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Abstract. In a spirit akin to the sandpile model of self- from one fault to another and that, in general, this type of
organized criticality, we present a simple statistical modelsize-frequency relationship is different from the Gutenberg-
of the cellular-automaton type which simulates the role of Richter law. Many single faults or fault zones display power-
an asperity in the dynamics of a one-dimensional fault.law distributions only for small events (small compared with
This model produces an earthquake spectrum similar to théhe maximum earthquake size a fault can support, given its
characteristic-earthquake behaviour of some seismic faultsarea), which occur in the intervals between roughly quasi-
This model, that has no parameter, is amenable to an algeeriodic earthquakes of much larger size which rupture the
braic description as a Markov Chain. This possibility illumi- entire fault. These large and quasi-periodic earthquakes are
nates some important results, obtained by Monte Carlo simtermed “characteristic” (Schwartz and Coppersmith, 1984),
ulations, such as the earthquake size-frequency relation anaind the resulting size-frequency relationship, Characteristic
the recurrence time of the characteristic earthquake. Earthquake distribution.

There is much debate about the origin of the characteris-
tic earthquake distribution (Dahmen et al., 1998). Because
1 Introduction of the short period of instrumental earthquake records and

the scarcity of paleoseismic studies (Wesnousky, 1994; Sieh,
If there is a well-established fact about regional Seismicity1996; Petersen et al., 1996), the statistics of naturally occur-
it is the relationship between the magnitude of an earth-ing earthquakes in single faults are poor. This fact justifies
quake and its frequency, known as the Gutenberg-Richter lathe development of “synthetic seismicity” models, in which
(Gutenberg and Richter, 1956). This law is of the power-lawlong catalogues of events are generated by computer models
type when magnitudes are expressed in terms of rupture are@f seismogenesis. Such models can be tuned by requiring

that they reproduce what is known of the statistics of past
N o S7°, 1) seismicity to a reasonable degree, and then use them to fore-

hereN is th ber of ob d earthauak ith ruot cast statistical inferences about the behaviour of seismicity
Wherelv 1S tn€ number of ObSErved earthquaxes with fup ureusing much longer and homogeneous catalogues of synthetic
area greater tha$), andb is the so-called-value, which is a events

universal constant” in the range 0.5-1.5 (Kanamori and An- Many different seismicity models have been presented in

dgrson, 1975; Ka?ga”' 1999; Turcotte, 1999). The Gu'Fenbergt-he past twenty years or so. Robinson and Benites (1995)
Richter law implies that earthquakes are, on a regional or

. o . classify these modelling approaches into five groups: (1) cel-
world-wide scale, a self-similar phenomenon lacking a char- .
. lular automata models, (2) spring-block models, (3) models
acteristic scale (but see Knopoff, 2000). : : ) AR ) )
- : of single faults in which slip is discretized into patches and
It is important to notice, however, that the Gutenberg- L L ; :
. . . N . < obey simplified friction laws, (4) continuum models that uti-
Richter law is a property of regional seismicity, appearing

LT ; lize realistic constitutive friction laws, and (5) actual physical
when we average seismicity over big enough areas and lon odels
enough time intervals. In the last ten years, a wealth of data Cell I r automata model red in seismoloaical liter
has been collected to extract statistics on individual systems ellular automata models appeare seismological fiter-

of earthquake faults (Wesnousky, 1994; Sieh, 1996; Peterseﬂture in the late 80s and early 90s, hand in hand with the

et al.,, 1996). Interestingly, it has been found that the dis—ConcePt of seli-organized criticality (Bak and Tang, 1989;

I ; . Ito and Matsuzaki, 1990; Chen et al., 1991; Matsuzaki and
tribution of earthquake magnitudes may vary substannally_l_akayasu 1991: Nakanishi, 1990: Olami et al.. 1992). A cel-

Correspondence tal. B. Gdmez (jgomez@posta.unizar.es) lular automaton is a mathematical model of a complex nat-
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ural system which contains a large number of simple iden-presence of a particularly strong element in the system which
tical components with local interactions among themselvesactually controls its relaxation.

(Wolfram, 1994). All cellular automata consist of three basic  In comparison, the one-dimensional cellular automaton
parts: (i) the underlying lattice, which defines the topology version of the classical Burridge-Knopoff slider-block model
of the spatial discretization, (ii) the neighbourhood, which has a nearest-neighbour stress-transfer mechanism (ingredi-
defines the interaction range between elements; and (i) thent number 3 in the list above) instead of a percolation-
transition rule, which tells us how the state of the systemlike one as our model has. Besides, the cellular automaton
at discrete time will change at timer - 1. The link be-  Burridge-Knopoff model has one free parameter to be ad-
tween cellular automata models and seismicity works by disjusted, which is a ratio of elastic constants and which con-
cretizing a fault as a one- or two-dimensional plane madetrols the degree of dissipation of the model (from non conser-
up of a large number of patches. These models are usuwative to conservative). These two differences clearly sepa-
ally nondeterministic and neglect the details of both elas-rate the behaviour of both models: Gutenberg-Richter for the
ticity and fault friction, substituting them by simple cellu- one-dimensional cellular automaton version of the Burridge-
lar automata rules. Despite their simplicity, they are able toKnopoff model and the Characteristic Earthquake for our
reproduce various types of size-frequency statistics, includmodel (see Pelletier (2000) for a recent and comprehensive
ing Gutenberg-Richter and Characteristic Earthquake distriveview of the use of spring-block models in seismology).
butions (Lomnitz-Adler et al., 1992; Barriere and Turcotte, Also, because of the inherent simplicity of the model, we
1994; Main, 1996). want to be able to derive analytically some of the statistical

Self-organized criticality (SOC) (Bak et al., 1987, 1988) properties of the resulting synthetic seismicity using Markov
is a difficult concept to define. In the broadest sense (Sorchains.

nette, 2000), SOC refers to the spontaneous organization of

a large system driven from the outside into a globally sta-

tionary state, which is characterized by self-similarity (i.e., 2 The model and its simulations

power-law) distributions of event sizes and fractal geomet-

rical properties. This stationary state is dynamical in na-Consider a one dimensional vertical array of lengthThe
ture and is characterized by statistical ﬂUCtuationS, WhiChordered positionS, or |eve|sl in the array will be labelled by
are referred to generically as avalanches. From the seisan integer index varying from 1 toN. This system performs
mology point of view, the avalanches are the earthquakeswo functions: it is loaded by receiving individual stress par-
themselves, the external drive is the accumulation of teCtOﬂiQideS in the various positions of the array, and unloaded by

stress by plate motion, and the self-invariant distribution of emitting groups of particles through the first level= 1,
event sizes is the Gutenberg-Richter law. Three recent bookghich are called relaxations or earthquakes (Fig. 1).

dealing with SOC in seismology are Turcotte (1999); Sor-  These two functions proceed using the following four
nette (2000); Hergarten (2002), and the reader is referred tg|es:
these sources for an updated bibliography on the topic.

The key ingredients of any of the seismicity models men- (i) The incoming particles arrive at the system at a constant
tioned above are: (1) the dimensionality of the fault (1D or time rate. Thus, the time interval between each two suc-

2D), (2) the number of faults included in the model (one, a  cessive particles will be considered the basic time unit
few, or many faults), (3) the employed stress transfer mecha-  in the evolution of the system.

nism (nearest-neighbours, long-range elasticity, mean-field),
(4) the degree of incorporation of inertial effects (quasi- (ii) All the positions in the array, from = 1toi = N, have
static, quasi-dynamic, or fully dynamic), (5) the assumed the same probability of receiving a new particle. When

constitutive stress-slip law (experimental, static-dynamic, a position receives a patrticle we say that it is occupied.
velocity-weakening, etc.), and (6) the degree of stress con-
servation (conservative versus dissipative models). (ii) If a new particle comes to a level which is already occu-

Our purpose here is to build a simple cellular automaton pied, its stress is simply dissipated. Thus, a given posi-
model of seismicity capable of displaying a size-frequency tioni can only be either non-occupied when no particle
relationship of the Characteristic Earthquake type. That is, has come to it, or occupied when one or more particles
a model which exhibits a power-law relationship for small have come to it.
events and an excess of big events (of the order of the system
size), together with a very low probability of events of inter- (iv) The leveli = 1 is special. When a patrticle goes to this
mediate size. With respect to the six basic ingredients of dis-  first position a relaxation event occurs. Then, if all the
crete models of seismicity introduced above, the model pre-  successive levels froin= 1 up toi = k are occupied,
sented here is (1) one-dimensional, (2) for a single fault, (3) and the positiort + 1 is empty, the effect of the relax-

with a percolation-like stress-transfer mechanism, (4) quasi-  ation —or earthquake— is to unload all the levels from
static, (5) static/dynamic with total stress drop, and (6) dissi- i = 1 uptoi = k. Hence, the size of this relaxation is
pative. To this list we would add that our model is inspired k, and the remaining levels > k remain unaltered in

by the concept of asperity (Das and Aki, 1977), i.e. in the their occupancy.
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Fig. 2. Probability of occurrence of earthquakes of magnitide
Three simulations are superimposed, corresponding to three differ-
ent system sizes\ = 10 for the dotted lineN = 100 for the
® dashed line, an&V = 1000 for the continuous line). Note that the
. probability of occurrence of earthquakes smaller than the charac-
[ 1) relaxation teristic one is independent of the size of the system, and that the
size =4 probability of the characteristic earthquake decreases very slowly
(1 1) with N.

i.e. after a new incoming particle assignment, we will have
open end an earthquake if the new particle goes te: 1, and this oc-
curs with a probability 1N. Conversely, with a probability
Fig. 1. Layout of the minimalist model. The vertical array df of (N — 1)/N there will be no earthquake. In this case the
cells is closed at the top and open at the bottom. Each time step dystem will advance one unit in its level of occupation when
stress particle is added randomly to the array. A relaxation of sizgpa new particle is assigned to a non-occupied level, and it

k occurs when the added stress particle hits the lowermosticell. iy ramain at the same configuration if the assigned level
is the number of consecutive cells, starting from the bottom, that,

. ) was already occupied.
contain at least one stress patrticle. ) . . . .
As this model is one-dimensional, extensive Monte Carlo

simulations can be performed to accurately explore its prop-
erties. In this paper we focus on two important properties:

Thus, from what has k_)ee.n mentlo_ned abovgz th|.s mOde{he earthquake size-frequency relation and the statistics of
has no parameter; the si2é is the unique specification to the time of return of the maximum-size earthquake.

be made, and the spatial cor_relgtion iS indu_ced by_ rule (V). The results for the earthquake size-frequency relagion,
NOW’ the state of the system is given by stating which of the o grawn in Fig. 2 and written in Table 1. In Fig. 2 we have
(i > 1) N — 1 levels are oc;cume_d. Each of these states uperimposegh; for N = 10, N = 100 andV = 1000. This
corresponds to a stable_conﬁgurat}on,1?nd therefore the tot as been partly included in Table 1 as well. In Fig. 2 there are
Pumber of poss&:le conflgura.tlons |.§V2' ' Wg use the term three notable properties to be commented on. First and most
total occupancy” for the configuration in which all levels but important, we see that the characteristic relaxatios; N,

the first are f)CCUp'ed' . o _ has a much higher probability of occurrence than the big re-
Th_e prominent role givento the leviel= _1|S equivalentto  |axations but withk < N. In fact, for N = 10, 100 and 1000,
considering that the asperity of the fault is located there. Af-the probability of these three characteristic relaxations does
ter the occurrence of a relaxation the system is left in a stableyot differ much, and is about 10%. We can express this fact
configuration. The following partic_le a(_JIdition_s progressively by saying that in this model, grosso modo, one would likely
load the system, and when a particle is again assigned to thgpserve only very small earthquakes and the characteristic
firstlevel a new relaxation is triggered. Each relaxation emp-gne. Secondly, forgetting for a moment the case= N,
ties the lower levels of the system as explained in rule (iv),we observe a power law behaviour of the Gutenberg-Richter
and the system is left in another stable configuration. Theype for the other earthquakes. The exporieot this differ-
size of the earthquakes can thus range from 1 uy @nd  ential distribution is roughly 1.6 (i.e. the corresponding cu-
the earthquake of maximum size= N, is called the char-  mulative exponent is compatible with the phenomenological
acteristic one. range 05 < b < 1.5). And thirdly, we observe the per-
From these evolution rules we deduce that after a time unitfect coincidence of these curves of probability for systems
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Table 1. Probability of occurrence of the earthquake of magnitude 0.025 T y T y T y T y T
k for a different system sizey L N=10 1
0.020 -
k N=2 N=3 N=4 N=10 N =100
1 0.500000 0.500000 0.500000 0.500022 0.499920 0.015 - -
2 0.500000 0.125000 0.125000 0.124974 0.125130
3 0.375000 0.058594 0.058599 0.058600 § 0.010 L |
4 0.316406 0.034855 0.034860
5 0.023499 0.023460
6 0.017126 0.017140 0.005 - B
7 0.013151 0.013130
8 0.010506  0.010510 0000 - ]
9 0.008627 0.008640
10 0.208636 0.007210 0 j 0 j w00 50 200
99 0.000228 n
100 0.111320

Fig. 3. Probability of return of the characteristic earthquake as a

function of time. Timen is the number of stress particles added
of different sizeN. This is also appreciated in the numbers since the latest relaxation. Note the “stress shadow” for short times,
collected in Table 1. This, in a sense, unexpected behaviouyhich indicates the existence of a minimum return time between
will be discussed in detail in the next Section. characteristic earthquakes. It is also worth noting the perfect agree-

In Fig. 3 we represent the probability curve for the time of ;rlljtr;t between the Markov chain (dots) and Monte Carlo (line) re-
recurrence of the characteristic earthquake. This curve, ob-—

tained by Monte Carlo simulations, corresponds to a system

of N = 10. In the abscissas axis, time (denotedipgtarts  Fig. 4. In Fig. 4A, B and C there appear all the stable con-
at 0 just after the occurrence ofka= N relaxation. Itis  figurations, ordered in an increasing state of occupation, for
clear in this model that only after a minimum time lapse of N = 2, N = 3, andN = 4, respectively. For the moment,
size N the probability of occurrence of a nev= N char-  the black level in the top position of the configurations has
acteristic earthquake can be non null. We observe in Fig. o0 meaning.

that after this minimum time lapse’,(n) grows to a maxi- For N = 2, using the same order and notation for the
mum and then declines. For the sive= 10 analyzed inthis  configurations as in Fig. 4A, the transition probabilities are
figure, the maximum of probability corresponds to atime in- M, , = 1/2, My, = 1/2 , Mp, = 1/2, andMp , = 1/2.
tervaln = 34. This figure agrees with the value obtained Thus

later solving the model as a Markov chain process. 1/21/2
M=(1/z 1/2), N =2. @
3 The model as a Markov chain This M is a doubly stochastic matrix and hence the two

) _ ) stationary probabilities are equal.
It is easy to become convinced that, for a giverthe 2V-1

stable configurations of our model can be considered as the. = 1/2, p» = 1/2, (N =2). ©)
states of a finite, irreducible and aperiodic Markov chain For N = 3, the non-null transition probabilities araf, , =
with a unique stationary distribution (see, for example, Dur-l/3 M T 13, My, = 1/3; My), = 2/3, M, _“*f/g,
ret, 1999). These configurations are classified into groups, ' _‘"li/g M ’ _”"1'/5 M ’ _b’bl/g_ M, f’dl/_B ané;l
according to their occupation number (number of occupiedM"’“ _ 5 3'ThC’C -  Med = e = '
levels); the number of configurations withoccupied lev- d.a =2/3. Thus

elsisC N N 1 . One step in the chain corresponds to 1/31/31/3 O

J 0 2/3 0 13
the result of adding a new particle to the system. UptoapM =| 13 o 13173 |- (N =3). 4)
proximately N = 10, the transition matrixiM, can be eas- /3 0 0 23

ily obtained using Mathematica as well as the corresponding

stationary probabilities for each configuration, which corre-And the components of the eigenvector corresponding+o
spond to the components of the eigenvectdviofiith eigen- 1 are:

value,x, equal to unity. _ _ . _ _

For smallN, M and its eigenvectors are obtained by in- %~ Y4 po=1/4. pe=1/8 pi=3/8 (N=3.0)
spection. Let us then start reproducing the first numbers Finally, for N = 4 the non-null transition probabili-
quoted in Table 1 for the probabilities of occurrence of re-ties areM, , = 1/4, M, = 1/4, My = 1/4, Myq =
laxations in small systems. With this aim, let us considerl/4; M, = 2/4, My, = 1/4 My = 1/4 M. =
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Fig. 4. Set of configurations in systems of sixe= 2 (A), N = 3

to 1/8, and inN = 4 we have deduced thag = 0.05859.
All this agrees with Table 1.

A conclusive argument proving that in this model the value
of py is a constant, independent of the si¢gis obtained by
re-analyzing Fig. 4 from a wider perspective. Now we con-
sider that in Fig. 4A the configuration labelled byrepre-
sents, in a system of sizé, all the configurations in which
the leveli = 2 is not occupied; the rest of the levéls- 2 are
in any possible state of occupation (this is represented by the
black level at the top of the configuration). And in Fig. 4A,
configurationb, we consider a system of si2éwhich has its
second level occupied. The probabilities of these two cases
must add to unity. Then, defining a Markov chain for these
two excluding states, and using the same notation as before,
we find M, , = (N — 1)/N, M, = 1/N, My, = 1/N,
andM; , = (N — 1)/N. The diagonalization of this matrix
leads forp, and p; to the same results written in Eq. (3),
pa = p» = 1/2. However, its interpretation now is different.
Here, p, = 1/2 implies that for any value oW, the proba-
bility of having a relaxatiort = 1 is 1/2; andp, = 1/2 sim-
ply means that the probability of having relaxatidns- 1

(B), andN = 4 (C). A dot stands for an occupied cell (i.e., with at js 1/2. Using the same line of reasoning, and referring to

least one stress particle). The black box on top of each array is useplig_ 4B, configuration: represents all the configurations, in
later in the text to generalize the results in systems of any size. Seg system of sizeV, where levels = 2 andi = 3 are not

the text for details.

2/ 4, Mee = 1/4 My = 1/4 Mgy = 1/4 Myy =
/4, My r = /4 My, = 1/4Mee = 3/4 M., =
1/4; Mf’b = 1/4, Mfyf = 2/4, Mf,h = 1/4 Mg,a =
1/4, My, = 2/4, Mg n = 1/4; Myp . = 1/4, M, = 3/4.
Thus

1/41/41/41/4 0 0 0O O

0240 02414 0 O
0 0 240 140 240
|14 0 0 174 0 1/41/4 0O _
M=1"0 0 0 0340 0ya|] V=90
0 /40 0 0 24 0 14
/40 0 0 O 0 241/4
/40 0 0 0O O 0O 34
And, after its diagonalization, one finds
pa =9/64, pp, =7/64, p.=9/128
pa =3/64, p.=23/128 py=5/64
pe = 15/256, p, = 81/256, (N=4. (7)

From these numbers, one deduces that in a systemNvith
2 levels one should expect relaxations of size- 1 with a
probability p1 = p, = 1/2, and of sizék = 2 with py =
pp=1/2.InN =3, p1=ps + pp = 1/2, p2 = p. = 1/8,
andps = pqs = 3/8. AndinN =4, p1 = pa + pp + pc +
pe = 1/2, p2 = pa+ pr = 1/8, p3 = pg = 15/256 =
0.05859.., andps = p, = 81/256 = 0.316406...

Thus, we have observed that in systems with= 2, N =
3andN = 4 levels, the value op; is a constant equal tg/2

occupied. And configuratioh represents all the configura-
tions where the level = 2 is vacant and the level= 3 is
occupied, etc. Then, the non null transition probabilities are
Ma,a = (N - 2)/N, Ma,b = 1/N, Ma,c = 1/N7 Mb,b =

(N —1)/N.Mpa = YN;Mey = 1N Mcc = (N —
2)/N,M;q=1/N;My,=1/N,My 4= (N—1)/N. The
diagonalization of this matrix provides the same stationary
probabilities quoted in Eq. (5). Herne. = 1/8 means that
for an arbitraryN, the probability of occurrence of relax-
ations of size 2p», is 1/8. And the fact thap, + p, = 1/2
confirms that for anw, p; = 1/2.

Extending this line of reasoning to the 8 configurations
drawn in Fig. 4C, one concludes that, for a¥My p3 = pg =
15/256 = 0.058593. and one verifies the previous conclu-
sionsp; = 1/2 andp, = 1/8.

Therefore, in this model, if for a system of si2é one
knows all thep, fromk = 1tok = N, then for a system of
sizeN + 1 thep; are identical, with the exception of the last
two, and these fulfill

PN(N) = pn41(N + 1D + py(N + D). €

The recursive way in whichpy (N) divides intopy +1(N+1)
andpy (N + 1) is, however, non trivial.

Let us analyze now, from the Markov-chains point of view,
the results for the time of return of the characteristic earth-
quake shown in Fig. 2. After a= N relaxation, the system
is left in the configuration of no occupancy (for the present
discussion we will refer to this configuration ag). A new
characteristic relaxation will occur when, starting from the
configurationus, the system reaches the configuration of to-
tal occupancy (which will henceforth be denotedday), and

and this result coincides with Table 1. We have also observedhen the next particle is assigned to the 1 level. The num-

thatinN = 3 andN = 4 the value ofp; is a constant equal

ber of time steps elapsed betwagranday, plus 1, will be
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denoted by:. And our purpose is to compute the probability 4 Discussion and conclusions

of occurrence of & = N relaxation as a function of. It

must be understood that betweenand the occurrence of We have presented a one-dimensional discrete model of seis-
the nextk = N relaxation at time:, the system may have Micity that, inspired by the role of an asperity in a fault,

visiteday an arbitrary number of times but without trigger- displays a size-frequency spectrum similar to that expected
ing anyk = N earthquakes. In other words, in those visits from Characteristic Earthquake behaviour. ~Although this

there has been no transition frang to a;. stochastic model obviously lacks the explicit physics of other

In Markov chains, the transition matri gives the proba- ~ detailed —and complex— dynamical models of earthquakes,
bility of going from one configuration to another in one step, its basic hypotheses and implications are clear, phenomeno-
and then-step transition probability is the-th power ofM. logically reasonable and coherent. The size invariance of

Thus a simple way to comput®(n) is the following: this model, also surprisingly manifests itself in predicting
an identical probability of occurrence for earthquakes of the

1 takeM, point to the element in the last row and the first 510 magnitude independent of the sizef the system. In
column, ?nd substitute it by 0. We will denote the new ;s ynjversal rule the characteristic earthquake is excluded.
matrixM" This model has the additional bonus that several important

2 computeT, = M/ D predictions can be algebraically G!erived by_qsing the theo.ret—

. ical framework of the Markov chains. Specifically, the statis-

3 take the element of the first row and the last column oftics of the time of return of the characteristic earthquake are

T, and multiply it by ¥ N. This result isP (n). neatly predicted by this formalism. We are currently working

This is clear, becaudd’ does not permit transitions from N the comparison of the predicted return time of the charac-
ay to a1. Thus, inT, we have all the probabilities of tran- teristic earthquake in this model with actual return times for

sitions, inn — 1 steps, between all the configurations, with earthquakes in active faults. A preliminary analysis shows
the restriction that fromay to a; this passing is forbidden. that real characteristic earthquakes on faults have a behaviour

Hence, inT, the matrix element of the first row and the last consistent with the prediction of our model (Gaies et al.,

column corresponds to the transition framto ay in n — 1 2002). These results will be published elsewhere.
steps and with the modey —> a; locked. Finally, as the Dahmen et al. (Dahmen et al., 1998) report a model able to
1/N factor is the probability of the transitiany —> a1, we pass from the Gutenberg-Richter to the Characteristic Earth-

actually have builtP (n). In Fig. 3, for N = 10, we see the quake behaviour and, what is more interesting, these au-

perfect match between the Monte Carlo simulations and thdhors define a configurational entropy as an appropriate con-
results coming from the theory of Markov, calculated using cept that reflects which of these two extreme behaviours the
Mathematica. system is actually operating in. In qualitative terms, the

In order to get a quantitative insight @h(n), let us apply Gutenberg—Rich_ter behaviour correspoqd; to a high entropy
this method taV = 2. In this caseM is given by Eq. (2). mode of operation while the Characteristic Earthquake be-
haviour corresponds to a low entropy mode. Therefore, we
would like to make an assesment of our model from this
M/ = (1/2 1/2) ’ configurational entropy point of view and check the concor-

Hence,

0 1/2 dance, or not, with the conclusions of Ref. Dahmen et al.
1\ =D (1998).
(n—1) 1 1 . . ige .
M =13 o 1 ) 9) In our model, the configurations are classified into groups
according to the number of levelg, that are occupied. The
and, therefore, N

n—1
P(n)=(n-1(1/2" P12 = i W=2. (10 maximum values forj aboutN/2. Conversely, the statis-
tical weight is minimum on the extrema: fgmear 1 and for
j nearN — 1. Then, we need to find out the values of the
stationary probabilities of each occupation numperhis is
P(t) o< t exp(—1), (N = 2). (11) shown in Fig. 5 for a system of sizé = 100. There we ob-
serve how in our model the system resides most of the time

Itis important to recall that in aperiodic, irreducible and finite . . : . .
in the configurations of maximum occupancy, that is, where

Markov Chains such as that of our model, the mean Waitingthe configurational entropy is a minimum, agreeing with the
time for a configuration is the inverse of the stationary prob-. : !
9 y P interpretation of Ref. Dahmen et al. (1998).

ability of that configuration. Then, the mean time between ) . N
Y J As a final minor remark, note that in Fig. /3;—x) and

characteristic relaxations in this model is . . ) . .
P(j=~N—-1) are identical. This is a property that holds in this

<n>= % _N ) (12)  model for any value ofV and which can be easily proved.

N 9N For brevity reasons, we omit this proof.

As an example, foN = 4, < n >= 4. (256/81) = 124 AcknowledgementsAmalio F. Pacheco and Miguel azquez-
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