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Abstract. In this paper, we show that the behavior of weakly this bifurcation, fourth-order terms in the normal form ex-
nonlinear waves in a 2-layer model of baroclinic instability pansion may be ignored. Smal (2) symmetry-preserving
on ag-plane with varying viscosity is determined by a sin- perturbations to this third-order normal form then give rise
gle, degenerate codimension three bifurcation. In the proto the Lorenz equations (Moroz, 1981). Further away from
cess, we show how previous studies, using the method ofhe degenerate bifurcation, fourth-order terms in the normal
multiple scales to derive evolution equations for the slowly form expansion become important, corresponding to a tran-
varying amplitude of the growing wave, arise as special lim-sition from weakly to strongly dissipative behavior. A subset
its of the general evolution description. of the symmetry-preserving perturbations was then shown to
produce the equations discovered by Pedlosky (1970) in his
multiple-scales investigation of the inviscid system.

In this paper, we reinstaté and develop a unified pic-
ture of bifurcations of weakly-nonlinear waves in a two-layer

In a recent paper (Lovegrove et al. (2001), hereafter de_model of baroglinic inst_ability with varying viscosity. Sec-
noted by 1), the spectral amplitude equations for the two-tion 2 summarizes multlple-scales analyses for both strongly
layer model of baroclinic instability on afi-plane were used ~ and weakly dissipative systems on theplane. In Sect. 3,

to examine the differences between the multiple-scales apth® Spectral amplitude equations are presented in both the
proximations, developed by Pedlosky (1970, 1971) and Mo-Original and co-rotating frames, and the bifurcations obtained
roz (1981) for different dissipative regimes. This was pOS_v.vith strong gnd weak djssipation are anal'ysed in Sect. 4. Sec-
sible because the derivation of the spectral amplitude equalion S considers the circle map appropriate for fiplane
tions does not require any restriction to be placed on the siz&0del. Section 6 considers the consequences of incregsing
of the dissipation parameter, thereby giving the spectral in the spectral equations, while Sect. 7 discusses the inviscid,
amplitude equations validity over the range0- < 1. weakly-dispersive limit. Finally, we summarize and discuss

The equations were shown to reproduce the behavior op®Ur results in Sect. 8.
served in both the strongly and weakly dissipative limits
when the spectral variablesand y were restricted to be-
ing real. It was then shown that, because the complex spec  Multiple scales analyses
tral amplitude equations were equivariant under the action of

the O (2) symmetry group, the results from the real system, ¢ Strongly dissipative systems:= 0 (1)
could be generalised to the complex case. It was also shown

D e e DXl Romea (1977 and Noroz (1361 bt perfomed mupe
tion Itval found that th y i npdi inati r?limitw scales expansions of the two-layer quasi-geostrophic equa-
equations. as fou at the strong dissipatio %Stions for a two-layer model on A-plane, in which the dis-

valid forr > 0.07, while the weak dissipation limit holds for sipation was strong. Using the supercriticality paramefer,

0<r<0.'03' . . . ... asthe small parameter in the expansion, where
The bifurcations present in the weakly dissipative

multiple-scales approximation were shown to originate in a
i . T : oF —F. =
degenerate bifurcation on the inviscid axis, and that close t

1 Introduction

F  with F < Fe, (1)

Correspondence td?. L. Read (p.read1@physics.ox.ac.uk) the critical value of the Froude numbét,, at which the flow
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becomes unstable is given by Equations (5) have been shown by Gibbon and McGuin-
ness (1982) to be equivalent to the complex Lorenz equa-
K? 1 2F2 r2K? tions:
FC=7+—2U2( 2ﬁ2c 2t | 2) _
4 \K?(K?+ F?) n X=-0X+o07,
while the wave speed is Y= RX_ai_XZ’
P Z=-¢Z+E(WY+XYﬂ, @)
o =Us = 35—, 3)
(K + Fc) wheres andb are real numbersR = Ry + iRy anda =
1—ie. In contrast to the original Lorenz equations, therefore,
whereU; = (u1 + uz)/2. the “Rayleigh number”R, is now complex. To the best of

In contrast to thef-plane model discussed by Lovegrove our knowledge, the complex Lorenz equations have not been
et al. (2001), the wave speed on theplane now depends  as thoroughly investigated as the original Lorenz equations,
on the wavelength. The wave no longer travels at the speegnd very little is known about the bifurcations that occur in

of the mean-flow, but the presence of the planetary vorticitythe weakly dispersive, weakly dissipative regime. We now
gradient introduces a retardation proportionalst@nd the  summarize what is known.

solution represents a stable interfacial wave travelling more
slowly than the mean-flow. Consequently, in the frame of the2.3 The complex Lorenz equations
spectral model, wherg; = 0, the waves in #-plane model
would appear to be travelling “westward”. The first comprehensive study of Egs. (7) was performed by
Fowler et al. (1982), who showed thatRsis increased, the
trivial solution undergoes a supercritical Hopf bifurcation to
a stable travelling wave. IR1 is increased further, the trav-
elling wave loses stability to a travelling wave with a period-
ically modulated amplitude. After performing a number of
initial value numerical integrations, Fowler et al. (1982) con-
V=143 (4)  cluded that the transition to this amplitude vacillation was via
a subcritical Hopf bifurcation to an invariant torus and that
whereC indicates a complex-valued coefficient. Following frequency-locking between the drift frequency of the travel-
Moroz (1981), the details of the coefficients have been omit-jjhg wave and the frequency of the amplitude vacillation was
ted. not possible. They observed that fBf = 40 andR, — 0,
Equations (4) are similar to those obtained for the stronglythe torus underwent a sequence of period-doubling bifurca-
dissipative system on aft-plane (see I), except for the pres- tions and remarked that “the effect of complexification is to
ence of a complex coefficient in the equations. This convert oscillatory states into “doubly” oscillatory ones
changes the initial bifurcation from the trivial solutidn= 0 and there is no particular reason to suppose the rich behavior
from a pitchfork to a Hopf bifurcation. As in |, the amplitude of the real Lorenz equations is otherwise modified”, although
of the final wave solution is independent of the initial state of no explanation was offered as to how the “extra oscillatory

Wheng ~ O (]—‘%), so that the system is weakly dis-

persive, the multiple-scales approximation to the two-layer
equations was found to be of the form

A=CA— AV,

the system. motion” arose.
. The nature of the torus in the complex Lorenz equations
2.2 Weakly dissipative systems= O(F2) was investigated in detail by Fowler and McGuinness (1984),

who showed that ag, — 0 andR; — oo, the drift fre-
Brindley and Moroz (1980) showed that the inclusion of a quency associated with the travelling wave tended to a value
weak g-effect in the multiple-scales analysis for a weakly that was half that of the frequency of the amplitude oscilla-
dissipative system also leads to a complexification of the codion. In this way, the torus reduced to a limit cyclefgt= 0,
efficients so that the equations governing the weakly dissipain agreement with the real Lorenz equations. An averaging

tive, weakly dispersive regime become: technique was then used to suggest that a homoclinic explo-
sion of tori, occurring a1 — oo, was the origin of the

A=CA—-CA-AV, period-doubling bifurcations observed &s — 0.

V4V =|A2+ A2 (5)

2.4 Inviscid systems

As above, the trivial solution is always a fixed point of this Pedlosky (1970) and Moroz (1981) extended the multiple-

system, losing stability in a Hopf bifurcation as the Froude g5jes approach to include weakly dispersive, inviscid sys-
number,F, is increased through a critical valug,, givenby  tams and obtained

2 _
LQ_QE—KQ

K2AK2+F)? k| V=1A7, 8)
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for the evolution of the slowly-varying amplitude. The crit- which is the same as the condition required for instability on
ical value of the Froude number at which linear instability an f-plane (see Part I), apart from the addition of a modi-

occurred was given by fying term due to the presence of tjgeeffect. Substituting
BF from Appendix A for the coefficients in Eq. (13), yields the
Uj=—""°“" | (9)  following condition for a Hopf bifurcation to occur:

1
K2(4F2 — K4)2
( c ) U2 B 1 FCZ,BZ
which differs from the critical value given by Eq. (6) inthe ~d — (2FC _ [(2) KZ(KZ L F )2
limit » — 0 ¢

K2r2 2
F, - 2
Uy = BF. . (10) + (1+rex?) } (14)
2

K(2F. — K?)? (K2 + F.)

wherer is a dissipation parametef, is the Froude number,

Equation (10) shows that the critical shear for instabil- ¢ is the Rossby numbet;, is the zonal velocity difference
ity to occur in the inviscid limit of viscous theory is less between the layerss is the total wave number arig is the
than that predicted by purely inviscid theory. This situation zonal wave number. In the absence of horizontal momentum
has been discussed by Holopainen (1961), Newell (1972)diffusion, Eq. (14) recovers the multiple-scales condition for
Romea (1977) and Pedlosky (1981b), and suggests that th@stability in dispersive, dissipative systems given in Eq. (6).
combined effects of @-effect and viscosity can destabilize The appearance of a Hopf bifurcation in a dispersive regime,
an otherwise stable shear flow. in contrast to the pitchfork of revolution that was found to
be present in thg-plane system, is related to the symme-
try differences between thg-plane and thef-plane spectral

3 Bifurcations in the weakly dispersive regime amplitude equations as we now discuss.

3.1 The spectral amplitude equations of-plane 3.2 SO (2) symmetry

The spectral amplitude equations for baroclinic instability on ., sh10ch (1996) has examined the effect of symmetry

ap-plane (cf Eq. (9) of I) take the form: changes on certain bifurcations, and his ideas will now be
applied to theB-plane spectral amplitude equations. The
) Y, effect may be incorporated into a channel model by introduc-

X = — (A, +iBy) X + <1+ Vg
ing a slope to the upper and lower boundaries to represent

Vs

Y =—(Ag+ i@d) Y +vs(va +v42) X, the presence of a planetary vorticity gradient. As a result, the
77— _Az+ L (X*Y n XY*) ’ (11) syst_em is no longer symmetric unde_r a reflection in a plgne
Vg cutting across the channel and there is now a preferred direc-

where(X,Y,Z) = (As; + iB,, —ivs(Aqg + iBg), Xq) (see tion in the system. Whef # O Eq. (11) remaip equivariant
Lovegrove et al., 2001, hereafter referred to as Part I, for!nder the action of the rotation symmeirybut is no longer
further details), the dot indicates differentiation with respect €duivariant under the action of the reflection symmet(gf

to time, and the coefficients are given in Appendix A. As in Parth) i.e.f (sX) = sf (x), but f (px) # pf (x) and, there-
the f-plane limit, the trivial solution(X, ¥, Z) = (0, 0, 0) fore, only hasSO (2) symmetry. Knobloch has shown that

is always a fixed point of Egs. (11), and its stability can be €hanging the symmetry of a system fr@n(2) to SO (2) in-

studied by linearizing the equations about the fixed point andr0duces a new frequenay, into the system. In th¢-plane
computing the eigenvalues to give system, the initial bifurcation from the trivial solution created

a stationary wave in which the spatial phage,remained
(Ag+ Ag Fi (Bs + Ba)) constant with time (see Part I). In tifeplane system, how-
2 ever, the introduction of a preferred direction and the con-
. sequent change of symmetry means that the spatial phase of
[(As = A Fi (Bs = Pa))* + Avyva] , thgwave forrr?ed in t);le initigl bifurcation is no FI)ongerpcon—
_ 2 stant, but instead oscillates with the new frequenrgy,As
As = —A. (12) a result, thef-plane continuum of fixed points representing
stationary waves is no longer possible; instead we obtain a
travelling wave with a drift frequency,. This limit cycle is
created in a Hopf bifurcation, which replaces the pitchfork of
revolution that was present on tifeplane.
Knobloch (1996) also showed that any secondary bifurca-
ns present in a system will be affected by the symmetry of
that system. In Part I, we showed that there was a subcritical
Vs Vg (Bs — Ba)? Hopf bifurcation present in the weakly dissipatiyeplane

Ay Ay =1+ (A + A2 (13) system. It was argued that this subcritical Hopf bifurcation

A1234=—

NI

+

SinceA is proportional to the dissipation, the real eigen-
value A5 will clearly be negative for all non-zero values of
r. The remaining eigenvalues form two complex-conjugate
pairs and the system loses stability in a Hopf bifurcation
when the real part of one of these pairs passes through zerg.
This occurs when
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leads to a continuum of unstable limit cycles (i.e. a torusenergy from the mean-flow. A negative value®is consis-
foliated by periodic orbits). Just as breaking the reflectiontent with a westward tilt, while a positive value ®findicates
symmetryp leads to the creation of a limit cycle from a con- an eastward tilt of the disturbance with height.

tinuum of fixed points, so it will also lead to the creation of  If we define

a torus from a continuum of limit cycles. By the symmetry = ~ -~ =

arguments presented here, one can therefore see tha the (Ad, Ba) = (PAs + OBs, QA + PBy), (16)
plane Hopf bifurcation must be a bifurcation to an invariant it follows from (15a) and (15b) that

torus (cf Fowler and McGuinness, 1984). (A, By, Ag, By, Xg) = (—~wBs, wA,, —wBa, wAg, 0), (17)

3.3 Transformation to a co-rotating frame with

In the numerical solution of th¢-plane system (carried out AsAa + BsBa = P|f|2’

in Part I, as in the present work, using AUTO86; Doedel, AsBs — BsAq = —QIS/?,

1981; Doedel and Kernevez, 1986), it was possible tobranchy 2 p 2 _ D2 = (i;z n Qz) 15)2. (18)
switch at the subcritical Hopf bifurcation in order to trace

out the curve of unstable periodic orbits. This led to the de-Substitution of the above into Egs. (11) and solving for the
tection of the homoclinic connection. To perform a similar steady travelling wave, we obtain:

anglysis for th_eB-pIa_ne system, it _is necessary to branch- (Bs Ad + Baly)

switch at the bifurcation to an invariant torus. Unfortunately, ® = AT A,

AUTO86 does not possess the facility to do this. This leads _F d

to two possible methods for investigating the bifurcations on| g2 _ AdA _ vaA

— & — —T
a B-plane; either a purely analytical or a hybrid approach vay ZydzyAS
involving some analytical work combined with solution con- vgA 5 "
tinuation may be used. + 2—_[f - 4EAsAstVd] ,
2Vd VZAN

The first approach was employed by Fowler and McGuin-
ness (1984) to deduce that the torus bifurcation was subcritQ = —,
ical, but it rapidly became complicated and incapable of in- [AdE — rarlS] ]
vestigating any subsequent bifurcations. In the second ap-_ ~(w+B
proach, used by Weng et al. (1986) in their study of the EadyP = 0 ————~,
problem, the equations of motion were transformed into a Ay
reference frame rotating with an angular frequeacyThe Xy = —+ §|S|2, (19)

~

|‘<|

travelling wave became a single fixed point, and the bifurca- A

tion to an invariant torus became a Hopf bifurcation. Branch-where

switching using AUTO86 is now feasible, and it is this ap- (Bs — Ba)?

proach that we adopt here. E=1+ Ny and T = vsys — vays. (20)
A

The amplitude of the travelling wave must be calculated
analytically in order to provide a point for the AUTO86 con- Hence,
tinuation algorithm. Following Weng et al. (1986) we intro- & _ _ A g — (v, + y,X,) DSin®,

duce D =—Ay4S+ (vg + yaXq) DSiNG,

(As, By) = (|S| cos(wt + o) , Xg=—AXy+7SDsin®,
. ] s
|S|sin(wr + ¢0)), (15a) O = Bs — By + — (Vg + yaXq) COSO
(A, Ba) = (ID| cos(wt + ¢o + ©), b b
|D|sin(wt + ¢o + O)), (15b) -3 (vs + ¥: X4) COSO. (22)
where S is the amplitude of the barotropic wav®, is the Note that in Egs. (21) botl and D are positive quantities

amplitude of the baroclinic wavey is the frequency of the and the modulus signs have been dropped for convenience.
travelling wave; an® is the zonal phase difference between Also, these equations are undefined when either D is
the barotropic and baroclinic waves (which determines thezero. This is in contrast to the original untransformed equa-
vertical phase tilt of the resultant wave). Due to the presenceions whereS = D = 0 is a valid solution and means that the
of the translational symmetry in the weakly dispersive sys-transformed equations can only be used for a solution contin-
tem, there is no preferred initial position for a wave to form, uation once a wave is present in the system. Hence, for any
and so an arbitrary initial spatial phagg, must be included numerical solution continuation using AUTO86, we used the
for full generality. untransformed equations of motion to determine the point at
It is well-known (e.g. Pedlosky, 1964) that, in order for which the trivial solution becomes unstable. Once this has
baroclinic instability to occur, the wave must tilt to the west been found, the transformed equations could then be used in
with height. This allows for the growing disturbance to draw all subsequent analyses.
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4 Bifurcations in a dissipative system cade takes place, in which the original branch of torus solu-
tions re-stabilies.
4.1 Strong dissipation Thus, there are no homoclinic connections present in

the weakly dissipative, weakly dispersive spectral amplitude
The analysis of the strongly dissipative system was perform-€equations, thereby disagreeing with the hypothesis put for-
ed forr = 0.2, ¢ = 0.05 andg = 0.1, with the Froude num- ward by Fowler and McGuinness (1984) that the complex
ber as the bifurcation parameter. Calculations show that thé-orenz equations possess a homoclinic connection. The
trivial solution loses stability to a travelling wave in a Hopf causes of this apparent discrepancy will now be examined.
bifurcation atF = 5.49, which remains stable over the range
of Froude numbers considered. After the creation of the trav4.3  Symmetry and homoclinic cycles
elling wave¢ becomes negative, indicating a westward tilt

with height required for the formation of an interfacial wave. cnhossat (1993) recently examined the effect of symmetry
Numerical integrations of the untransformegtplane  breaking on homoclinic cycles. He showed that perturba-
equations of motion clearly show the differences betweentions which break the reflectional symmetry of @n2) sys-
the strongly dissipativeweakly dispersivesystem and the tem generically cause a homoclinic connection to bifurcate
strongly dissipativef-plane system (see Part I). In both to quasi-periodic flow on a 2-torus. The resultiS@ (2)
cases, there was a stable wave present in the system, but ttion adds one more frequency by allowing for the solu-
theg-plane case, the spatial phase was time-dependent with@on to “drift along the group orbit” and these two frequen-
saw-tooth periodic profile, reflecting the travelling nature of cies cause the quasi-periodic motion on a torus. In our prob-
the wave, whereas in thé-plane, the wave was stationary.  lem, the “drift along the group orbit” is the frequenayof
the travelling wave. Applying Chossat’s idea to this study
4.2 Weak dissipation shows, therefore, that the absence of a homoclinic connec-
tion described above is to be expected from symmetry ar-
Fowler et al. (1982) showed that the Weak|y dissipa’[iveguments. ThiS, together with evidence from the numerical
multiple-scales equations are equivalent to the complexsolution continuation, also suggests the absence of a homo-
Lorenz equations. To see if this also holds for the spectraFlinic connection in the weakly dispersive, multiple-scales
equations we chose = 0.02 andg = 0.1. Theuntrans-  €quations.
formedequations were used to locate the initial Hopf bifur- A g-effect, therefore, destroys the Lorenzian homoclinic
cation and then theansformedequations were used to trace connection and produces a quasi-periodic motion in its place.
out the branch of periodic orbits created in the Hopf bifur- This, in turn, suggests that treomplexLorenz equations
cation. The resulting bifurcation diagram for the barotropic should be viewed as a perturbed form of tleal Lorenz
wave amplitudes, is shown in Fig. 1. equations and there is no reason a priori to suppose that the
As in the strongly dissipative, weakly dispersive system,Lorenzian behavior of th¢'-plane spectral amplitude equa-
the trivial solution loses stability via a Hopf bifurcation tions should persist in the weakly dispersive spectral ampli-
to a trave"ing wave, which Subsequent|y loses Stabi”tytl.lde equations. Indeed, in Part I, it was shown that the exis-
at F = 6.17 in a secondary Hopf bifurcation. Branch- tence of a homoclinic connection in tifeplane system was
switching at this torus bifurcation showed the bifurcation to crucial to the creation of chaotic dynamics. This implies that
be subcritical, as in Fowler and McGuinness (1984). Theif chaotic motion is present in the wealdjjspersivesystem,
branch of unstable tori correspondsttavelling wave solu- ~ as suggested by Fowler et al. (1982), it must be created by
tions in which the amplitude varies periodically in time, in a different mechanism. Th¢-plane andg-plane systems,
the same way that the unstable periodic solutions involved irfherefore, possess fundamentally different dynamics and the
the subcritical Hopf bifurcation on thg-plane represented f-plane model should not be regarded simply asfthe- 0
a stationarywave with a vacillating amplitude (see Part | limit of the -plane model.
for further details). As the Froude number was decreased,
the minimum amplitude of the barotropic wave decreased4.4 Numerical integration
towards zero, so that the unstable tori appear to become
homoclinic to the fixed point representing the unstable trivial A series of numerical integrations was performed to exam-
solution. However, no homoclinic connection takes place;ine the behavior of the system as the Froude number was
instead, the branch of unstable tori becomes stabilized via tcreased beyond the critical value at which the subcritical
saddle-node bifurcation a@ = 5.65. This is in contrast to  torus bifurcation occurred. WheR = 4.0, the trivial so-
the homoclinic connection, for thé-plane model. lution was stable, while for = 5.6, the travelling wave
solution was stable. AF = 5.9, although the solution con-
The branch of tori then undergoes a series of period-doubltinuation suggested that the travelling wave solution should
ing bifurcations, beginning & = 5.67. An enlarged view of  still be stable, the small perturbation to the system did not
the first few of these bifurcations is shown in Fig. 2. At larger in fact settle down to a steady value but instead, evolved to
values of the Froude number, an inverse period-doubling casaperiodic motion.
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Fig. 1. Bifurcation diagram showing
the effect of increasing the Froude num-
ber atr = 0.02, 8 = 0.1. The triv-
ial solution lost stability to a travelling
wave atF = 5.49. The stationary wave
subsequently became unstable to an un-
stable torus in a subcritical secondary
Hopf (or torus) bifurcation af = 6.17.
Both the maximum and the minimum
amplitudes of this orbit are shown. The
branch of unstable tori “flipped back”
on itself in a saddle-node bifurcation
at F = 5.65. The stable branch sub-
sequently underwent a period-doubling
cascade.

Fig. 2. Enlargement of Fig. 1, show-

ing the first two bifurcations in a period-

doubling cascade. Compare this with
Fig. 5 of Part I, which shows the cor-
responding situation for thg-plane.

Fig. 3. Period of the unstable torus
born in the subcritical torus bifurcation.
Note that although the period increases
slightly as the saddle-node bifurcation
is approached, but it never approaches
infinity.

At higher values of the Froude number, integrations of theperiodic, corresponding to a travelling wave undergoing an
transformed equations reproduced the inverse period-doublamplitude vacillation.

ing cascade reported above. Figure 4 shows the final two The barotropic wave amplituds, and the vertical phase,
inverse period-doubling bifurcations in the sequence. In the®, of the singly-periodic orbit aF = 6.5 are shown as func-
tions of time in Fig. 5. It can be seen that wheris negative,

transformed co-rotating frame, the solution & = 6.5 ap-
pears to be singly-periodic, whereas in the origimatrans-

indicating a westward tilt in the instability, the amplitude of
formedframe, theF = 6.5 solution appears to be quasi- the wave is growing and vice versa. This is in agreement with
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Baroclinic wave component, Bd Baroclinic wave component, Bd

Baroclinic wave component, Bd

Fig. 4. A series of numerical integrations performedrat 0.02, 8 = 0.1, showing the last two period-doubling bifurcations in fhe
plane system in both the original, untransformed fraa, [(c) and(e)] and in the transformed, co-rotating fram@®), (d) and(f)]. The
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period-doubling bifurcations, which occur on a quasi-periodic torus, are only readily observable in the co-rotating frame. Note the apparent
widening of the trajectory, in the transformed frame, when the trajectory approachBs+hé axis. This is an artifact of the numerical
integration and is due to the finite step-size used.
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P — — — — Lyapunov exponents measure the average rate of separa-
tion of two neighboring points in phase space. In general, a
system will have a number of different Lyapunov exponents;
each measuring the separation rate in a different direction in
phase space. For andimensional dynamical system, the
Lyapunov exponent is defined by monitoring the long-term
evolution of an infinitesimak-sphere of initial conditions.
Theith Lyapunov exponent;, is then

Barotropic amplitude, S (x5)

o
TS T T T T T[T T T

(22)

wherer denotes time, ang; (¢) is the length of theth ellip-
soidal principal axis. A positive Lyapunov exponent, there-
T —— fore, indicates expansion, whereas a negative exponent de-
Time notes contraction. A system is defined to be chaotic when
one of its Lyapunov exponents is positive (e.g. Wolf et al.,
1985). In general, Lyapunov exponents must be computed
numerically and for the study of the weakly dispersive sys-
tem, the method of Wolf et al. (1985) for numerically es-
(tjimating the value of the largest Lyapunov exponent was
sed. Using this method, an initial value numerical inte-
gration, from which the transients have been allowed to de-
cay, is performed. The phase space attractor of the system is
45 Symmetry-breaking then reconstructed using standard techniques, such as those
described in Lovegrove (1998). Two neighboring points on
As F is decreased, the limit cycle in thg-plane model this attractor are then tracked for a predetermined length of

undergoes a symmetry-breaking bifurcation before periodtime, during which the average rate of expansion is calcu-
doubling occurs (see Figs. 6a and c). If the bifurcations inlated. When these two points move “too far apart”, two new
the f-plane model are re-plotted in tHeA,|, | B4|] plane, neighboring points are selected and the process is repeated
as shown in Figs. 6b and d, the symmetry-breaking bifurcaUntil the estimates of the Lyapunov exponent converge.
tion resembles a period-doubling. In teplane model as Recall from the two-parameter continuation of bifur-
viewed in the co-rotating frame, Figs. 4b and d show that thecations in thef-plane system that, in the, F]-plane, a
bifurcation sequence appears identical to that observed ofolution continuation at a constant valuefof usingr as a
the f-plane, even though the corresponding attractor in thecontrol parameter, should reveal the same principal bifur-
untransformed frame (see Figs. 4a, ¢ and e) appears symmetation sequence as that observed in solution continuations
rical. The first apparent period-doubling in Figs. 4b—d, how- Performed by varying” at constant (i.e. pitchfork— Hopf
ever, is actually a symmetry-breaking bifurcation, but in the = homoclinic). The same should be true of the weakly
untransformed frame the orbit is rotating and quasi-periodic dispersive regime. To support this, Fig. 7 shows a solution
and traces out a torus. Due to the asymmetry, one side of thgontinuation of the weakly dispersive spectral amplitude
torus is thinner and smaller than the other, but the rotatioreduations performed d@ = 11, with § = 0.1 ande = 0.05.
renders the projection of the overall envelope symmetric. It can be seen that the bifurcation sequence is indeed the
From this observation it appears that the first period-doub-Same as was observed in the solution continuation in which
ling bifurcation in the 8-plane model corresponds to the  was chosen as the dependent parameter (Fig. 1).
symmetry-breaking bifurcation in thg-plane system. This
apparent anomaly occurs because the reflectional symmetry This approach of keeping' constant and varying for
does not apply in this weakly dispersive regime. The trans-Successive integrations was used to calculate the largest Lya-
formed equations are by definition unsymmetric and the pePunov exponent of theansformedequations. The Froude
riodic solution is free to period-double without undergoing Number was fixed af” = 11, andr was increased from
any symmetry-breaking bifurcations (Swift and Wiesenfeld,” = 0.01tor = 0.105. The resultis shown in Fig. 8 in which

,,,,, LJ L Vertical phase

T
[
[
[
[
[
[
[

o v bvvrr v b b
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Fig. 5. The vertical phase®, and the barotropic amplituds, as
functions of time, during an amplitude vacillation.

the analysis of Pedlosky (1964), who showed that a westwar
tilt is necessary for a growing disturbance to extract energ
from the mean-flow.

1984). the largest Lyapunov exponent, together with lines represent-
ing three standard deviations on the calculation, is plotted as
4.6 Lyapunov exponents a function ofr.

Forr > 0.105, the largest Lyapunov exponent was less
While it might be difficult to prove that the complex than zero. This was consistent with having a stable fixed
Lorenz equations exhibit chaotic solutions, some evidencepoint representing the travelling wave. Asvas decreased
for chaotic motion could be obtained by calculating the belowr = 0.105, the largest Lyapunov exponent became
largest Lyapunov exponent of the system. positive and the dynamics became chaotic. Finallyy as
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Fig. 6. Integrations performed @& = 0, showing the symmetric and asymmetfiglane limit cycles viewed in the original untransformed

frame, and in the co-rotating frame. Note that in the co-rotating frame, the symmetry-breaking bifurcation appears as a period-doubling

bifurcation.
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Fig. 7. Bifurcation diagram showing the effect of decreasing dissi-
pation atg = 0.1, F = 11.0. Note that the sequence of bifurcations
is the same as that encountered in Fig. 1.
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Fig. 8. The largest Lyapunov exponent as a function of the dissipa-
tion parameter, atg = 0.1, F = 11.0.
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Fig. 9. A series of one-parameter continuations performed around a closed curve in parameter space, enclosing the region surrounding the
suspected cusp bifurcation. Since there are no discontinuities in the curve, a cusp bifurcation is present.

is decreased below = 0.06, the largest Lyapunov expo- Using AUTO86, we performed a two-parameter contin-
nent decreased to zero, indicating the presence of the limitation of the two new saddle-node bifurcations. The loci
cycle, corresponding to the amplitude vacillation regime in of the saddle-node bifurcations trace out a “tongue” in the
this co-rotating reference frame. As the solution continua-(r, F)-plane, converging as the Froude number is decreased
tion has shown that the homoclinic connection present in thdrom F = 30 and appearing to meet in a degenerate bifurca-
f-plane system does not persist whgiecomes non-zero, tion. Unfortunately this could not be shown explicitly using
any chaotic attractor that may be present in the weakly disAUTO86, as the two-parameter continuation became inaccu-
persive system must be created by a different mechanism. rate close to this degenerate bifurcation.

One possibility is for the degenerate bifurcation to be a
4.7 Cusp bifurcations cusp point. This was confirmed by performing a number of
one-parameter continuations of the period-doubled solution

In Fig. 7, the solution branch corresponding to a period-branch along the boundary of a region enclosing the sus-
doubled torus exhibits an unusually large response aPected cusp bifurcation. The beginning and the end of this
r = 0.052. This appears to be a form of resonant responsdath were located at the same point in theF")-plane. Since

to the forcing provided by the presence of &ffect. As the there were no discontinuities in the period-doubled solution
Froude number is increased o = 30, the amplitude re- branch, the solution at the end of the path could be identified
sponse grows larger and the branch “tilts over”, creating twoWith the solution at the beginning of the path and a cusp bi-
new saddle-node bifurcationssat= 0.0737 and- = 0.0782  furcation was, therefore, present. The result of this series of
and introducing hysteresis into the system. In addition to thecontinuations is shown in Fig. 9.

two saddle-node bifurcations, two new period-doubling bi- The presence of a cusp bifurcation explains the appear-
furcations are also created. ance of the saddle-node bifurcations as the Froude number
Such amplitude responses are commonly observed in forcis increased. It does not, however, seem to provide a
ed nonlinear oscillators, e.g. in the forced Duffing equationmechanism for generating the observed new period-doubling
(Drazin, 1992), and represent a nonlinearly limited reso-bifurcations. One possible explanation for their appearance
nant response to an external forcing. This phenomena hais that the strong amplitude response of the system causes
not been mentioned in previous descriptions of the weaklythe original curve of period-doubled tori to make a close
dispersive regime (e.g. Fowler et al., 1982; Gibbon andapproach to the unstable fixed point at the origin (Se.
McGuinness, 1982; Fowler et al., 1983; Fowler and McGuin-decreases t6§ = 0.001 or 1% of its maximum amplitude).
ness, 1984) and the physical mechanism behind the forcin@his tendency towards homoclinicity means that the stable
remains unclear. and unstable manifolds of the trivial fixed point will closely
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Fig. 10. The branch of period-quadrupled tori arising from the
period-doubling bifurcations observedat= 11.0. 1

approach each other. It has been shown that the close
approach of stable and unstable manifolds can generate
cascades of period-doubling bifurcations (see Guckenheimer

and Holmes, 1983). 0 w
0 12
It Was, also possible to trape out th? bra'nches. of SOIUtion‘l':'—'ig. 11. Ask increases, different Arnol'd tongues may overlap. The
emanating from the new period-doubling bifurcations. Theseitterent regions (1, I, I, and 1V) contain qualitatively different

solution branches represent curves of period-quadrupled torgynamics.

One of these period-quadrupled branches is shown in Fig. 10

for F = 11.0 and is a smaller facsimile of the original curve

of period-doubled tori that was shown in Fig. 9. It has the odic tongues are defined by lines of saddle-node bifurcations.

same resonant response and additional period-doubling bi-

furcations. One might then reasonably conclude that there The situation fork > 1 is more complicated and was in-

are additional cusp points and approaches to homoclinicityvestigated by Mackay and Tressier (1986) (see also Marek

to explain the resonant response and period-doubling bifurand Schreiber, 1991). In this case, the Arnol'd tongues con-

cations appearing on the branch of period-quadrupled tori. tinue to exist, but now two or more tongues may overlap.
Further branch switching is possible at the period- When this happensgy is no longer necessarily a constant for

doubling bifurcations on the branch of period-quadrupleda given tongue, but instead can exist within a rotation inter-

tori. These and other continuations show that the structure/al Ri,; = [R™, R*]. Given a point(w, k) in an Arnol'd

of the basic branch of period-doubled tori is repeated on evetongue, there are four possibilities for the rotation number,

smaller scales. The “tongue” of saddle-node bifurcations andR- These four possibilities exist in the four regions shown in

the presence of cusp bifurcations is reminiscent of the resoFig. 11:

nant tongues observed in the nonlinear circle map (e.g. Wig-

_ i i — - — +
gins, 1990). In region |, R;,,; is degenerate, SR = R~ = R* and

the orbit is periodic;

. — In region II, R lies within R;;;, so the orbit may now
5 The circle map either be quasi-periodic and diffuse either clockwise or

Arnold (1965) introduced the circle map as a method of anticlockwise, or remain periodic;

studying nonlinear coupling between two periodic motions — In region lll, R = R~ and the orbit is quasi-periodic
of frequency2; for j = 1, 2: and drifts clockwise;
Opr1 = (0, + w + k sing,) mod(2r) , (23) — Inregion IV,R = R, so the orbit is quasi-periodic and

drifts anticlockwise.
where6, = 61 (t,) mod(27) andz, is the time at thesth

piercing of the sectiodiomod(27) = constantp; andé, are
the two angles describing the torus; and= 27 Q1/ Qo.
Defining the rotation number to BR = p/q, Arnol'd
found that by varyingw and k (with 0 < k < 1), both
periodic orbits withrational values ofR and quasi-periodic
orbits with irrational values of R were possible. Periodic © =V + § (¢, ©) cos®, (24)
orbits exist in regions known as Arnol'd tongues which come
to dominate as the nonlinearity, is increased. For any given
tongue,R is constant. In between these periodic tongues,y = g, — g,
quasi-periodic motion exists. The boundaries between S D
the quasi-periodic motion and the frequency-locked peri- 8 (7,©) = D (va + vaXa) — 3 (vs + vsXa) - (25)

5.1 Acircle map in the weakly dispersive regime

The © equation in the transformed set of Egs. (21) can be
re-written as

where



300

0.10

0.05

0.00[= === - = =—— == - ==

Barotropic wave component, Bs

—0.05—

0.00
Barotropic wave component, As

(@) (As, Bs)-plane

Baroclinic wave component, Bd

-0.02—

—0.04

A. F. Lovegrove et al.: Bifurcations and instabilities in rotating, two-layer fluids

0.04

0.02—

-0.20 0.00

Barotropic wave component, As

(b) (A, By)-plane

Fig. 12. A resonant orbit observed at= 0.0745,8 = 0.1 andRF = 30.0. From the projection onto thl, Bs]-plane, it can be seen
that two vacillation cycles are completed in the time taken for a cycle through the spatial phasg-plEme drift frequencyw, and the

vacillation frequency are, therefore, in 1:2 resonance.
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Fig. 13. The resonant orbit at = 0.0745 andF = 30.0, viewed in

the transformed co-rotating frame, appears to be a period-two cycle:

While Eq. (24) has a more complicated parametric depen-
dence than in Arnol'd’s circle map, nevertheless one might
expect to observe phenomena such as frequency-locking in
tongues, similar to the Arnol'd tongues in the original circle
map, as well as boundaries of these tongues being defined by
lines of saddle-node bifurcations.

If frequency-locking does occur in the weakly dissipa-
tive, weakly dispersive spectral amplitude equations, then
the most likely place to observe it would be inside the re-
gions defined by the saddle-node bifurcations generated by
the cusp bifurcation. A number of initial value integrations
of the original untransformed equations (see Eq. (9) of Part
I) were, therefore, performed in the regiol37 < r < 7.81
at F = 30.

We found no evidence of frequency locking for most of
the interval 00737 < r < 0.0782 atF = 30, but when
r = 0.0745 frequency-locking was observed. This solution
is shown in Fig. 12, plotted in both the, B;] and[As, B4]

circle map given in Eq. (23). This can be readily seen byfrequency of the travelling wave and the period-doubled fre-
integrating the linear part of Eq. (24) with respect to time to guency of the amplitude vacillation. Note that this is in con-

obtain

On=0()+V(E-1).

(26)

Implicit in Egs. (21) is a drift frequencyy, defined by

Eq. (19). This can be used to define a surface of section o

which to construct the circle map as follows. Let

, 2mn

and

t'=t,= t=tyi1.

w
Then® (') = ©, and® (1) = ©,41 so that
®I’l+l = ®I’L + w,
wherew = 27V /w.

(27)

(28)

trast to the assertion of Fowler and McGuinness (1984) that
there was no frequency locking in the weakly dissipative,
weakly dispersive regime.

Figure 13 shows the same frequency-locked orbit in the
transformed co-rotating frame. In this frame the orbit
Ijolppears to be a period-two orbit. The presence of both
frequency-locked and near resonant orbits within the tongue
defined by the continuations of the saddle-node bifurcations
is reminiscent of the behavior observed in region Il of the
circle map, where the rotation number is not constant, but
exists in an intervaR;,;, which allows for the orbit to drift
clockwise, anticlockwise or remain locked.

Frequency-locked orbits appear to exist only in very small
regions of parameter space and, in practice, finding them is
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Fig. 14. A second resonant orbit, observed-at 0.060, F = 11.0.

a matter of trial and error. A second frequency-locked or-
bit, shown in Fig. 14, was found & = 0.060,8 = 0.1
and F = 11.0. This was in a region where, according
to the solution continuation shown in Fig. 7, the original -
branch of period-doubled tori had become unstable. Oneg
must conclude, therefore, that this second orbit exists on an
other branch of solutions.

04— -

u

oclinic amblit

Figure 15 shows the same resonant orbit viewed in theg o.2
co-rotating frame. It appears to be a period-six orbit and,
therefore, cannot arise from a simple period-doubling of the
underlying torus. Therefore, there must be other solution
branches in existence that are disconnected and cannot beoool = " . N A A
reached by using AUTO86 to follow solution branches bi- o O aarotropic ampiituce, 5 e
furcating from the original branch of torus solutions. Recall

that in the co-rotating frame, a symmetry-breaking bifurca-Fig. 15. The second resonant orbit, viewed in the transformed co-
tion can resemble a period-doubling bifurcation. Therefore,rotating frame, appears to be a period-six orbit.

it is possible that the period six orbit in Fig. 14 is actually

a period three orbit that has undergone a symmetry-breaking

bifurcation.

Sarkovskii (1964) showed that the presence of an orbit o2 Bifurcations with increasing f
period p, with p occurring before another integeimplies
the existence of an orbit of peridd Li and Yorke (1975)
showed that the existence of a period three orbit also im-So far we have concentrated on bifurcations occurring for a
plies the existence of an uncountable number of aperiodisingle value off. Pedlosky (1981b) performed a numerical
orbits. Although Sarkovskii's theorem as originally formu- study of the consequences of varyiigon the chaotic mo-
lated applies only to mappings of the real line onto itself, tion observed in the two-layer model. His main conclusion
its results have since been extended to the circle map, as iwas that such behavior observed on fhplane was strongly
relevant here (see Block, 1981; Hidalgo, 1992). By these exsuppressed by the addition ofgaeffect. Furthermore, he
tensions to Sarkovskii's theorem, the existence of the periodound that increasing led to a sequence of inverse period-
six orbit shown in Fig. 13, therefore, implies that the weakly doubling bifurcations which produced successively less com-
dispersive system contains an infinite number of periodic or-plicated behavior. In this section, we investigate the effects
bits. If the period six orbit is actually an asymmetric period of increasings in the spectral amplitude equations. We shall
three orbit, then Li and Yorke’s finding that “period three show that the spectral amplitude equations can reproduce the
implies chaos” implies that the weakly dispersive system isinverse period-doubling cascade observed by Pedlosky for
actually chaotic, as was concluded from studying the largestertain values of. We also show that increasiycan lead
Lyapunov exponent of the system. to other changes in the dynamics of the two-layer model.

Bar




302 A. F. Lovegrove et al.: Bifurcations and instabilities in rotating, two-layer fluids

6.1 Two parameter continuation to an amplitude vacillation in a subcritical torus bifurcation
and finally undergoes a series of period-doublings. A one-
Using AUTO86, a two-parameter continuation of the prin- parameter continuation performed in this region is shown in
cipal bifurcations observed in the weakly dispersive, weaklyFig. 18b.
dissipative regime was performed in theg)-plane forF = For 014 < r < 0.38, the situation was slightly more com-
11 ande = 0.05. Figure 17 shows the curves of Hopf, torus, piicated (see Fig. 18c). The initially stable trivial solution bi-
and Saddle'node bifurcations, together W|th the IaSt periodfurcated to a tra\/e”ing wave ﬁwas decreased_ Th|S wave
doubling bifurcation (which was found to correspond to the gig not undergo any further bifurcations. Note, however, the
symmetry-breaking bifurcation on theplane). presence of a disconnected branch of solutions, dsea,

We see that at highes, fewer bifurcations are encoun- jn the system. These solutions were created in a saddle-node
tered as- is decreased and consequently, the behavior of theifurcation, and correspond to amplitude vacillation and its
system becomes less complicated. The critical valueatf  subsequent period-doublings. Figure 19 shows an enlarge-
which the trivial solution loses stability in a Hopf bifurca- ment of the isola.
tion decreases until = O atp ~ 11. Forall higher val-  £or 014 < » < 0.38, the initially stable trivial solution
ues of 8, the trivial solution of the two-layer model is sta- pjfyrcated to a travelling wave @swas decreased. This trav-

ble. We observe also that #sis increased, the curves of gjjing wave then remained stable asvas decreased to zero.
torus and saddle-node bifurcations converge and appear to

merge in a cusp bifurcation &, 8) = (0.069, 1.51). The
existence of this cusp bifurcation means thapascreases 6.2 Vertical phase tilt
throughg = 1.51, the torus bifurcation changes from being
subcritical to beingsupercriticaland persists t¢ = 1.84,  The phase difference), determining the vertical phase tilt
above which no torus bifurcations are present in the two-of the travelling wave solution, becomes less negativg as
layer model. increases. For example, when= 0.25 andF = 11.0, ®
To clarify this behavior, a series of one parameter continu-varies monotonically from- —1.6 to~ —1.8 asg increases
ations using- as the bifurcation parameter was performed atfrom 0 to 6. This implies that increasing suppresses the
F = 11 (see Fig. 16). For each rygnwas held constant, but westward tilt with height of the instability. Physically, this
with a different value each time and initialized on the trivial reflects the fact that géincreases, the velocity of the travel-
solution atr = 1. The paths of these continuations in the ing wave increases. Consequently, there is an increase in the
(r, B)-plane are also shown in Fig. 17. amount of the energy extracted from the mean-flow which
It has already been argued that f@lane saddle-node bi- is converted into the kinetic energy of the wave. Therefore,
furcation arises from the’-plane homoclinic connection as there is less potential energy available to support the west-
the O (2) symmetry is broken. For small values gf the ward tilt of the wave and s® decreases. This, in turn, re-
saddle-node bifurcation and the period-doubling bifurcationduces the ability of a growing disturbance to draw energy
are very close together, suggesting that the presence of thit of the mean-flow, thereby stabilizing the system. This
period-doubling bifurcation might also be a consequence ofstabilization effect can be seen in Egs. (21) by noting that in
breaking the0 (2) symmetry on thef-plane homoclinic or- the equations fof, D and X, the nonlinear part contains a
bit. Following the locus of the period-doubling bifurcation Sin©® term. The decrease in the value@ftherefore, causes
in the [, 8] plane reveals that it “bends around” and reap- a_decre_ase in the strength of the nonlinear coupling in the
pears on thef-plane atr = 0.043. Any chaotic attractor dispersive system.
that may be present in tieplane system will most likely be In addition to the vertical phase tilt of the travelling wave
created by Feigenbaum’s route of an accumulation of perioddecreasing ag increases, thaatureof the amplitude vacil-
doubling bifurcations. An outer bound to the region of pa- lation also changes. Figure 20 shows the effect of increasing
rameter space in which chaos can occur is, therefore, prof on the amplitude vacillation. It can be seen that, while the
vided by the locus of the last period-doubling bifurcation.  oscillation takes the form of a square wave on fhplane, it
A second series of continuations (shown in Fig. 18) wasappears more rounded Asncreases, i.e. the transfer of en-
also performed aF = 11, with 8 chosen as the control pa- ergy from the mean-flow to the wave (and vice versa) appears
rameter and with held constant for the duration of each run, to be instantaneous on tfeplane, but becomes slower As
but varied between continuations. The paths of these continiS increased.
uations on thér, g)-plane are also shown in Fig. 17. Thus, the period-doubling behavior observed in Pedlosky
From Fig. 18a, it can be seen that decreasih@rom (1981a) is only typical of a small region of parameter space.
B = 12 causes the trivial solution to lose stability to a travel- Other sequences of bifurcations with decreasthgan be
ling wave in a supercritical Hopf bifurcation. This travelling found, depending on the strength of the dissipation present
wave then undergoes a supercritical torus bifurcation to arin the system.
amplitude vacillation that remains stable for all subsequent The complete bifurcation behavior of the two-layer sys-
values of8. From Fig. 17, it can be seen that decreaging tem in the (r, 8, F)-parameter space is shown in Fig. 21.
will only give rise to chaotic motion for 069 < r < 0.14, The true significance of the organizing centefrap, F) =
since the trivial wave bifurcates to a travelling wave then (O, 0, K 2/2) can now be seen. It appears that the bifurcation
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structure of the two-layer system “originates” at this single 7 Bifurcations in the inviscid, weakly dispersive system
degenerate bifurcation. Observe thatgas increased from

zero, theg-plane Hopf bifu.rcation arises from the pitchfork |, yhe weakly dispersive system, the first effect of dissipation
of revolution on thef-plane; the subcritical torus bifurcation g 4 yestabilize the system. This is reflected in the well-

results from the subcritical Hopf bifurcation on tiieplane; -~ ,n discrepancy between the inviscid stability curve and
and the saddle-node bifurcation is born from the homochnlcthe curve representing viscous stability in the limit> 0, in

bifurcation on thef-plane. This is all in agreement with the o ¢l three-dimensional regime diagram of Fig. 21. Ped-

symmetry arguments desgrlbed in Sect. 4.2. Note that Fig. erosky (1981b) made the case for the inviscid curve being the
also shows the curves derived by Pedlosky (1970) and Romeg,, ,o» ¢ ;rve that marked the transition to instability, whereas
(1977), representing the onset of instability in the inviscid g aq (1977) argued that the inviscid limit of the viscous
system. theory was the “correct” curve. Romea based his argument
on the fact that a slowly growing wave can be produced on
a very long time scale in the region between the two curves
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as a result of nonlinear interactions. Neither Pedlosky nor
Romea, however, gave detailed consideration to the type of
bifurcations occurring on each curve. These bifurcations will
now be discussed.

As has already been shown, the initial bifurcation in the
viscous dispersive system is a Hopf bifurcation. In this bifur-
cation, two complex conjugate eigenvalues cross the imagi-
nary axis, two other complex conjugate eigenvalues retain a
real part that is less than zero, and one real eigenvalue is less
than zero. In the inviscidg, F)-plane, the system becomes
Hamiltonian, i.e. the eigenvalues are either always purely
imaginary or are equal with opposite signs. The inviscid
system is neutrally stable and is part of the center-manifold
of the degenerate bifurcation 8, F) = (0, K?/2) and
the Hartman-Grobman theorem (see e.g. Guckenheimer and
Holmes, 1983) no longer applies. Nonlinear terms must,
therefore, be taken into account when analysing the stability
of the system. Hence, Romea’s argument that, on the0
plane, instability actually results from nonlinear interactions
is probably correct and it follows that the inviscid limit of the
viscous theory is probably the correct marker for the onset of
instability. While Romea’s work took nonlinear terms into
account, Pedlosky’s inviscid analysis concentrated on look-
ing for the transition to linear instability. This occurs in a
bifurcation specific to Hamiltonian systems that is illustrated
in Fig. 22.

For small values of’, all of the eigenvalues are situated on
the imaginary axis and there are two distinct pairs of imagi-
nary eigenvalues and one zero eigenvalueFAsincreased,
the imaginary pairs approach each other until, at a critical
value, the pairs become identical and we have a case tf 1
resonance. For values @f larger than this critical value,
the two complex pairs are no longer purely imaginary. In-
stead they contain a real part. This bifurcation mechanism
is known as a Trojan or Hamiltonian Hopf bifurcation (see
Bridges, 1990; Woods and Champeneys, 1999; Champeneys,
1999).

In the viscous, dispersive two-layer system, the Trojan bi-
furcation mechanism is not applicable since the requirement
that the real part of two pairs of complex eigenvalues must be
zero is never satisfied. Comparing this special inviscid bifur-
cation with the Hopf bifurcation present in the viscous sys-
tem, therefore, does not make sense, since the two instability
mechanisms are different. This further strengthens Romea’s
claim that the inviscid limit of the viscous problem is the
correct limit to use when trying to determine the onset of in-
stability in the two-layer system.

8 Conclusions

In this paper, we have extended the analysis of Part | to per-
form for the first time a detailed examination of bifurcations
present in the two-layeg-plane spectral amplitude equa-
tions. It was shown that the behavior predicted by various
multiple-scales approximations is reproduced by the spec-
tral amplitude equations. In particular, it was shown that for
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Fig. 21. The bifurcations of the two-layer model in the 8, F] parameter space. Note that the pitchfork, homoclinic and Hopf bifurcations
found on thef-plane change to Hopf, saddle-node and torus bifurcatiorng l@scomes non-zero. For completeness, the two instability
curves derived by Pedlosky (1970) and Romea (1977) for the inviscid system are showm ea@@ane. Observe that all the bifurcations
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Fig. 22. A Trojan bifurcation in the complex plane. Two pairs of imaginary eigenval@smove into one to one resonangb), causing
linear instability as two complex-conjugate eigenvalues are prodieded
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small values of8 the spectral amplitude equations reproduceraised concerning the possible lack of robustness of the be-
the behavior associated with the complex Lorenz equations.havior of spatially truncated models as the level of truncation
Using AUTO86 we performed a more detailed bifurcation is relaxed (cf Curry et al. (1984) for a comparable problem
analysis of the weakly dispersive regime than that of Fowlerin fluid dynamics).
and McGuinness (1984) and support their conclusion that the It has long been observed (e.g. Hide and Mason, 1975;
weakly dispersive system contains a subcritical torus bifur-Hart, 1979) that the initial bifurcations from axisymmetric
cation, with the solutions created in this bifurcation turning flow at weak-moderate supercriticality in baroclinic systems
back on themselves in a saddle-node bifurcation. The restudied in the laboratory entail the emergence of regimes in
sults of this study, however, disagreed with their suggestiorivhich the flow is dominated by just one (or a small number
that a homoclinic connection is present in the system and i®f) wave mode(s), with either steady or periodically-varying
responsible for the creation of period-doubling cascades. Inamplitude or structure. Such a regime is highly reminis-
deed, our study showed that th® (2) symmetry of thes- cent of the present model, with or withoutgaeffect. At
plane destroyed the homoclinic connection observed in thdligher supercriticality, experiments (e.g. Hart, 1985; Ohlsen
f-plane system, and created a saddle-node bifurcation inand Hart, 1989; Read et al., 1992;URrand Read, 1997)
stead. The dynamics of thé-plane system are, therefore, have shown evidence for several alternative routes culminat-

fundamentally different from those of thg-plane model. ing in low-dimensional chaos, but which include interme-
Consequently, thg'-plane approximation may not simply be diate quasi-periodic states and/or period-doubling cascades
viewed as theg — 0 limit of the g-plane approximation. starting from periodically vacillating waves, with similarities

Moreover, a strong resonant response was found alond] at least some cases to the bifurcation sequences found in
some branches of period-doubled tori and was repeated fof'® Present models. ' _
successive branches of period-doubled tori. Furthermore, AS found for theg-plane QG spectral amplitude equation
this investigation showed that, in the weakly dispersive M0dels presented above, departures from spatia) sym-
regime, the spectral amplitude equations exhibit frequency/Metries may be important in this regard. Mundt and Hart
locking within narrow tongues emanating from various cusp(1994), for example, found that the spatial complexity of
bifurcations. We argued that this frequency-locking was blfurcgtlons increased shgrply with supe.rcnncahty' in their
probably a result of circle map dynamics, in contrast to numerical study (_)f transitions to baroclinic chaos in a two-
the work of Fowler and McGuinness who found no such 'ayer, zonally-periodic rectangular channel, even though the

frequency-locking in their weakly-dispersive multiple-scales temporal behavior still involved bifurcations via periodic and
approximation. quasi-periodic states. In a comparable study in cylindrical

Pedlosky’s observation that a cascade of inverse periodgeometry, however, vyhere the O(2) reflectjo_na! symmgtry
was broken, the spatial structure of baroclinic instabilities

doubling bifurcations occurred with increasiggwas also tended t . h simpler (Mundt et al. 1995). i
verified and we subsequently showed other bifurcation Se_en”e o(;emam muct s_ltrrr:p er ( iun te I-? "t 1982—';' 'gﬁlen'
quences to be possible, by increasthgt different values of erally good agreement with experiments (Hart, ! sen

the dissipation-. These sequences included a disconnectecf"hnd I-;)art, 19.89; Read etfal., 1992ﬂ:ﬁrﬁnd Read, 1993) Iand I
branch of period-doubling bifurcations at large dissipation. itnteor(:hg ;ﬁ;aé?é?i%crgfrléirizwres of the present models we
The analyses of Pedlosky (1970) and Romea (1977) of the In conclusion, we note that such spatial simplicity in mod-

inviscid bifurcation problem in the dispersive regime were rately supercritical baroclinic instability is not confined to

then compared. It was concluded that Pedlosky’s study relie mall-scale laboratory systems, but might also be a feature of

on an instability mech_amsm specific to Hamiltonian SyStem.s’large-scale atmospheric flows under certain conditions (such
whereas the mechanism of Romea was common to both vis-

d inviscid ‘ c " .~ as those prevailing on planets such as Mars). Collins and
cous and Inviscid systems. - onsequently, any comparsony, (1995), for example, showed evidence for the develop-

betwee!ﬁ viscous and inviscid instability should be based hent of regular, near-steady baroclinic waves in a simplified,
Romeas analysis. ) ] ] ] ] high resolution, large-scale atmospheric general circulation
Finally, a three-dimensional regime diagram showing be-iqqe| run under conditions intended to emulate those in the
havior as a function of, g and F were constructed. This  nartian atmosphere. Such results were later confirmed in a
allowed for the true |r2nportance of the degenerate bifurcation,,ch more sophisticated and realistic atmospheric model of
at(r, B, F) = (0,0, %), as an organizing center, to be seen. the Martian atmosphere by Collins et al. (1996); Read et al.
The extent to which such a highly truncated model as pre{1998), together with evidence from analyses of data from
sented here and in Lovegrove et al. (2001) provides an apprathe Viking Lander spacecraft for low-dimensional chaotic
priate description of the bifurcation behavior in a physical motion on Mars itself. While it is highly likely that the spatial
system (such as in laboratory experiments or even a planecomplexity of baroclinic flows eventually diverges strongly
tary atmosphere) is an important issue, though a detailed difrom that assumed in the present models, given sufficient su-
cussion is beyond the immediate scope of this paper. Sompercriticality, there would seem to be substantial evidence
general features of the transition to geostrophic chaos antb suggest that idealized studies using low-dimensional sys-
turbulence in simple models have been reviewed by Kleintems, such as presented here, can provide valuable insights
(1990), in which some aspects of the generic problems arénto the nonlinear dynamics of a rich variety of physical sys-
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tems.

Appendix A Coefficients of the single-wave model

The coefficients to Egs. (11) are:

K?=k2+12 (A1)
Ay=r [1 n reKZ] (A2)
rk? 2
L 2
T [1+re (12 +2F)] (A4)
B
Bs = ﬁ - Us:| ki (A5)
_ P _
ﬁd = |:(K2 i ZF) Usi| kl (AG)
vy = Ugkq (A7)
vy = Ud(l(z;ﬂ")kl (A8)
(K24 2F)
16k3
Vs = 6K2 (A9)
16k (kI —2F)
Yd = m (A10)
- 32Fky
r= 3(2+2F)° (ALL)

All the numerical continuation computations in this

paper were carried out using the 1986 version of the
widely available package AUTO Doedel (1981); Doedel
Some codes written to pro-
duce the figures in this paper, together with lists of

and Kernevez (1986).
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