characteristic Earthquake distri-
butions (Lomnitz-Adler et al., 1992; Barriere and Turcotte,
1994; Main, 1996).

Self-organized criticality (SOC) (Bak et al., 1987, 1988)
is a difficult concept to define. In the broadest sense (Sor-
nette, 2000), SOC refers to the spontaneous organization of
a large system driven from the outside into a globally sta-
tionary state, which is characterized by self-similarity (i.e.,
power-law) distributions of event sizes and fractal geomet-
rical properties. This stationary state is dynamical in na-
ture and is characterized by statistical fluctuations, which
are referred to generically as avalanches. From the seis-
mology point of view, the avalanches are the earthquakes
themselves, the external drive is the accumulation of tectonic
stress by plate motion, and the self-invariant distribution of
event sizes is the Gutenberg-Richter law. Three recent books
dealing with SOC in seismology are Turcotte (1999); Sor-
nette (2000); Hergarten (2002), and the reader is referred to
these sources for an updated bibliography on the topic.

The key ingredients of any of the seismicity models men-
tioned above are: (1) the dimensionality of the fault (1D or
2D), (2) the number of faults included in the model (one, a
few, or many faults), (3) the employed stress transfer mecha-
nism (nearest-neighbours, long-range elasticity, mean-field),
(4) the degree of incorporation of inertial effects (quasi-
static, quasi-dynamic, or fully dynamic), (5) the assumed
constitutive stress-slip law (experimental, static-dynamic,
velocity-weakening, etc.), and (6) the degree of stress con-
servation (conservative versus dissipative models).

Our purpose here is to build a simple cellular automaton
model of seismicity capable of displaying a size-frequency
relationship of the Characteristic Earthquake type. That is,
a model which exhibits a power-law relationship for small
events and an excess of big events (of the order of the system
size), together with a very low probability of events of inter-
mediate size. With respect to the six basic ingredients of dis-
crete models of seismicity introduced above, the model pre-
sented here is (1) one-dimensional, (2) for a single fault, (3)
with a percolation-like stress-transfer mechanism, (4) quasi-
static, (5) static/dynamic with total stress drop, and (6) dissi-
pative. To this list we would add that our model is inspired
by the concept of asperity (Das and Aki, 1977), i.e. in the

presence of a particularly strong element in the system which
actually controls its relaxation.

In comparison, the one-dimensional cellular automaton
version of the classical Burridge-Knopoff slider-block model
has a nearest-neighbour stress-transfer mechanism (ingredi-
ent number 3 in the list above) instead of a percolation-
like one as our model has. Besides, the cellular automaton
Burridge-Knopoff model has one free parameter to be ad-
justed, which is a ratio of elastic constants and which con-
trols the degree of dissipation of the model (from non conser-
vative to conservative). These two differences clearly sepa-
rate the behaviour of both models: Gutenberg-Richter for the
one-dimensional cellular automaton version of the Burridge-
Knopoff model and the Characteristic Earthquake for our
model (see Pelletier (2000) for a recent and comprehensive
review of the use of spring-block models in seismology).

Also, because of the inherent simplicity of the model, we
want to be able to derive analytically some of the statistical
properties of the resulting synthetic seismicity using Markov
chains.

2 The model and its simulations

Consider a one dimensional vertical array of lengthN . The
ordered positions, or levels, in the array will be labelled by
an integer indexi varying from 1 toN . This system performs
two functions: it is loaded by receiving individual stress par-
ticles in the various positions of the array, and unloaded by
emitting groups of particles through the first level,i = 1,
which are called relaxations or earthquakes (Fig. 1).

These two functions proceed using the following four
rules:

(i) The incoming particles arrive at the system at a constant
time rate. Thus, the time interval between each two suc-
cessive particles will be considered the basic time unit
in the evolution of the system.

(ii) All the positions in the array, fromi = 1 to i = N , have
the same probability of receiving a new particle. When
a position receives a particle we say that it is occupied.

(iii) If a new particle comes to a level which is already occu-
pied, its stress is simply dissipated. Thus, a given posi-
tion i can only be either non-occupied when no particle
has come to it, or occupied when one or more particles
have come to it.

(iv) The leveli = 1 is special. When a particle goes to this
first position a relaxation event occurs. Then, if all the
successive levels fromi = 1 up toi = k are occupied,
and the positionk + 1 is empty, the effect of the relax-
ation –or earthquake– is to unload all the levels from
i = 1 up toi = k. Hence, the size of this relaxation is
k, and the remaining levelsi > k remain unaltered in
their occupancy.
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Fig. 1. Layout of the minimalist model. The vertical array ofN

cells is closed at the top and open at the bottom. Each time step a
stress particle is added randomly to the array. A relaxation of size
k occurs when the added stress particle hits the lowermost cell.k

is the number of consecutive cells, starting from the bottom, that
contain at least one stress particle.

Thus, from what has been mentioned above, this model
has no parameter; the sizeN is the unique specification to
be made, and the spatial correlation is induced by rule (iv).
Now, the state of the system is given by stating which of the
(i > 1) N − 1 levels are occupied. Each of these states
corresponds to a stable configuration, and therefore the total
number of possible configurations is 2(N−1). We use the term
“total occupancy” for the configuration in which all levels but
the first are occupied.

The prominent role given to the leveli = 1 is equivalent to
considering that the asperity of the fault is located there. Af-
ter the occurrence of a relaxation the system is left in a stable
configuration. The following particle additions progressively
load the system, and when a particle is again assigned to the
first level a new relaxation is triggered. Each relaxation emp-
ties the lower levels of the system as explained in rule (iv),
and the system is left in another stable configuration. The
size of the earthquakes can thus range from 1 up toN and
the earthquake of maximum size,k = N , is called the char-
acteristic one.

From these evolution rules we deduce that after a time unit,

Fig. 2. Probability of occurrence of earthquakes of magnitudek.
Three simulations are superimposed, corresponding to three differ-
ent system sizes (N = 10 for the dotted line,N = 100 for the
dashed line, andN = 1000 for the continuous line). Note that the
probability of occurrence of earthquakes smaller than the charac-
teristic one is independent of the size of the system, and that the
probability of the characteristic earthquake decreases very slowly
with N .

i.e. after a new incoming particle assignment, we will have
an earthquake if the new particle goes toi = 1, and this oc-
curs with a probability 1/N . Conversely, with a probability
of (N − 1)/N there will be no earthquake. In this case the
system will advance one unit in its level of occupation when
the new particle is assigned to a non-occupied level, and it
will remain at the same configuration if the assigned level
was already occupied.

As this model is one-dimensional, extensive Monte Carlo
simulations can be performed to accurately explore its prop-
erties. In this paper we focus on two important properties:
the earthquake size-frequency relation and the statistics of
the time of return of the maximum-size earthquake.

The results for the earthquake size-frequency relation,pk,
are drawn in Fig. 2 and written in Table 1. In Fig. 2 we have
superimposedpk for N = 10,N = 100 andN = 1000. This
has been partly included in Table 1 as well. In Fig. 2 there are
three notable properties to be commented on. First and most
important, we see that the characteristic relaxation,k = N ,
has a much higher probability of occurrence than the big re-
laxations but withk < N . In fact, forN = 10, 100 and 1000,
the probability of these three characteristic relaxations does
not differ much, and is about 10%. We can express this fact
by saying that in this model, grosso modo, one would likely
observe only very small earthquakes and the characteristic
one. Secondly, forgetting for a moment the casek = N ,
we observe a power law behaviour of the Gutenberg-Richter
type for the other earthquakes. The exponentb of this differ-
ential distribution is roughly 1.6 (i.e. the corresponding cu-
mulative exponent is compatible with the phenomenological
range 0.5 ≤ b ≤ 1.5). And thirdly, we observe the per-
fect coincidence of these curves of probability for systems
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Table 1. Probability of occurrence of the earthquake of magnitude
k for a different system size,N

k N = 2 N = 3 N = 4 N = 10 N = 100

1 0.500000 0.500000 0.500000 0.500022 0.499920
2 0.500000 0.125000 0.125000 0.124974 0.125130
3 0.375000 0.058594 0.058599 0.058600
4 0.316406 0.034855 0.034860
5 0.023499 0.023460
6 0.017126 0.017140
7 0.013151 0.013130
8 0.010506 0.010510
9 0.008627 0.008640

10 0.208636 0.007210
99 0.000228

100 0.111320

of different sizeN . This is also appreciated in the numbers
collected in Table 1. This, in a sense, unexpected behaviour
will be discussed in detail in the next Section.

In Fig. 3 we represent the probability curve for the time of
recurrence of the characteristic earthquake. This curve, ob-
tained by Monte Carlo simulations, corresponds to a system
of N = 10. In the abscissas axis, time (denoted byn) starts
at 0 just after the occurrence of ak = N relaxation. It is
clear in this model that only after a minimum time lapse of
sizeN the probability of occurrence of a newk = N char-
acteristic earthquake can be non null. We observe in Fig. 3
that after this minimum time lapse,P(n) grows to a maxi-
mum and then declines. For the sizeN = 10 analyzed in this
figure, the maximum of probability corresponds to a time in-
terval n = 34. This figure agrees with the value obtained
later solving the model as a Markov chain process.

3 The model as a Markov chain

It is easy to become convinced that, for a givenN , the 2(N−1)

stable configurations of our model can be considered as the
states of a finite, irreducible and aperiodic Markov chain
with a unique stationary distribution (see, for example, Dur-
ret, 1999). These configurations are classified into groups
according to their occupation number (number of occupied
levels); the number of configurations withj occupied lev-

els is C

(
N − 1

j

)
. One step in the chain corresponds to

the result of adding a new particle to the system. Up to ap-
proximatelyN = 10, the transition matrix,M , can be eas-
ily obtained using Mathematica as well as the corresponding
stationary probabilities for each configuration, which corre-
spond to the components of the eigenvector ofM with eigen-
value,λ, equal to unity.

For smallN , M and its eigenvectors are obtained by in-
spection. Let us then start reproducing the first numbers
quoted in Table 1 for the probabilities of occurrence of re-
laxations in small systems. With this aim, let us consider

Fig. 3. Probability of return of the characteristic earthquake as a
function of time. Timen is the number of stress particles added
since the latest relaxation. Note the “stress shadow” for short times,
which indicates the existence of a minimum return time between
characteristic earthquakes. It is also worth noting the perfect agree-
ment between the Markov chain (dots) and Monte Carlo (line) re-
sults.

Fig. 4. In Fig. 4A, B and C there appear all the stable con-
figurations, ordered in an increasing state of occupation, for
N = 2, N = 3, andN = 4, respectively. For the moment,
the black level in the top position of the configurations has
no meaning.

For N = 2, using the same order and notation for the
configurations as in Fig. 4A, the transition probabilities are
Ma,a = 1/2, Ma,b = 1/2 , Mb,a = 1/2, andMb,b = 1/2.
Thus

M =

(
1/2 1/2
1/2 1/2

)
, (N = 2). (2)

This M is a doubly stochastic matrix and hence the two
stationary probabilities are equal.

pa = 1/2, pb = 1/2, (N = 2). (3)

ForN = 3, the non-null transition probabilities are:Ma,a =

1/3, Ma,b = 1/3, Ma,c = 1/3; Mb,b = 2/3, Mb,d = 1/3;
Mc,a = 1/3, Mc,c = 1/3, Mc,d = 1/3; Md,a = 1/3, and
Md,d = 2/3. Thus

M =


1/3 1/3 1/3 0
0 2/3 0 1/3

1/3 0 1/3 1/3
1/3 0 0 2/3

 , (N = 3). (4)

And the components of the eigenvector corresponding toλ =

1 are:

pa = 1/4, pb = 1/4, pc = 1/8, pd = 3/8, (N = 3). (5)

Finally, for N = 4 the non-null transition probabili-
ties areMa,a = 1/4,Ma,b = 1/4, Ma,c = 1/4,Ma,d =

1/4; Mb,b = 2/4, Mb,e = 1/4, Mb,f = 1/4; Mc,c =
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Fig. 4. Set of configurations in systems of sizeN = 2 (A), N = 3
(B), andN = 4 (C). A dot stands for an occupied cell (i.e., with at
least one stress particle). The black box on top of each array is used
later in the text to generalize the results in systems of any size. See
the text for details.

2/4, Mc,e = 1/4, Mc,g = 1/4, Md,a = 1/4, Md,d =

1/4, Md,f = 1/4, Md,g = 1/4; Me,e = 3/4, Me,h =

1/4; Mf,b = 1/4, Mf,f = 2/4, Mf,h = 1/4; Mg,a =

1/4, Mg,g = 2/4, Mg,h = 1/4;Mh,a = 1/4, Mh,h = 3/4.
Thus

M =



1/4 1/4 1/4 1/4 0 0 0 0
0 2/4 0 0 1/4 1/4 0 0
0 0 2/4 0 1/4 0 1/4 0

1/4 0 0 1/4 0 1/4 1/4 0
0 0 0 0 3/4 0 0 1/4
0 1/4 0 0 0 2/4 0 1/4

1/4 0 0 0 0 0 2/4 1/4
1/4 0 0 0 0 0 0 3/4


, (N = 4). (6)

And, after its diagonalization, one finds

pa = 9/64, pb = 7/64, pc = 9/128,

pd = 3/64, pe = 23/128, pf = 5/64,

pg = 15/256, ph = 81/256, (N = 4). (7)

From these numbers, one deduces that in a system withN =

2 levels one should expect relaxations of sizek = 1 with a
probabilityp1 = pa = 1/2 , and of sizek = 2 with p2 =

pb = 1/2. In N = 3, p1 = pa + pb = 1/2, p2 = pc = 1/8,
andp3 = pd = 3/8. And inN = 4, p1 = pa + pb + pc +

pe = 1/2, p2 = pd + pf = 1/8, p3 = pg = 15/256 =

0.05859..., andp4 = ph = 81/256= 0.316406....
Thus, we have observed that in systems withN = 2, N =

3 andN = 4 levels, the value ofp1 is a constant equal to 1/2
and this result coincides with Table 1. We have also observed
that inN = 3 andN = 4 the value ofp2 is a constant equal

to 1/8, and inN = 4 we have deduced thatp3 = 0.05859.
All this agrees with Table 1.

A conclusive argument proving that in this model the value
of pk is a constant, independent of the sizeN , is obtained by
re-analyzing Fig. 4 from a wider perspective. Now we con-
sider that in Fig. 4A the configuration labelled bya repre-
sents, in a system of sizeN , all the configurations in which
the leveli = 2 is not occupied; the rest of the levelsi > 2 are
in any possible state of occupation (this is represented by the
black level at the top of the configuration). And in Fig. 4A,
configurationb, we consider a system of sizeN which has its
second level occupied. The probabilities of these two cases
must add to unity. Then, defining a Markov chain for these
two excluding states, and using the same notation as before,
we find Ma,a = (N − 1)/N, Ma,b = 1/N, Mb,a = 1/N ,
andMb,b = (N − 1)/N . The diagonalization of this matrix
leads forpa andpb to the same results written in Eq. (3),
pa = pb = 1/2. However, its interpretation now is different.
Here,pa = 1/2 implies that for any value ofN , the proba-
bility of having a relaxationk = 1 is 1/2; andpb = 1/2 sim-
ply means that the probability of having relaxationsk > 1
is 1/2. Using the same line of reasoning, and referring to
Fig. 4B, configurationa represents all the configurations, in
a system of sizeN , where levelsi = 2 andi = 3 are not
occupied. And configurationb represents all the configura-
tions where the leveli = 2 is vacant and the leveli = 3 is
occupied, etc. Then, the non null transition probabilities are
Ma,a = (N − 2)/N, Ma,b = 1/N, Ma,c = 1/N; Mb,b =

(N − 1)/N,Mb,d = 1/N; Mc,a = 1/N, Mc,c = (N −

2)/N, Mc,d = 1/N;Md,a = 1/N,Md,d = (N − 1)/N . The
diagonalization of this matrix provides the same stationary
probabilities quoted in Eq. (5). Herepc = 1/8 means that
for an arbitraryN , the probability of occurrence of relax-
ations of size 2,p2, is 1/8. And the fact thatpa + pb = 1/2
confirms that for anyN , p1 = 1/2.

Extending this line of reasoning to the 8 configurations
drawn in Fig. 4C, one concludes that, for anyN , p3 = pg =

15/256 = 0.058593.. and one verifies the previous conclu-
sionsp1 = 1/2 andp2 = 1/8.

Therefore, in this model, if for a system of sizeN one
knows all thepk from k = 1 to k = N , then for a system of
sizeN + 1 thepk are identical, with the exception of the last
two, and these fulfill

pN (N) = pN+1(N + 1) + pN (N + 1). (8)

The recursive way in whichpN (N) divides intopN+1(N+1)

andpN (N + 1) is, however, non trivial.
Let us analyze now, from the Markov-chains point of view,

the results for the time of return of the characteristic earth-
quake shown in Fig. 2. After ak = N relaxation, the system
is left in the configuration of no occupancy (for the present
discussion we will refer to this configuration asa1). A new
characteristic relaxation will occur when, starting from the
configurationa1, the system reaches the configuration of to-
tal occupancy (which will henceforth be denoted byaN ), and
then the next particle is assigned to thei = 1 level. The num-
ber of time steps elapsed betweena1 andaN , plus 1, will be



518 M. Vázquez-Prada et al.: A minimalist model of characteristic earthquakes

denoted byn. And our purpose is to compute the probability
of occurrence of ak = N relaxation as a function ofn. It
must be understood that betweena1 and the occurrence of
the nextk = N relaxation at timen, the system may have
visitedaN an arbitrary number of times but without trigger-
ing anyk = N earthquakes. In other words, in those visits
there has been no transition fromaN to a1.

In Markov chains, the transition matrixM gives the proba-
bility of going from one configuration to another in one step,
and them-step transition probability is them-th power ofM .
Thus a simple way to computeP(n) is the following:

1 takeM , point to the element in the last row and the first
column, and substitute it by 0. We will denote the new
matrix M ′;

2 computeTn = M ′(n−1);

3 take the element of the first row and the last column of
Tn, and multiply it by 1/N . This result isP(n).

This is clear, becauseM ′ does not permit transitions from
aN to a1. Thus, inTn we have all the probabilities of tran-
sitions, inn − 1 steps, between all the configurations, with
the restriction that fromaN to a1 this passing is forbidden.
Hence, inTn the matrix element of the first row and the last
column corresponds to the transition froma1 to aN in n − 1
steps and with the modeaN −→ a1 locked. Finally, as the
1/N factor is the probability of the transitionaN −→ a1, we
actually have builtP(n). In Fig. 3, forN = 10, we see the
perfect match between the Monte Carlo simulations and the
results coming from the theory of Markov, calculated using
Mathematica.

In order to get a quantitative insight onP(n), let us apply
this method toN = 2. In this case,M is given by Eq. (2).
Hence,

M ′
=

(
1/2 1/2
0 1/2

)
,

M ′(n−1)
=

(
1

2

)(n−1) (
1 n − 1
0 1

)
, (9)

and, therefore,

P(n) = (n − 1)(1/2)(n−1)(1/2) =
n − 1

2n
, (N = 2). (10)

Thus, we observe that the asymptotic fall-off behaviour of
P(n) is of the type

P(t) ∝ t exp(−t), (N = 2). (11)

It is important to recall that in aperiodic, irreducible and finite
Markov Chains such as that of our model, the mean waiting
time for a configuration is the inverse of the stationary prob-
ability of that configuration. Then, the mean time between
characteristic relaxations in this model is

< n >=
1
aN

N

=
N

aN

. (12)

As an example, forN = 4, < n >= 4 · (256/81) = 12.4
time units.

4 Discussion and conclusions

We have presented a one-dimensional discrete model of seis-
micity that, inspired by the role of an asperity in a fault,
displays a size-frequency spectrum similar to that expected
from Characteristic Earthquake behaviour. Although this
stochastic model obviously lacks the explicit physics of other
detailed –and complex– dynamical models of earthquakes,
its basic hypotheses and implications are clear, phenomeno-
logically reasonable and coherent. The size invariance of
this model, also surprisingly manifests itself in predicting
an identical probability of occurrence for earthquakes of the
same magnitude independent of the sizeN of the system. In
this universal rule the characteristic earthquake is excluded.
This model has the additional bonus that several important
predictions can be algebraically derived by using the theoret-
ical framework of the Markov chains. Specifically, the statis-
tics of the time of return of the characteristic earthquake are
neatly predicted by this formalism. We are currently working
on the comparison of the predicted return time of the charac-
teristic earthquake in this model with actual return times for
earthquakes in active faults. A preliminary analysis shows
that real characteristic earthquakes on faults have a behaviour
consistent with the prediction of our model (Gonzáles et al.,
2002). These results will be published elsewhere.

Dahmen et al. (Dahmen et al., 1998) report a model able to
pass from the Gutenberg-Richter to the Characteristic Earth-
quake behaviour and, what is more interesting, these au-
thors define a configurational entropy as an appropriate con-
cept that reflects which of these two extreme behaviours the
system is actually operating in. In qualitative terms, the
Gutenberg-Richter behaviour corresponds to a high entropy
mode of operation while the Characteristic Earthquake be-
haviour corresponds to a low entropy mode. Therefore, we
would like to make an assesment of our model from this
configurational entropy point of view and check the concor-
dance, or not, with the conclusions of Ref. Dahmen et al.
(1998).

In our model, the configurations are classified into groups
according to the number of levels,j , that are occupied. The

statistical weight of eachj is C

(
N − 1

j

)
, which has its

maximum values forj aboutN/2. Conversely, the statis-
tical weight is minimum on the extrema: forj near 1 and for
j nearN − 1. Then, we need to find out the values of the
stationary probabilities of each occupation numberj . This is
shown in Fig. 5 for a system of sizeN = 100. There we ob-
serve how in our model the system resides most of the time
in the configurations of maximum occupancy, that is, where
the configurational entropy is a minimum, agreeing with the
interpretation of Ref. Dahmen et al. (1998).

As a final minor remark, note that in Fig. 5p(j=N) and
p(j=N−1) are identical. This is a property that holds in this
model for any value ofN and which can be easily proved.
For brevity reasons, we omit this proof.
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