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Abstract. This paper presents the analysis of symmetric cir-
culations of a rotating baroclinic flow, forced by a steady
thermal wind and dissipated by Laplacian friction. The anal-
ysis is performed with numerical time-integration. Sym-
metric flows, vertically bound by horizontal walls and sub-
ject to either periodic or vertical wall lateral boundary con-
ditions, are investigated in the region of parameter-space
where unstable small amplitude modes evolve into stable sta-
tionary nonlinear solutions. The distribution of solutions in
parameter-space is analysed up to the threshold of chaotic
behaviour and the physical nature of the nonlinear interac-
tion operating on the finite amplitude unstable modes is in-
vestigated. In particular, analysis of time-dependent energy-
conversions allows understanding of the physical mecha-
nisms operating from the initial phase of linear instability to
the finite amplitude stable state. Vertical shear of the basic
flow is shown to play a direct role in injecting energy into
symmetric flow since the stage of linear growth. Dissipation
proves essential not only in limiting the energy of linearly
unstable modes, but also in selecting their dominant space-
scales in the finite amplitude stage.

1 Introduction

Although never directly observed, in nature or in labora-
tory, symmetric baroclinic instability has been considered for
decades a natural physical process of potential relevance in
geophysical and astrophysical fluid dynamics. For what con-
cerns its role in Meteorology, the difficulties that have to be
faced in the application of the available theoretical concepts
in the context of operative analysis-forecasting activity have
been extensively illustrated in literature (see, for example,
the recent review by Schultz and Schumacher, 1999). As
a matter of fact, our interest is particularly in the potential
role of symmetric baroclinic instability in some weather phe-
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nomena typical of the Mediterranean area. It is known that
(usually under cyclogenetic conditions) “banners” of nega-
tive potential vorticity can form downstream of the Alps (see,
for example, Aebischer and Schär, 1998) and intense precip-
itations can take place even under conditions of overall sta-
bility with respect to ordinary convection (see, for example,
Tudur and Ramis, 1997) within (usually sub-frontal) “pre-
cipitation bands”. This induces to assume that sub-synoptic
scale processes of vertical uplift may be operating in the form
of “symmetric” (almost two-dimensional) flow: symmetric
baroclinic conversion is, consequently, a natural candidate.
However, despite the potential practical importance and the
numerous published studies, a solid theoretical background
concerning quasi-two-dimensional baroclinic conversion is
still lacking. Particularly needed is a deeper understanding of
the physical nature of the finite amplitude stabilisation mech-
anism, not only for its obvious impact on the “parameterisa-
tion” of symmetric instability, but also for its importance in
interpreting observations and designing new observation de-
vices (in particular remote sensing from space).

In view of the above mentioned problems, we analyse in
this paper an idealised fluid system often discussed in liter-
ature (see, in particular, Gu et al., 1998; hereinafter GXW),
nonlinear viscous symmetric flow of a rotating Boussinesq
fluid. The symmetric flow is “forced” by the baroclinic insta-
bility of the basic flow (a uniform thermal wind in the direc-
tion of symmetry kept constant in time) and dissipated by dif-
fusive (Laplacian) friction. The time-evolution is explored,
both in the linear and nonlinear regimes of flow, by means
of spectral and finite-difference numerical models. Several
physical properties of the flow evolution (space-scales, en-
ergy, potential vorticity, etc.), as well as the distribution of
solution types (stable linear, stable nonlinear, chaotic) in the
parameter space are analysed and discussed. The main ob-
jective is to capture the essential physical nature of the sta-
bilisation mechanism.

The paper is organised as follows: in Sect. 2 the basic
equations are proposed together with a description of the
physical system they model; in Sect. 3 and 4 numerical
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experiments on time-evolution of the flow under, respec-
tively, periodic and “box” lateral boundary conditions are
presented; in Sect. 5 the physical nature of the mechanisms
operating in the numerical time-evolution is further investi-
gated by means of energy analysis; in Sect. 6 we draw our
conclusions.

2 Equations and physical model

2.1 Basic state and perturbation equations

The model adopted in the present work is that proposed by
GXW where the fluid flow variables are represented in terms
of a basic state and a superimposed perturbation. The basic
state is a flow in they-direction (the symmetry direction),
with a constant vertical shear, uniform in the other two direc-
tions and in thermal wind equilibrium:

V = (z − H/2)Vz, (1)

whereVz is the constant vertical shear andH is the height
of the domain. Because of the thermal wind balance the fol-
lowing relationship holds between vertical wind shear and
horizontal temperature gradient:

f Vz = γ ∂2/∂x = S2, (2)

wheref is the (constant) Coriolis parameter;γ = g/20,
with g gravity acceleration and20 a reference potential tem-
perature;2 is the potential temperature of the basic state de-
fined as:

2 = 20 +

(
xS2

+ zN2
)

γ −1, (3)

whereN2
= γ ∂2/∂z is the constant vertical stratification of

the basic state.
The equations governing the time evolution of the pertur-

bation are the Boussinesq equations:

du

dt
− f v = −

1

ρ0
∂xp + η∇

2u, (4a)

dv

dt
+ f u + wVz = −

1

ρ0
∂yp + η∇

2v, (4b)

dw

dt
= −

1

ρ0
∂zp + b + η∇

2w, (4c)

db

dt
+ uS2

+ wN2
= η∇

2b, (4d)

∂xu + ∂yv + ∂zw = 0; (4e)

whereu, v, andw are the three components of the wind vec-
tor, p is the pressure,ρ0 is a constant reference density,b =

γϑ is the buoyancy associated with the perturbation potential
temperatureϑ, η is the turbulent diffusion coefficient,∇2

=

∂2
xx + ∂2

yy + ∂2
zz, andd/dt = ∂/∂t +u∂x + (v +V )∂y +w∂z.

The applied boundary conditions are non-slip, conductive
in the vertical direction:

u = v = w = b = 0 at z = 0, H ; (5)

and periodic or non-slip, conductive in the horizontal direc-
tion.

The differential problem is made non-dimensional with
the following parameters:H is the vertical scale,NH/f the
horizontal scale,f −1 the time-scale,HVz the horizontal ve-
locity scale,HVzf/N the vertical velocity scale,ρ0NH 2Vz

the pressure scale andNHVz the buoyancy scale. The fol-
lowing “numbers” appear in the non-dimensional formula-
tion of the Boussinesq equations:

– Richardson number: Ri= N2/V 2
z ,

– Rossby number: Ro= Vz/f ,

– Ekman number: Ek= η/(f H 2).

Choosing the parameter values (standard in literature on the
subject):f = 10−4s−1, η = 100 m2 s−1, Vz = 10 km and
km, the Rossby number and the Ekman number respectively
assume the values Ro = 10 and Ek = 10−2, while the Richard-
son number is maintained variable. Only in a particular case
presented in Sect. 5, different values of the Ekman number
are adopted.

2.2 Two-dimensional equations

Introducing the symmetry condition (∂y = 0) and defining a
streamfunction for two-dimensional flow in thex − z plane
by means of the relationshipsu = ∂z9 andw = −∂x9,
Eqs. (4a) and (4c) can be combined to eliminate the pressure
from the problem. Three prognostic equations for the vor-
ticity, 19 = (∂2

xx + ∂2
zz)9, the velocity component in the

y-direction,v, and the buoyancy,b, are then obtained:

∂t19 + J (9,19) + ∂xb − f ∂zv = η129, (6a)

∂tv + J (9, v) + f ∂z9 − Vz∂x9 = η1v, (6b)

∂tb + J (9, b) + S2∂z9 − N2∂x9 = η1b, (6c)

whereJ (9, ·) = ∂z9∂x − ∂x9∂z and12
= (∂2

xx + ∂2
zz)

2. In
this vorticity-streamfunction formulation the vertical bound-
ary conditions are:

9 − ∂z9 = v = b = 0 at z = 0, H, (7a)

and the horizontal boundary conditions are: periodic in

x, (7b)

or

9 = ∂x9 = v = b = 0 at x = 0, L; (7c)

L being the extension of the horizontal domain in thex-
direction.
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2.3 The physical model

As already mentioned, the differential problem proposed
above is standard in literature on the subject. However it is
useful, in view of successive discussion, to describe here ex-
plicitly the physical nature of the system modelled by equa-
tions (6a–c) and boundary conditions (7a), (7b) or (7a), (7c).

The system is forced by the instability of the steady, uni-
form thermal wind and dissipated by Laplacian friction. The
basic flow is clearly inconsistent with the boundary condi-
tions (see, for example, Miller, 1984 for a discussion of this
aspect of the problem): it is used as an artifice for forcing
the system by means of the energy conversion from the ba-
sic state into the perturbation field associated with linear in-
stability. With the prescribed boundary conditions the sym-
metric perturbations cannot change the overall gradients of
potential temperature and angular momentum which, conse-
quently, remain the ones of the basic state.

One immediate consequence of this approach is that, in
case of instability, linear baroclinic adjustment (Stone, 1978)
of the basic state, i.e. evolution of the system towards the
threshold of linear baroclinic instability of the basic state, is
not allowed since the “global” stress parameter of the sys-
tem, the Richardson number, cannot be changed by internal
perturbations. Only the nonlinear deformation of the flow
(taking place in a subspace of phase-space with no projec-
tion onto the overall gradients of the basic state) can stabilise
the system. Since the instability of the basic flow cannot be
neutralised, only frictional dissipation can close the energy
balance and compensate energy injection by unstable con-
version.

3 The periodic configuration

3.1 Spectral representation

When horizontally periodic boundary conditions are
adopted, the following spectral representation is selected:

9(x, z, t) =

∞, ∞∑
m=0, n=1

9m, n(t)fm(x)gn(z), (8a)

v(x, z, t) =

∞, ∞∑
m=0, n=1

vm, n(t)fm(x)qn(z), (8b)

b(x, z, t) =

∞, ∞∑
m=0, n=1

bm, n(t)fm(x)qn(z), (8c)

where:

fm(x) =

{
cosm

2 kx for even m,

sin m+1
2 kx for odd m,

(9a)

qn(z) = sin(nπz/H), (9b)

gn(z) =


sinh(µn/2z̄)

sinh(µn/2/2)
−

sin(µn/2z̄)

sin(µn/2/2)
for even n,

cosh(λn/2z̄)

cosh(λn/2/2)
−

cos(λn/2z̄)

cos(λn/2/2)
for odd n.

(9c)

z̄ = z/H − 0.5 and the coefficientsµn/2 andλ(n+1)/2 are
fixed by the following equations (derived from the stream-
function boundary conditions):

coth
1

2
µn/2 − cot

1

2
µn/2 = 0 for even n, (10a)

tanh
1

2
λ(n+1)/2 + tan

1

2
λ(n+1)/2 = 0 for odd n. (10b)

It is important to note that the functions (9c) chosen for
the spectral representation of the streamfunction are not the
natural eigenfunctions of the differential problem obtained
by linearisation of (6a–c), (7a), (7b); they are simply a com-
plete set of eigenfunctions of the lowest order linear differen-
tial (in the vertical coordinate) problem satisfying the chosen
boundary conditions (Emanuel, 1979). As a consequence,
we have, even in the near-critical regime, no mathematical
theory supporting us in estimating a priori numerical conver-
gence and other properties of the spectral numerical repre-
sentation. Specifically, convergence of the spectral represen-
tation must be estimated empirically, on the basis of changes
in the numerical results from one order of expansion to the
other.

To set up the spectral model, the series (8a–c) is substi-
tuted into the system (6a–c) and, projecting (6a) ontofigj

and (6b), (6c) ontofiqj and truncating, a closed system of
ordinary differential equations for the spectral coefficients
9i,j (t), vi, j (t) andbi, j (t) is obtained: this system is inte-
grated by means of a fourth order Runge-Kutta scheme.

3.2 Linear regime

Linear perturbation equations are obtained by eliminating the
JacobianJ (9, ·) in (6a–c). For the truncated spectral expan-
sion, eight functions ofz are used; as mentioned above, the
number is fixed on the basis of the stability of numerical re-
sults with respect to further addition of modes in the spectral
representation. For the representation in thex-direction it
is possible to take whatever number of functions because of
their decoupling typical of the linear regime. As known (see
GXW), linear solutions having a modal structure of the form:

9(x, z, t) =

∑
m

eσmt

(∑
n

9mngn(z)

)
fm(x), (11a)

v(x, z, t) =

∑
m

eσmt

(∑
n

Vmnqn(z)

)
fm(x), (11b)

b(x, z, t) =

∑
m

eσmt

(∑
n

Bmnqn(z)

)
fm(x), (11c)

are characterised by a growth rate distributed in parameter
space as shown in Fig. 1. There is a critical value of the
Richardson number (Ric = 0.58 with the adopted values of
parameters) above which the system is stable. Unstable lin-
ear circulations are characterised by a sequence of identical
clockwise and anticlockwise slanted cells (see an example in
Fig. 2).
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Fig. 1. Spectral model in linear, periodic configuration: growth rate
(in 10−6s−1) as a function ofk/k and Ri;k is the wavenumber of
the modal solution andk is the critical wavenumber corresponding
to the critical Richardson number, Ric (kc = 6.4 × 10−5 m−1,
Ric = 0.58).

3.3 Nonlinear system

Integration in time of the nonlinear version of the spectral
model, with the adopted spectral representation in terms of 8
modes inz and 11 inx (this configuration has been selected
because no relevant variations are observed in the structure
and in the amplitude of the solutions adding higher harmon-
ics), leads to nonlinear stationary solutions that are stable
with respect to two-dimensional perturbations. Numerical
time-integrations initialised in different ways (starting with
only the firstx-harmonic, from the output of a linear run,
from random perturbations of the stationary state, etc.) lead
to the corresponding nonlinear stationary solutions in a wide
range of values of Richardson number. These results confirm
previous guesses (see GXW) about the stability of nonlinear
stationary solutions found by direct solution of the equations
for stationary flow.1

In the nonlinear regime higher energies are found in
correspondence with wavenumbers that are smaller than
those characterised by the highest growth-rates in the lin-

1Time-integrations show, however, some discrepancies with re-
spect to GXW results. In fact, nonlinear perturbations have nonzero
amplitude (measured by means of the area-averaged kinetic en-
ergy, (u2

+ v2
+ w2)/2) in a region of parameter space wider than

that of linear instability in the range of small wavenumbers. It is
difficult to explore this new region of parameter space since, for
small wavenumbers, many morex-harmonics are needed in order
to achieve a correct representation of the solutions. Another differ-
ence found is that the amplitude values are exactly two orders of
magnitude smaller than the values found by GXW. This order of
magnitude corresponds to perturbations of the same “amplitude” as
the basic state (in GXW the perturbations have intensities higher
than that associated to the basic state).

 

 

 

Fig. 2. Spectral model in linear, periodic configuration: vertical
cross section of the streamfunction field in thex − z plane; con-
tinuous lines represent positive values and dashed lines represent
negative values. Clockwise and anticlockwise circulations develop
respectively around minima and maxima. Contour interval is 0.2
in arbitrary units. Parameter values are: Ri = 0.35,k = kc. The
vertical range isH and the horizontal domain covers the largest
wavelength of expansion (11a). Since the largest growth rate is that
associated to the secondx-harmonic, 2kc (Fig. 1), two complete
waves are present in the fixed domain.

ear regime. Thorpe and Rotunno (1989) put forward the
hypothesis that nonlinear equilibration is characterised by a
sort of inverse cascading of energy and the progressive emer-
gence of larger scale circulations. Time-integration with the
spectral model makes it possible to follow directly the time-
evolution of the energy associated to eachx-harmonic: ev-
idence is that there is no inverse cascading of energy from
smaller to higher scales. In fact eachx-harmonic grows
almost independently from the others (see an example in
Fig. 3a, where the harmonics are initialised with the same
amplitude) and in direct interaction with the basic state until
it stabilises by nonlinear self-interaction. As it can be seen
in Fig. 3b (where the initial values are derived from the out-
put of a linear run) at the beginning of the integration all the
energy in concentrated on the second x-harmonic which has
the highest linear growth- rate, but, as the run progresses, the
first x-harmonic, although linearly growing slower than the
secondx-harmonic, reaches a larger amplitude until, finally,
the largest energy is concentrated on it. On the other hand,
that nonlinear self-interaction of the unstable modes must be
the dominant process at least near the threshold of instability,
can be understood by qualitative consideration of the pertur-
bative, weakly nonlinear problem. In the near critical regime,
in fact, the unstable perturbation coincides with the modifi-
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Fig. 3. Spectral model in periodic configuration: nonlinear time
evolution of the area-averaged kinetic energy (total and for the first
threex-harmonics: constant,k, 2k): (a) numerical experiment uni-
formly initialised over all the spectrum;(b) numerical experiment
initialised with the output of the linear experiment. Parameter val-
ues are: Ri = 0.35,k = kc. Energy is measured in m2s−2 and time
is measured in 3× 103 s.

cation of the basic state and the nonlinear correction is the
quadratic self- interaction term leading to the typical “Lan-
dau stabilisation” (Landau and Lifshitz, 1956) displayed by
our solutions.

The structure of nonlinear solutions (see an example in
Fig. 4), in the region of parameter-space where it could be
tested, is invariably characterised by the “selection” of anti-
clockwise circulations. This behaviour seems to be in con-
trast with the previously proposed idea (see Miller, 1984) that
the dominance of one kind of circulation on the other may
be determined by Prandtl number being different from one.
In fact, in the present case (as, for example, in Thorpe and
Rotunno, 1989 and Jones and Thorpe, 1992, where the mo-
mentum diffusion coefficient is equal to the heat diffusion
coefficient) the predominant selection of the anticlockwise
circulations is evident. We did not test the structural stability
of this result since it was outside the scope of our work.

The difference between clockwise and anticlockwise cells
in the nonlinear solution is determined by the presence in the
solution of a wind, uniform along thex-direction, towards
negativex-values in the upper part of the integration domain

 

 

 

Fig. 4. As in Fig. 2, but for the nonlinear simulation: the solution is
normalised at its maximum, that is 1.8× 103 m2s−1 (contour inter-
val = 0.2). The highest energy is associated to the firstx-harmonic,
kc, and one only wave is present in the fixed domain.

and positive in its lower part. Since this kind of uniform
wind is inhibited by lateral confinement of the flow between
two vertical walls, we found interesting to verify the effect
of such walls on the stability of the flow. Nonlinear runs
were performed with the spectral model adapted to a “box
configuration”, that is confining the flow both vertically and
horizontally by means of walls over which non-slip, conduc-
tive conditions are imposed. This was simply done by using
in thex-expansion the same functions as in thez-expansion.
We faced, though, problems of numerical stability that lead
us to the conclusion that the adopted spectral representation
is inadequate (probably because the functions used for this
representation are only a complete base and not the natural
eigenfunctions of the differential problem in question). As
a consequence, in the next Section the box configuration is
discussed by means of a finite difference numerical model.

4 The box configuration

4.1 Periodic configuration with finite difference model

The finite difference model was first developed in the peri-
odic configuration to validate its performance by comparison
with the spectral model. By means of the selected staggered
grid (shown in Fig. 5) it is possible to introduce the bound-
ary conditions in a straightforward way and the streamfunc-
tion derivatives can be defined, by means of centred differ-
ences, at the same grid points wherev andb are nonzero.
In the finite difference formulation the system (6a–c) is a
set of prognostic equations for the vorticity, the velocity in



492 R. Mantovani and A. Speranza: Baroclinic instability of a symmetric, rotating, stratified flow

 

 

 

                                
4444444444 34444444444 21

i
 npxnx                                                         2    1    0    1-  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

































×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅
⋅⋅⋅⋅⋅⋅⋅⋅
×⋅×⋅×⋅×⋅×⋅×⋅×⋅×⋅

−
−

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

oooooooo

0
1
2
3
4

2nz
1nz

nz
npz

j

Fig. 5. Finite difference model in periodic configuration: scheme
of the staggered grid, where9 is nonzero in correspondence of the
crosses, andv andb are nonzero in correspondence of the circles;
over the dots there is no field. The grid size is nx = 129, nz = 129.

they-direction and the buoyancy. The boundary conditions
are known only for9, ∂z9, v andb: the known boundary
conditions are imposed on the initial streamfunction field;
the initial vorticity is then derived by finite-differencing of
streamfunction and with (6a) its time-evolution is computed;
the updated streamfunction is, finally, obtained from the vor-
ticity with a relaxation method. This procedure is applied at
each time-step and the time-integration, for all the prognostic
variables, is performed by means of an Euler scheme. Test
comparison with the spectral model gives satisfactory results.

4.2 Box configuration

As already stated, flow in the box configuration is studied by
substituting the previous periodic conditions with non-slip,
conductive conditions at vertical walls orthogonal to thex-
direction (7c). The finite difference scheme adopted in the
box configuration is identical to the one of the periodic case,
the only differences being that in the new grid the column
corresponding toi = 1 (see Fig. 5) is absent and the finite
difference version of conditions (7a), (7c) is imposed in place
of the periodicity condition.

Time-integrations, starting from random initial perturba-
tions superimposed on the zonal flow, show that in the linear
regime unstable solutions have normal mode structure char-
acterised by a growth rate (Table 1) of the same magnitude
and distribution in the parameter space as previously found
in the periodic configuration. Here also, nonlinear stationary
solutions are stable and their amplitude (measured by means

 

 

 

 

Fig. 6. Finite difference model in periodic, nonlinear configuration:
contributions to the time rate of change (in 10−6 m2S−3) of the
area-averaged perturbation(a) kinetic and(b) potential energy as
a function of time for the simulation with Ri = 0.35,L = 2µ/kc

(L here represents the length over which the periodic condition is
imposed), Ek = 0.01. The time is measured in 105 s.

of the area-averaged kinetic energy; Table 2) is nonzero in
the same region of parameter space where the linear solu-
tions are unstable. An important difference with respect to
the periodic case is that in some cases clockwise circulations
are dominant, as it can be seen in Table 3 where the symme-
try of the solutions is shown as a function of the Richardson
number and the width of the horizontal domain.

In the finite amplitude regime, space-scales larger then
those characterising the linear regime are observed (as in the
periodic configuration).

The structure of the final stationary flow configuration can
be quite varied (clockwise or anticlockwise dominant circu-
lation, different number of cells, etc.).

4.3 The threshold of transition to chaotic behaviour

In order to identify the range of Richardson number values
in which stable stationary solutions dominate the dynamical
behaviour of the system, we pushed the Richardson number
to values at which the transition to a chaotic regime takes
place. In the periodic configuration, the transition to chaotic
behaviour was located, within the limits of our numerical ap-
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Table 1. Finite difference model in linear box configuration: growth
rate (in 10−6 s−1) as a function ofL and Ri. For a comparison with
Fig. 1,L is represented by means ofk/kc (wherekc is the critical
wavenumber of the periodic configuration)

Ri

k/kc 0.35 0.4 0.45 0.5 0.55 0.6

4 S S S S S S
3.5 2 S S S S S
3 6 S S S S S
2.5 11 1 S S S S
2 20 8 S S S S
1 26 16 8 2 S S
1/2 27 17 10 5 0.7 S
1/4 24 17 10 5 1 S
1/8 17 12 7 3 S S
1/16 8 5 2 S S S
1/24 3 1 S S S S
1/36 S S S S S S

S = stable modal solution.

Table 2. As in Table 1, but for the amplitude of the nonlinear so-
lutions measured by means of the area-averaged kinetic energy (in
m2s−2)

Ri

k/kc 0.35 0.4 0.45 0.5 0.55 0.6

4 0 0 0 0 0 0
3.5 0.01 0 0 0 0 0
3 0.08 0 0 0 0 0
2.5 0.25 0.03 0 0 0 0
2 0.15 0.08 0 0 0 0
1 0.38 0.25 0.14 0.03 0 0
1/2 0.48 0.35 0.22 0.09 0.01 0
1/4 0.52 0.41 0.27 0.13 0.02 0
1/8 0.58 0.44 0.28 0.13 0 0
1/16 0.68 0.45 0.21 0 0 0
1/24 0.60 0.18 0 0 0 0
1/36 0 0 0 0 0 0

proach, at Ri∼= 0.18 for the spectral model and Ri∼= 0.15
for the finite difference one. In the box configuration (finite
difference model only) the transition took place at approxi-
mately Ri∼= 0.14. We did not investigate further the chaotic
regime since our interest was in stationary states. On the
other hand, the values of parameters at which transition oc-
curs are by far non- realistic for atmospheric applications,
that are our main geophysical objective.

Table 3. As in Table 1, but for the structure of the nonlinear so-
lutions; the number after the letter refers to the number of waves
present in the stationary solution

Ri

k/kc 0.35 0.4 0.45 0.5 0.55

3.5 C-1 N N N N
3 C-1 N N N N
2.5 C-1 C-1 N N N
2 A-1 A-1 N N N
1 A-1 A-1 A-1 A-1 N
1/2 A-2 A-2 A-2 A-2 A-2
1/4 A-4 A-4 A-4 A-4 A-4
1/8 A-7 A-7 A-7 A-7 N
1/16 A-12 A-12 A-12 N N
1/24 A-16 A-17 N N N

C = clockwise dominant circulation.
A = anticlockwise dominant circulation.
N = zero amplitude circulation.

Table 4. Spectral model in nonlinear, periodic configuration: am-
plitude of the solution (measured by means of area-averaged kinetic
energy in m2s−2) as a function of and Ek

Ri

Ri 0.0001 0.0005 0.001 0.002 0.003 0.004

1 0 0 0 0 0 0
0.9 CH 0.04 0.01 0 0 0
0.8 CH CH 0.15 0.11 0.05 0.01
0.7 CH CH CH 0.36 0.27 0.17
0.6 CH CH CH CH 0.51 0.42
0.5 CH CH CH CH CH 0.65
0.4 CH CH CH CH CH CH

CH = chaotic regime.

5 Energy conversions

5.1 Definition of energy conversions

Total perturbation energy,E, is defined as a combination of
perturbation kinetic energy,K = (u2

+ v2
+ w2)/2, and

perturbation potential energy,P = b2/(2N2). The rate of
change of the area-averaged kinetic, potential, and total per-
turbation energy is:

∂t < K >= η < v · 1v >︸ ︷︷ ︸
Ia

−Vz < wv >︸ ︷︷ ︸
IIa

+ < wb >︸ ︷︷ ︸
IIIa

, (12a)

∂1 < P >=
η

N2
< b1b >︸ ︷︷ ︸

Ib

−
S2

N2
< bu >︸ ︷︷ ︸

IIb

− < bw >︸ ︷︷ ︸
IIIb

, (12b)
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Fig. 7. As in Fig. 6, but for the time rate of change of the area-
averaged total perturbation energy.

∂t < E >= η < v · 1v >︸ ︷︷ ︸
I

+
η

N2
< b · 1b >︸ ︷︷ ︸

II

−Vz < vw >︸ ︷︷ ︸
III

−
S2

N2
< bu >︸ ︷︷ ︸
IV

, (12c)

wherev = (u, v, w) and< · > represents averaging over
the entirex − z cross section. Equations (12a–c) hold for
both periodic and wall-conditions in thex-direction. Each
equation contains a dissipative contribution (Ia, Ib, I and II).
Equations (12a) and (12b) show that there is an exchange be-
tween kinetic and potential perturbation energy described by
the baroclinic term IIIa (or IIIb) while conversion between
basic flow and perturbation kinetic energy is described by
the shear term IIa. From Eq. (12c) it is evident that time-
variations of total energy are caused by momentum and heat
dissipation (respectively I and II), vertical momentum trans-
port (III), and horizontal heat transport (IV).

5.2 Energy-conversions in linear unstable growth

Figure 6 shows the time-evolution of the different compo-
nents of the energy budget: the baroclinic term< wb > re-
moves potential energy (Fig. 6b) and creates kinetic energy
(Fig. 6a). However, the principal source of kinetic energy is
the shear term−Vz < vw > and, consequently, the direct
conversion of kinetic energy into kinetic energy. In classical
quasi-geostrophic baroclinic instability perturbation energy
can be extracted only from the basic state thermal wind and
not from the associated vertical shear. Here, however, due to
the strongly non-geostrophic nature of the symmetric insta-
bility, direct conversion from shear is possible.

5.3 Energy-conversions in finite amplitude modes

By means of Eq. (12c) the physical nature of the finite am-
plitude dynamics can be better understood. In the periodic
case (see Fig. 7), it is evident that the limitation to the energy
of unstable modes is entirely due to dissipation, while verti-
cal momentum transport and horizontal heat transport cause

 

 

 

Fig. 8. As in Fig. 7, but with the finite difference model in nonlinear
box configuration for the simulation with Ri = 0.35,L = 2µ/k (L
here represents the distance between the vertical walls confining the
flow horizontally), Ek = 0.01.

the growth. As expected (see Sect. 2), this behaviour is very
different from linear baroclinic adjustment which would re-
quire (see, for example, Emanuel, 1988) the “global” (i.e.
at the boundaries of the flow domain) alignment of iso-V

surfaces with iso-M ones (V is the total potential tempera-
ture field andM is the total absolute momentum field). In
fact, unstable conditions correspond to iso-M surfaces less
sloped than iso-V surfaces or, equivalently, to negative po-
tential vorticityq (here defined asq = J (V, M)). However,
with no-slip boundary conditions the global, overall distri-
bution of potential vorticity cannot be changed and remains
that of the prescribed basic flow, corresponding to the fixed
Richardson number. In the finite amplitude stationary states,
q is characterised by structures of the same space scale as the
perturbation, in correspondence of which also positive values
are reached. The mean value of the field, however, remains
the same of the initial condition (uniformly distributed and
negative).

From Fig. 7 it is also possible to see that, being vertical
velocity typically much smaller than the horizontal one, hor-
izontal heat transport contributes to the energy growth more
than vertical momentum transport.

Stabilisation in the box configuration (see Fig. 8) is very
similar to that described above for the periodic case. The sta-
tionary, finalq-field is characterised by structures of the same
space scale as the perturbation, but the mean value remains
the initial one. The presence of walls inhibits the motion in
thex-direction and this reflects into the energy conversions in
which stabilisation is operated by dissipation, but the growth
is primarily operated by vertical momentum transport.

In view of the central role played by dissipation in lim-
iting the growth of unstable modes, it is interesting to study
regimes of very small viscosity. To this purpose, we searched
for the smallest Ekman number associated with stationary so-
lutions by means of the spectral model (in the periodic con-
figuration) where the fundamentalx-harmonic is equal to the
critical one. Table 4 shows, in the parameter-space of the



R. Mantovani and A. Speranza: Baroclinic instability of a symmetric, rotating, stratified flow 495
 

 

 

Fig. 9. As in Fig. 7, but with the spectral model in nonlinear, peri-
odic configuration for the simulation with Ri = 0.9,k = kc, Ek =
0.0005. The time is now measured in 3× 106 s

system, the area-averaged kinetic energy of the perturbation
stationary solution when a stable state is reached and, other-
wise, the indication of a chaotic regime. As it can be seen,
when the Ekman number is reduced also the interval between
zero amplitude and chaotic regime decreases. The small-
est Ekman number to which we could associate a stationary
solution is 0.0005, with a Richardson number equal to 0.9.
Time-evolution of energy (Fig. 9) reveals that not only dis-
sipation operates to contrast the growth of perturbations, but
also the horizontal heat transport gives a contribution. In all
the analysed cases, there is no correlation between the sign of
the stabilisedq-field and the particular circulation developed
in the same region.

6 Conclusions

In this paper we analyse linear and nonlinear symmetric
flows of a non-hydrostatic stratified rotating fluid, forced by
a constant thermal wind and dissipated by Laplacian fric-
tion. The study is performed by means of numerical time-
integration and analysis of energy conversions in time. With
the type of forcing adopted, in the unstable regime, the flow
does not support any kind of linear baroclinic adjustment
(drift of the basic state towards conditions of neutrality with
respect to linear instability). Consequently, in terms of en-
ergy conversions it can achieve nonlinear equilibration only
by balancing the energy injection due to the instability of the
basic zonal wind with dissipation, while the nonlinear self-
interaction of the growing modes neutralises the baroclinic
instability.

Our analysis confirms that in a vast range of values of
Richardson number (between the threshold of linear insta-
bility of the zonal flow and that of transition to chaotic be-
haviour) stable nonlinear stationary solutions exist that are
reached by stabilisation of linearly unstable modes.

The space-scale typical of such finite amplitude solutions
is larger then the one characterising fastest growing linear

modes. Analysis of the mechanism of scale-selection in the
periodic case shows unstable modes that are slower growing
and of larger space-scale than the most unstable ones, even-
tually stabilise to a larger amplitude. It is the efficiency of
nonlinear self-interaction of growing modes, rather than non-
linear mode-mode coupling, to select the scale of the mode
eventually dominating the flow.

The physical mechanism of stabilisation is characterised
by the fact that, under conditions of linear instability, the final
stable state shows a potential vorticity field with structures of
the same space-scale as the perturbation circulations, while
the mean potential vorticity in the flow domain remains un-
changed (as dictated by the boundary conditions). In fact,
energy analysis shows that the global energy-stabilisation is
entirely operated by dissipation. The mechanism seems to
be robust as it operates efficiently with both periodic and box
boundary conditions, in a vast range of flow parameters.

The main features of the modelled symmetric circulations
are in general agreement with what we observe in precip-
itation bands, except for the time-scale typical of the tran-
sition (from linear growth to nonlinear stabilisation) which
is rather long with respect to what we observe in the atmo-
sphere. Other mechanisms (for example, direct transfer of
vorticity from the basic flow into the symmetric circulation)
may be competitive. Also the application of the above de-
scribed models to parameterisation of symmetric flow in syn-
optic scale atmospheric models seems problematic, since no
variational criterion could be identified. In order to achieve
practically useful results, further studies seem necessary as,
in particular:

– Generalization to boundary conditions allowing for
global adjustment, i.e. feed-back onto the zonal flow.

– Generalization to three-dimensional turbulent flow in
which the background shear can operate more directly
and dissipation is more realistically modelled. Both
generalisations are under study.
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