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Abstract. In this paper, we show that the behavior of weakly
nonlinear waves in a 2-layer model of baroclinic instability
on aβ-plane with varying viscosity is determined by a sin-
gle, degenerate codimension three bifurcation. In the pro-
cess, we show how previous studies, using the method of
multiple scales to derive evolution equations for the slowly
varying amplitude of the growing wave, arise as special lim-
its of the general evolution description.

1 Introduction

In a recent paper (Lovegrove et al. (2001), hereafter de-
noted by I), the spectral amplitude equations for the two-
layer model of baroclinic instability on anf -plane were used
to examine the differences between the multiple-scales ap-
proximations, developed by Pedlosky (1970, 1971) and Mo-
roz (1981) for different dissipative regimes. This was pos-
sible because the derivation of the spectral amplitude equa-
tions does not require any restriction to be placed on the size
of the dissipation parameter,r, thereby giving the spectral
amplitude equations validity over the range 0≤ r ≤ 1.

The equations were shown to reproduce the behavior ob-
served in both the strongly and weakly dissipative limits
when the spectral variablesx and y were restricted to be-
ing real. It was then shown that, because the complex spec-
tral amplitude equations were equivariant under the action of
theO (2) symmetry group, the results from the real system
could be generalised to the complex case. It was also shown
that the strongly dissipative multiple-scales approximation
arises naturally from the weakly dissipative multiple-scales
equations. It was found that the strong dissipation limit was
valid for r > 0.07, while the weak dissipation limit holds for
0 < r < 0.03.

The bifurcations present in the weakly dissipative
multiple-scales approximation were shown to originate in a
degenerate bifurcation on the inviscid axis, and that close to
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this bifurcation, fourth-order terms in the normal form ex-
pansion may be ignored. SmallO (2) symmetry-preserving
perturbations to this third-order normal form then give rise
to the Lorenz equations (Moroz, 1981). Further away from
the degenerate bifurcation, fourth-order terms in the normal
form expansion become important, corresponding to a tran-
sition from weakly to strongly dissipative behavior. A subset
of the symmetry-preserving perturbations was then shown to
produce the equations discovered by Pedlosky (1970) in his
multiple-scales investigation of the inviscid system.

In this paper, we reinstateβ and develop a unified pic-
ture of bifurcations of weakly-nonlinear waves in a two-layer
model of baroclinic instability with varying viscosity. Sec-
tion 2 summarizes multiple-scales analyses for both strongly
and weakly dissipative systems on theβ-plane. In Sect. 3,
the spectral amplitude equations are presented in both the
original and co-rotating frames, and the bifurcations obtained
with strong and weak dissipation are analysed in Sect. 4. Sec-
tion 5 considers the circle map appropriate for theβ-plane
model. Section 6 considers the consequences of increasingβ

in the spectral equations, while Sect. 7 discusses the inviscid,
weakly-dispersive limit. Finally, we summarize and discuss
our results in Sect. 8.

2 Multiple scales analyses

2.1 Strongly dissipative systems:r = O(1)

Romea (1977) and Moroz (1981) both performed multiple-
scales expansions of the two-layer quasi-geostrophic equa-
tions for a two-layer model on aβ-plane, in which the dis-
sipation was strong. Using the supercriticality parameter,F ,
as the small parameter in the expansion, where

F − Fc = F with F � Fc, (1)

the critical value of the Froude number,Fc, at which the flow
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becomes unstable is given by
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while the wave speed is

cr = Us −
β(

K2 + Fc

) , (3)

whereUs = (u1 + u2)/2.
In contrast to thef -plane model discussed by Lovegrove

et al. (2001), the wave speed on theβ-plane now depends
on the wavelength. The wave no longer travels at the speed
of the mean-flow, but the presence of the planetary vorticity
gradient introduces a retardation proportional toβ and the
solution represents a stable interfacial wave travelling more
slowly than the mean-flow. Consequently, in the frame of the
spectral model, whereUs = 0, the waves in aβ-plane model
would appear to be travelling “westward”.

When β ≈ O
(
F

1
2

)
, so that the system is weakly dis-

persive, the multiple-scales approximation to the two-layer
equations was found to be of the form

Ȧ = CA − AV,

V = |A|
2, (4)

whereC indicates a complex-valued coefficient. Following
Moroz (1981), the details of the coefficients have been omit-
ted.

Equations (4) are similar to those obtained for the strongly
dissipative system on anf -plane (see I), except for the pres-
ence of a complex coefficientC in the equations. This
changes the initial bifurcation from the trivial solutionA = 0
from a pitchfork to a Hopf bifurcation. As in I, the amplitude
of the final wave solution is independent of the initial state of
the system.

2.2 Weakly dissipative systems:r = O(F
1
2 )

Brindley and Moroz (1980) showed that the inclusion of a
weak β-effect in the multiple-scales analysis for a weakly
dissipative system also leads to a complexification of the co-
efficients so that the equations governing the weakly dissipa-
tive, weakly dispersive regime become:

Ä = CA − CȦ − AV,

V̇ + V =
˙

|A|
2
+ |A|

2. (5)

As above, the trivial solution is always a fixed point of this
system, losing stability in a Hopf bifurcation as the Froude
number,F , is increased through a critical value,Fc, given by
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Equations (5) have been shown by Gibbon and McGuin-
ness (1982) to be equivalent to the complex Lorenz equa-
tions:

Ẋ = −σX + σY,

Ẏ = RX − aY − XZ,

Ż = −bZ +
1

2

(
X∗Y + XY ∗

)
, (7)

whereσ andb are real numbers,R = R1 + iR2 anda =

1−ie. In contrast to the original Lorenz equations, therefore,
the “Rayleigh number”,R, is now complex. To the best of
our knowledge, the complex Lorenz equations have not been
as thoroughly investigated as the original Lorenz equations,
and very little is known about the bifurcations that occur in
the weakly dispersive, weakly dissipative regime. We now
summarize what is known.

2.3 The complex Lorenz equations

The first comprehensive study of Eqs. (7) was performed by
Fowler et al. (1982), who showed that asR1 is increased, the
trivial solution undergoes a supercritical Hopf bifurcation to
a stable travelling wave. IfR1 is increased further, the trav-
elling wave loses stability to a travelling wave with a period-
ically modulated amplitude. After performing a number of
initial value numerical integrations, Fowler et al. (1982) con-
cluded that the transition to this amplitude vacillation was via
a subcritical Hopf bifurcation to an invariant torus and that
frequency-locking between the drift frequency of the travel-
ling wave and the frequency of the amplitude vacillation was
not possible. They observed that forR1 = 40 andR2 → 0,
the torus underwent a sequence of period-doubling bifurca-
tions and remarked that “the effect of complexification is to
convert oscillatory states into “doubly” oscillatory ones. . .

and there is no particular reason to suppose the rich behavior
of the real Lorenz equations is otherwise modified”, although
no explanation was offered as to how the “extra oscillatory
motion” arose.

The nature of the torus in the complex Lorenz equations
was investigated in detail by Fowler and McGuinness (1984),
who showed that asR2 → 0 andR1 → ∞, the drift fre-
quency associated with the travelling wave tended to a value
that was half that of the frequency of the amplitude oscilla-
tion. In this way, the torus reduced to a limit cycle atR2 = 0,
in agreement with the real Lorenz equations. An averaging
technique was then used to suggest that a homoclinic explo-
sion of tori, occurring asR1 → ∞, was the origin of the
period-doubling bifurcations observed asR2 → 0.

2.4 Inviscid systems

Pedlosky (1970) and Moroz (1981) extended the multiple-
scales approach to include weakly dispersive, inviscid sys-
tems and obtained

Ä = CA − CȦ − AV,

V̇ =
˙

|A|
2, (8)
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for the evolution of the slowly-varying amplitude. The crit-
ical value of the Froude number at which linear instability
occurred was given by

Ud =
βFc

K2
(
4F 2

c − K4
) 1

2

, (9)

which differs from the critical value given by Eq. (6) in the
limit r → 0:

Ud =
βFc

K
(
2Fc − K2

) 1
2
(
K2 + Fc

) . (10)

Equation (10) shows that the critical shear for instabil-
ity to occur in the inviscid limit of viscous theory is less
than that predicted by purely inviscid theory. This situation
has been discussed by Holopainen (1961), Newell (1972),
Romea (1977) and Pedlosky (1981b), and suggests that the
combined effects of aβ-effect and viscosity can destabilize
an otherwise stable shear flow.

3 Bifurcations in the weakly dispersive regime

3.1 The spectral amplitude equations on aβ-plane

The spectral amplitude equations for baroclinic instability on
aβ-plane (cf Eq. (9) of I) take the form:

Ẋ = − (1s + iβs) X +

(
1 +

γs

νs

Z

)
Y,

Ẏ = − (1d + iβd) Y + νs (νd + γdZ) X,

Ż = −1̄Z ±
γ̄

2νs

(
X∗Y + XY ∗

)
, (11)

where(X, Y, Z) = (As + iBs, −iνs(Ad + iBd), Xd) (see
Lovegrove et al., 2001, hereafter referred to as Part I, for
further details), the dot indicates differentiation with respect
to time, and the coefficients are given in Appendix A. As in
the f -plane limit, the trivial solution(X, Y, Z) = (0, 0, 0)

is always a fixed point of Eqs. (11), and its stability can be
studied by linearizing the equations about the fixed point and
computing the eigenvalues to give

λ1,2,3,4 = −
(1s + 1d ∓ i (βs + βd))

2

±

[
(1s − 1d ∓ i (βs − βd))2

+ 4νsνd

] 1
2

2
,

λ5 = −1̄. (12)

Since1̄ is proportional to the dissipation, the real eigen-
valueλ5 will clearly be negative for all non-zero values of
r. The remaining eigenvalues form two complex-conjugate
pairs and the system loses stability in a Hopf bifurcation
when the real part of one of these pairs passes through zero.
This occurs when

νsνd

1s1d

= 1 +
(βs − βd)2

(1s + 1d)2
, (13)

which is the same as the condition required for instability on
an f -plane (see Part I), apart from the addition of a modi-
fying term due to the presence of theβ-effect. Substituting
from Appendix A for the coefficients in Eq. (13), yields the
following condition for a Hopf bifurcation to occur:
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wherer is a dissipation parameter,F is the Froude number,
ε is the Rossby number,Ud is the zonal velocity difference
between the layers,K is the total wave number andkn is the
zonal wave number. In the absence of horizontal momentum
diffusion, Eq. (14) recovers the multiple-scales condition for
instability in dispersive, dissipative systems given in Eq. (6).
The appearance of a Hopf bifurcation in a dispersive regime,
in contrast to the pitchfork of revolution that was found to
be present in thef -plane system, is related to the symme-
try differences between theβ-plane and thef -plane spectral
amplitude equations as we now discuss.

3.2 SO (2) symmetry

Knobloch (1996) has examined the effect of symmetry
changes on certain bifurcations, and his ideas will now be
applied to theβ-plane spectral amplitude equations. Theβ-
effect may be incorporated into a channel model by introduc-
ing a slope to the upper and lower boundaries to represent
the presence of a planetary vorticity gradient. As a result, the
system is no longer symmetric under a reflection in a plane
cutting across the channel and there is now a preferred direc-
tion in the system. Whenβ 6= 0, Eq. (11) remain equivariant
under the action of the rotation symmetrys, but is no longer
equivariant under the action of the reflection symmetryρ (cf
Part I), i.e.f (sx) = sf (x), butf (ρx) 6= ρf (x) and, there-
fore, only hasSO (2) symmetry. Knobloch has shown that
changing the symmetry of a system fromO (2) to SO (2) in-
troduces a new frequency,ω, into the system. In thef -plane
system, the initial bifurcation from the trivial solution created
a stationary wave in which the spatial phase,φ, remained
constant with time (see Part I). In theβ-plane system, how-
ever, the introduction of a preferred direction and the con-
sequent change of symmetry means that the spatial phase of
the wave formed in the initial bifurcation is no longer con-
stant, but instead oscillates with the new frequency,ω. As
a result, thef -plane continuum of fixed points representing
stationary waves is no longer possible; instead we obtain a
travelling wave with a drift frequency,ω. This limit cycle is
created in a Hopf bifurcation, which replaces the pitchfork of
revolution that was present on thef -plane.

Knobloch (1996) also showed that any secondary bifurca-
tions present in a system will be affected by the symmetry of
that system. In Part I, we showed that there was a subcritical
Hopf bifurcation present in the weakly dissipativef -plane
system. It was argued that this subcritical Hopf bifurcation
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leads to a continuum of unstable limit cycles (i.e. a torus
foliated by periodic orbits). Just as breaking the reflection
symmetryρ leads to the creation of a limit cycle from a con-
tinuum of fixed points, so it will also lead to the creation of
a torus from a continuum of limit cycles. By the symmetry
arguments presented here, one can therefore see that theβ-
plane Hopf bifurcation must be a bifurcation to an invariant
torus (cf Fowler and McGuinness, 1984).

3.3 Transformation to a co-rotating frame

In the numerical solution of thef -plane system (carried out
in Part I, as in the present work, using AUTO86; Doedel,
1981; Doedel and Kernevez, 1986), it was possible to branch-
switch at the subcritical Hopf bifurcation in order to trace
out the curve of unstable periodic orbits. This led to the de-
tection of the homoclinic connection. To perform a similar
analysis for theβ-plane system, it is necessary to branch-
switch at the bifurcation to an invariant torus. Unfortunately,
AUTO86 does not possess the facility to do this. This leads
to two possible methods for investigating the bifurcations on
a β-plane; either a purely analytical or a hybrid approach
involving some analytical work combined with solution con-
tinuation may be used.

The first approach was employed by Fowler and McGuin-
ness (1984) to deduce that the torus bifurcation was subcrit-
ical, but it rapidly became complicated and incapable of in-
vestigating any subsequent bifurcations. In the second ap-
proach, used by Weng et al. (1986) in their study of the Eady
problem, the equations of motion were transformed into a
reference frame rotating with an angular frequencyω. The
travelling wave became a single fixed point, and the bifurca-
tion to an invariant torus became a Hopf bifurcation. Branch-
switching using AUTO86 is now feasible, and it is this ap-
proach that we adopt here.

The amplitude of the travelling wave must be calculated
analytically in order to provide a point for the AUTO86 con-
tinuation algorithm. Following Weng et al. (1986) we intro-
duce

(As, Bs) = (|S| cos(ωt + φ0) ,

|S| sin(ωt + φ0)), (15a)

(Ad , Bd) = (|D| cos(ωt + φ0 + 2) ,

|D| sin(ωt + φ0 + 2)), (15b)

whereS is the amplitude of the barotropic wave;D is the
amplitude of the baroclinic wave;ω is the frequency of the
travelling wave; and2 is the zonal phase difference between
the barotropic and baroclinic waves (which determines the
vertical phase tilt of the resultant wave). Due to the presence
of the translational symmetry in the weakly dispersive sys-
tem, there is no preferred initial position for a wave to form,
and so an arbitrary initial spatial phase,φ0, must be included
for full generality.

It is well-known (e.g. Pedlosky, 1964) that, in order for
baroclinic instability to occur, the wave must tilt to the west
with height. This allows for the growing disturbance to draw

energy from the mean-flow. A negative value of2 is consis-
tent with a westward tilt, while a positive value of2 indicates
an eastward tilt of the disturbance with height.

If we define

(Ad , Bd) = (P̂As + Q̂Bs, −Q̂As + P̂ Bs), (16)

it follows from (15a) and (15b) that

(Ȧs, Ḃs, Ȧd , Ḃd , Ẋd) = (−ωBs, ωAs, −ωBd , ωAd , 0), (17)

with

AsAd + BsBd = P̂ |S|
2,

AsBd − BsAd = −Q̂|S|
2,
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2
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2
= |D|

2
=

(
P̂ 2

+ Q̂2
)

|S|
2. (18)

Substitution of the above into Eqs. (11) and solving for the
steady travelling wave, we obtain:
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2

=
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where

4 = 1 +
(βs − βd)2

1s + 1d
2

and τ = νsγd − νdγs . (20)

Hence,

Ṡ = −1sS − (νs + γsXd) D sin2,

Ḋ = −1dS + (νd + γdXd) D sin2,

Ẋd = −1̄Xd + γ̄ SD sin2,

2̇ = βs − βd +
S

D
(νd + γdXd) cos2

−
D

S
(νs + γsXd) cos2. (21)

Note that in Eqs. (21) bothS andD are positive quantities
and the modulus signs have been dropped for convenience.
Also, these equations are undefined when eitherS or D is
zero. This is in contrast to the original untransformed equa-
tions whereS = D = 0 is a valid solution and means that the
transformed equations can only be used for a solution contin-
uation once a wave is present in the system. Hence, for any
numerical solution continuation using AUTO86, we used the
untransformed equations of motion to determine the point at
which the trivial solution becomes unstable. Once this has
been found, the transformed equations could then be used in
all subsequent analyses.
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4 Bifurcations in a dissipative system

4.1 Strong dissipation

The analysis of the strongly dissipative system was perform-
ed forr = 0.2, ε = 0.05 andβ = 0.1, with the Froude num-
ber as the bifurcation parameter. Calculations show that the
trivial solution loses stability to a travelling wave in a Hopf
bifurcation atF = 5.49, which remains stable over the range
of Froude numbers considered. After the creation of the trav-
elling waveφ becomes negative, indicating a westward tilt
with height required for the formation of an interfacial wave.

Numerical integrations of the untransformedβ-plane
equations of motion clearly show the differences between
the strongly dissipative,weakly dispersivesystem and the
strongly dissipativef -plane system (see Part I). In both
cases, there was a stable wave present in the system, but in
theβ-plane case, the spatial phase was time-dependent with a
saw-tooth periodic profile, reflecting the travelling nature of
the wave, whereas in thef -plane, the wave was stationary.

4.2 Weak dissipation

Fowler et al. (1982) showed that the weakly dissipative
multiple-scales equations are equivalent to the complex
Lorenz equations. To see if this also holds for the spectral
equations we choser = 0.02 andβ = 0.1. Theuntrans-
formedequations were used to locate the initial Hopf bifur-
cation and then thetransformedequations were used to trace
out the branch of periodic orbits created in the Hopf bifur-
cation. The resulting bifurcation diagram for the barotropic
wave amplitude,S, is shown in Fig. 1.

As in the strongly dissipative, weakly dispersive system,
the trivial solution loses stability via a Hopf bifurcation
to a travelling wave, which subsequently loses stability
at F = 6.17 in a secondary Hopf bifurcation. Branch-
switching at this torus bifurcation showed the bifurcation to
be subcritical, as in Fowler and McGuinness (1984). The
branch of unstable tori corresponds totravelling wave solu-
tions in which the amplitude varies periodically in time, in
the same way that the unstable periodic solutions involved in
the subcritical Hopf bifurcation on thef -plane represented
a stationarywave with a vacillating amplitude (see Part I
for further details). As the Froude number was decreased,
the minimum amplitude of the barotropic wave decreased
towards zero, so that the unstable tori appear to become
homoclinic to the fixed point representing the unstable trivial
solution. However, no homoclinic connection takes place;
instead, the branch of unstable tori becomes stabilized via a
saddle-node bifurcation atF = 5.65. This is in contrast to
the homoclinic connection, for thef -plane model.

The branch of tori then undergoes a series of period-doubl-
ing bifurcations, beginning atF = 5.67. An enlarged view of
the first few of these bifurcations is shown in Fig. 2. At larger
values of the Froude number, an inverse period-doubling cas-

cade takes place, in which the original branch of torus solu-
tions re-stabilies.

Thus, there are no homoclinic connections present in
the weakly dissipative, weakly dispersive spectral amplitude
equations, thereby disagreeing with the hypothesis put for-
ward by Fowler and McGuinness (1984) that the complex
Lorenz equations possess a homoclinic connection. The
causes of this apparent discrepancy will now be examined.

4.3 Symmetry and homoclinic cycles

Chossat (1993) recently examined the effect of symmetry
breaking on homoclinic cycles. He showed that perturba-
tions which break the reflectional symmetry of anO (2) sys-
tem generically cause a homoclinic connection to bifurcate
to quasi-periodic flow on a 2-torus. The resultingSO (2)

action adds one more frequency by allowing for the solu-
tion to “drift along the group orbit” and these two frequen-
cies cause the quasi-periodic motion on a torus. In our prob-
lem, the “drift along the group orbit” is the frequencyω of
the travelling wave. Applying Chossat’s idea to this study
shows, therefore, that the absence of a homoclinic connec-
tion described above is to be expected from symmetry ar-
guments. This, together with evidence from the numerical
solution continuation, also suggests the absence of a homo-
clinic connection in the weakly dispersive, multiple-scales
equations.

A β-effect, therefore, destroys the Lorenzian homoclinic
connection and produces a quasi-periodic motion in its place.
This, in turn, suggests that thecomplexLorenz equations
should be viewed as a perturbed form of thereal Lorenz
equations and there is no reason a priori to suppose that the
Lorenzian behavior of thef -plane spectral amplitude equa-
tions should persist in the weakly dispersive spectral ampli-
tude equations. Indeed, in Part I, it was shown that the exis-
tence of a homoclinic connection in thef -plane system was
crucial to the creation of chaotic dynamics. This implies that
if chaotic motion is present in the weaklydispersivesystem,
as suggested by Fowler et al. (1982), it must be created by
a different mechanism. Thef -plane andβ-plane systems,
therefore, possess fundamentally different dynamics and the
f -plane model should not be regarded simply as theβ → 0
limit of the β-plane model.

4.4 Numerical integration

A series of numerical integrations was performed to exam-
ine the behavior of the system as the Froude number was
increased beyond the critical value at which the subcritical
torus bifurcation occurred. WhenF = 4.0, the trivial so-
lution was stable, while forF = 5.6, the travelling wave
solution was stable. AtF = 5.9, although the solution con-
tinuation suggested that the travelling wave solution should
still be stable, the small perturbation to the system did not
in fact settle down to a steady value but instead, evolved to
aperiodic motion.
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Fig. 1. Bifurcation diagram showing
the effect of increasing the Froude num-
ber atr = 0.02, β = 0.1. The triv-
ial solution lost stability to a travelling
wave atF = 5.49. The stationary wave
subsequently became unstable to an un-
stable torus in a subcritical secondary
Hopf (or torus) bifurcation atF = 6.17.
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amplitudes of this orbit are shown. The
branch of unstable tori “flipped back”
on itself in a saddle-node bifurcation
at F = 5.65. The stable branch sub-
sequently underwent a period-doubling
cascade.
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At higher values of the Froude number, integrations of the
transformed equations reproduced the inverse period-doubl-
ing cascade reported above. Figure 4 shows the final two
inverse period-doubling bifurcations in the sequence. In the
transformed, co-rotating frame, the solution atF = 6.5 ap-
pears to be singly-periodic, whereas in the originaluntrans-
formed frame, theF = 6.5 solution appears to be quasi-

periodic, corresponding to a travelling wave undergoing an
amplitude vacillation.

The barotropic wave amplitude,S, and the vertical phase,
2, of the singly-periodic orbit atF = 6.5 are shown as func-
tions of time in Fig. 5. It can be seen that when2 is negative,
indicating a westward tilt in the instability, the amplitude of
the wave is growing and vice versa. This is in agreement with
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(a)F = 6.5 (b) F = 6.5 (co-rotating frame)

(c) F = 6.26 (d) F = 6.26 (co-rotating frame)

(e)F = 6.05 (f) F = 6.05 (co-rotating frame)

Fig. 4. A series of numerical integrations performed atr = 0.02, β = 0.1, showing the last two period-doubling bifurcations in theβ-
plane system in both the original, untransformed frame [(a), (c) and(e)] and in the transformed, co-rotating frame [(b), (d) and(f)]. The
period-doubling bifurcations, which occur on a quasi-periodic torus, are only readily observable in the co-rotating frame. Note the apparent
widening of the trajectory, in the transformed frame, when the trajectory approaches theD = 0 axis. This is an artifact of the numerical
integration and is due to the finite step-size used.
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Fig. 5. The vertical phase,2, and the barotropic amplitude,S, as
functions of time, during an amplitude vacillation.

the analysis of Pedlosky (1964), who showed that a westward
tilt is necessary for a growing disturbance to extract energy
from the mean-flow.

4.5 Symmetry-breaking

As F is decreased, the limit cycle in thef -plane model
undergoes a symmetry-breaking bifurcation before period-
doubling occurs (see Figs. 6a and c). If the bifurcations in
the f -plane model are re-plotted in the[|As |, |Bd |] plane,
as shown in Figs. 6b and d, the symmetry-breaking bifurca-
tion resembles a period-doubling. In theβ-plane model as
viewed in the co-rotating frame, Figs. 4b and d show that the
bifurcation sequence appears identical to that observed on
the f -plane, even though the corresponding attractor in the
untransformed frame (see Figs. 4a, c and e) appears symmet-
rical. The first apparent period-doubling in Figs. 4b–d, how-
ever, is actually a symmetry-breaking bifurcation, but in the
untransformed frame the orbit is rotating and quasi-periodic,
and traces out a torus. Due to the asymmetry, one side of the
torus is thinner and smaller than the other, but the rotation
renders the projection of the overall envelope symmetric.

From this observation it appears that the first period-doub-
ling bifurcation in theβ-plane model corresponds to the
symmetry-breaking bifurcation in thef -plane system. This
apparent anomaly occurs because the reflectional symmetry
does not apply in this weakly dispersive regime. The trans-
formed equations are by definition unsymmetric and the pe-
riodic solution is free to period-double without undergoing
any symmetry-breaking bifurcations (Swift and Wiesenfeld,
1984).

4.6 Lyapunov exponents

While it might be difficult to prove that the complex
Lorenz equations exhibit chaotic solutions, some evidence
for chaotic motion could be obtained by calculating the
largest Lyapunov exponent of the system.

Lyapunov exponents measure the average rate of separa-
tion of two neighboring points in phase space. In general, a
system will have a number of different Lyapunov exponents;
each measuring the separation rate in a different direction in
phase space. For ann-dimensional dynamical system, the
Lyapunov exponent is defined by monitoring the long-term
evolution of an infinitesimaln-sphere of initial conditions.
Theith Lyapunov exponent,hi , is then

hi = lim
t→∞

1

t
log2

pi (t)

pi (0)
, (22)

wheret denotes time, andpi (t) is the length of theith ellip-
soidal principal axis. A positive Lyapunov exponent, there-
fore, indicates expansion, whereas a negative exponent de-
notes contraction. A system is defined to be chaotic when
one of its Lyapunov exponents is positive (e.g. Wolf et al.,
1985). In general, Lyapunov exponents must be computed
numerically and for the study of the weakly dispersive sys-
tem, the method of Wolf et al. (1985) for numerically es-
timating the value of the largest Lyapunov exponent was
used. Using this method, an initial value numerical inte-
gration, from which the transients have been allowed to de-
cay, is performed. The phase space attractor of the system is
then reconstructed using standard techniques, such as those
described in Lovegrove (1998). Two neighboring points on
this attractor are then tracked for a predetermined length of
time, during which the average rate of expansion is calcu-
lated. When these two points move “too far apart”, two new
neighboring points are selected and the process is repeated
until the estimates of the Lyapunov exponent converge.

Recall from the two-parameter continuation of bifur-
cations in thef -plane system that, in the[r, F ]-plane, a
solution continuation at a constant value ofF , usingr as a
control parameter, should reveal the same principal bifur-
cation sequence as that observed in solution continuations
performed by varyingF at constantr (i.e. pitchfork→ Hopf
→ homoclinic). The same should be true of the weakly
dispersive regime. To support this, Fig. 7 shows a solution
continuation of the weakly dispersive spectral amplitude
equations performed atF = 11, withβ = 0.1 andε = 0.05.
It can be seen that the bifurcation sequence is indeed the
same as was observed in the solution continuation in which
F was chosen as the dependent parameter (Fig. 1).

This approach of keepingF constant and varyingr for
successive integrations was used to calculate the largest Lya-
punov exponent of thetransformedequations. The Froude
number was fixed atF = 11, andr was increased from
r = 0.01 tor = 0.105. The result is shown in Fig. 8 in which
the largest Lyapunov exponent, together with lines represent-
ing three standard deviations on the calculation, is plotted as
a function ofr.

For r > 0.105, the largest Lyapunov exponent was less
than zero. This was consistent with having a stable fixed
point representing the travelling wave. Asr was decreased
below r = 0.105, the largest Lyapunov exponent became
positive and the dynamics became chaotic. Finally, asr
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(a)F = 6.5 (b) F = 6.5 (co-rotating frame)

(c) F = 6.26 (d) F = 6.26 (co-rotating frame)

Fig. 6. Integrations performed atβ = 0, showing the symmetric and asymmetricf -plane limit cycles viewed in the original untransformed
frame, and in the co-rotating frame. Note that in the co-rotating frame, the symmetry-breaking bifurcation appears as a period-doubling
bifurcation.
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Fig. 7. Bifurcation diagram showing the effect of decreasing dissi-
pation atβ = 0.1,F = 11.0. Note that the sequence of bifurcations
is the same as that encountered in Fig. 1.

Fig. 8. The largest Lyapunov exponent as a function of the dissipa-
tion parameterr, atβ = 0.1, F = 11.0.
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Fig. 9. A series of one-parameter continuations performed around a closed curve in parameter space, enclosing the region surrounding the
suspected cusp bifurcation. Since there are no discontinuities in the curve, a cusp bifurcation is present.

is decreased belowr = 0.06, the largest Lyapunov expo-
nent decreased to zero, indicating the presence of the limit
cycle, corresponding to the amplitude vacillation regime in
this co-rotating reference frame. As the solution continua-
tion has shown that the homoclinic connection present in the
f -plane system does not persist whenβ becomes non-zero,
any chaotic attractor that may be present in the weakly dis-
persive system must be created by a different mechanism.

4.7 Cusp bifurcations

In Fig. 7, the solution branch corresponding to a period-
doubled torus exhibits an unusually large response at
r = 0.052. This appears to be a form of resonant response
to the forcing provided by the presence of aβ-effect. As the
Froude number is increased toF = 30, the amplitude re-
sponse grows larger and the branch “tilts over”, creating two
new saddle-node bifurcations atr = 0.0737 andr = 0.0782
and introducing hysteresis into the system. In addition to the
two saddle-node bifurcations, two new period-doubling bi-
furcations are also created.

Such amplitude responses are commonly observed in forc-
ed nonlinear oscillators, e.g. in the forced Duffing equation
(Drazin, 1992), and represent a nonlinearly limited reso-
nant response to an external forcing. This phenomena has
not been mentioned in previous descriptions of the weakly
dispersive regime (e.g. Fowler et al., 1982; Gibbon and
McGuinness, 1982; Fowler et al., 1983; Fowler and McGuin-
ness, 1984) and the physical mechanism behind the forcing
remains unclear.

Using AUTO86, we performed a two-parameter contin-
uation of the two new saddle-node bifurcations. The loci
of the saddle-node bifurcations trace out a “tongue” in the
(r, F )-plane, converging as the Froude number is decreased
from F = 30 and appearing to meet in a degenerate bifurca-
tion. Unfortunately this could not be shown explicitly using
AUTO86, as the two-parameter continuation became inaccu-
rate close to this degenerate bifurcation.

One possibility is for the degenerate bifurcation to be a
cusp point. This was confirmed by performing a number of
one-parameter continuations of the period-doubled solution
branch along the boundary of a region enclosing the sus-
pected cusp bifurcation. The beginning and the end of this
path were located at the same point in the(r, F )-plane. Since
there were no discontinuities in the period-doubled solution
branch, the solution at the end of the path could be identified
with the solution at the beginning of the path and a cusp bi-
furcation was, therefore, present. The result of this series of
continuations is shown in Fig. 9.

The presence of a cusp bifurcation explains the appear-
ance of the saddle-node bifurcations as the Froude number
is increased. It does not, however, seem to provide a
mechanism for generating the observed new period-doubling
bifurcations. One possible explanation for their appearance
is that the strong amplitude response of the system causes
the original curve of period-doubled tori to make a close
approach to the unstable fixed point at the origin (i.e.S

decreases toS = 0.001 or 1% of its maximum amplitude).
This tendency towards homoclinicity means that the stable
and unstable manifolds of the trivial fixed point will closely
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Fig. 10. The branch of period-quadrupled tori arising from the
period-doubling bifurcations observed atF = 11.0.

approach each other. It has been shown that the close
approach of stable and unstable manifolds can generate
cascades of period-doubling bifurcations (see Guckenheimer
and Holmes, 1983).

It was also possible to trace out the branches of solutions
emanating from the new period-doubling bifurcations. These
solution branches represent curves of period-quadrupled tori.
One of these period-quadrupled branches is shown in Fig. 10
for F = 11.0 and is a smaller facsimile of the original curve
of period-doubled tori that was shown in Fig. 9. It has the
same resonant response and additional period-doubling bi-
furcations. One might then reasonably conclude that there
are additional cusp points and approaches to homoclinicity
to explain the resonant response and period-doubling bifur-
cations appearing on the branch of period-quadrupled tori.

Further branch switching is possible at the period-
doubling bifurcations on the branch of period-quadrupled
tori. These and other continuations show that the structure
of the basic branch of period-doubled tori is repeated on ever
smaller scales. The “tongue” of saddle-node bifurcations and
the presence of cusp bifurcations is reminiscent of the reso-
nant tongues observed in the nonlinear circle map (e.g. Wig-
gins, 1990).

5 The circle map

Arnol’d (1965) introduced the circle map as a method of
studying nonlinear coupling between two periodic motions
of frequency�j for j = 1, 2:

θn+1 = (θn + w + k sinθn) mod(2π) , (23)

whereθn = θ1 (tn) mod(2π) and tn is the time at thenth
piercing of the sectionθ2mod(2π) = constant;θ1 andθ2 are
the two angles describing the torus; andw = 2π�1/�2.

Defining the rotation number to beR = p/q, Arnol’d
found that by varyingw and k (with 0 ≤ k ≤ 1), both
periodic orbits withrational values ofR and quasi-periodic
orbits with irrational values ofR were possible. Periodic
orbits exist in regions known as Arnol’d tongues which come
to dominate as the nonlinearity,k, is increased. For any given
tongue,R is constant. In between these periodic tongues,
quasi-periodic motion exists. The boundaries between
the quasi-periodic motion and the frequency-locked peri-

w

k

II

IIIIV

1/20
0

1 I

Fig. 11.As k increases, different Arnol’d tongues may overlap. The
different regions (I, II, III, and IV) contain qualitatively different
dynamics.

odic tongues are defined by lines of saddle-node bifurcations.

The situation fork > 1 is more complicated and was in-
vestigated by Mackay and Tressier (1986) (see also Marek
and Schreiber, 1991). In this case, the Arnol’d tongues con-
tinue to exist, but now two or more tongues may overlap.
When this happens,R is no longer necessarily a constant for
a given tongue, but instead can exist within a rotation inter-
val Rint =

[
R−,R+

]
. Given a point(w, k) in an Arnol’d

tongue, there are four possibilities for the rotation number,
R. These four possibilities exist in the four regions shown in
Fig. 11:

– In region I,Rint is degenerate, soR = R−
= R+ and

the orbit is periodic;

– In region II,R lies within Rint , so the orbit may now
either be quasi-periodic and diffuse either clockwise or
anticlockwise, or remain periodic;

– In region III,R = R− and the orbit is quasi-periodic
and drifts clockwise;

– In region IV,R = R+, so the orbit is quasi-periodic and
drifts anticlockwise.

5.1 A circle map in the weakly dispersive regime

The 2̇ equation in the transformed set of Eqs. (21) can be
re-written as

2̇ = V + δ (t, 2) cos2, (24)

where

V = βs − βd ,

δ (t, 2) =
S

D
(νd + γdXd) −

D

S
(νs + γsXd) . (25)



300 A. F. Lovegrove et al.: Bifurcations and instabilities in rotating, two-layer fluids

(a) (As , Bs)-plane (b) (As , Bd )-plane

Fig. 12. A resonant orbit observed atr = 0.0745,β = 0.1 andRF = 30.0. From the projection onto the[As , Bs ]-plane, it can be seen
that two vacillation cycles are completed in the time taken for a cycle through the spatial phase. Theβ-plane drift frequency,ω, and the
vacillation frequency are, therefore, in 1:2 resonance.

Fig. 13. The resonant orbit atr = 0.0745 andF = 30.0, viewed in
the transformed co-rotating frame, appears to be a period-two cycle.

Apart from the nonlinear term, Eq. (24) is similar to the
circle map given in Eq. (23). This can be readily seen by
integrating the linear part of Eq. (24) with respect to time to
obtain

2 (t) = 2
(
t ′
)
+ V

(
t − t ′

)
. (26)

Implicit in Eqs. (21) is a drift frequency,ω, defined by
Eq. (19). This can be used to define a surface of section on
which to construct the circle map as follows. Let

t ′ = tn =
2πn

ω
and t = tn+1. (27)

Then2
(
t ′
)

= 2n and2 (t) = 2n+1 so that

2n+1 = 2n + w, (28)

wherew = 2πV /ω.

While Eq. (24) has a more complicated parametric depen-
dence than in Arnol’d’s circle map, nevertheless one might
expect to observe phenomena such as frequency-locking in
tongues, similar to the Arnol’d tongues in the original circle
map, as well as boundaries of these tongues being defined by
lines of saddle-node bifurcations.

If frequency-locking does occur in the weakly dissipa-
tive, weakly dispersive spectral amplitude equations, then
the most likely place to observe it would be inside the re-
gions defined by the saddle-node bifurcations generated by
the cusp bifurcation. A number of initial value integrations
of the original untransformed equations (see Eq. (9) of Part
I) were, therefore, performed in the region 7.37 < r < 7.81
atF = 30.

We found no evidence of frequency locking for most of
the interval 0.0737 < r < 0.0782 atF = 30, but when
r = 0.0745 frequency-locking was observed. This solution
is shown in Fig. 12, plotted in both the[As, Bs ] and[As, Bd ]
planes. There is clearly a rational relation between the drift
frequency of the travelling wave and the period-doubled fre-
quency of the amplitude vacillation. Note that this is in con-
trast to the assertion of Fowler and McGuinness (1984) that
there was no frequency locking in the weakly dissipative,
weakly dispersive regime.

Figure 13 shows the same frequency-locked orbit in the
transformed, co-rotating frame. In this frame the orbit
appears to be a period-two orbit. The presence of both
frequency-locked and near resonant orbits within the tongue
defined by the continuations of the saddle-node bifurcations
is reminiscent of the behavior observed in region II of the
circle map, where the rotation number is not constant, but
exists in an intervalRint , which allows for the orbit to drift
clockwise, anticlockwise or remain locked.

Frequency-locked orbits appear to exist only in very small
regions of parameter space and, in practice, finding them is
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(a) (As , Bs)-plane (b) (As , Bd )-plane

Fig. 14. A second resonant orbit, observed atr = 0.060,F = 11.0.

a matter of trial and error. A second frequency-locked or-
bit, shown in Fig. 14, was found atR = 0.060, β = 0.1
and F = 11.0. This was in a region where, according
to the solution continuation shown in Fig. 7, the original
branch of period-doubled tori had become unstable. One
must conclude, therefore, that this second orbit exists on an-
other branch of solutions.

Figure 15 shows the same resonant orbit viewed in the
co-rotating frame. It appears to be a period-six orbit and,
therefore, cannot arise from a simple period-doubling of the
underlying torus. Therefore, there must be other solution
branches in existence that are disconnected and cannot be
reached by using AUTO86 to follow solution branches bi-
furcating from the original branch of torus solutions. Recall
that in the co-rotating frame, a symmetry-breaking bifurca-
tion can resemble a period-doubling bifurcation. Therefore,
it is possible that the period six orbit in Fig. 14 is actually
a period three orbit that has undergone a symmetry-breaking
bifurcation.

Sarkovskii (1964) showed that the presence of an orbit of
periodp, with p occurring before another integerl implies
the existence of an orbit of periodl. Li and Yorke (1975)
showed that the existence of a period three orbit also im-
plies the existence of an uncountable number of aperiodic
orbits. Although Sarkovskii’s theorem as originally formu-
lated applies only to mappings of the real line onto itself,
its results have since been extended to the circle map, as is
relevant here (see Block, 1981; Hidalgo, 1992). By these ex-
tensions to Sarkovskii’s theorem, the existence of the period
six orbit shown in Fig. 13, therefore, implies that the weakly
dispersive system contains an infinite number of periodic or-
bits. If the period six orbit is actually an asymmetric period
three orbit, then Li and Yorke’s finding that “period three
implies chaos” implies that the weakly dispersive system is
actually chaotic, as was concluded from studying the largest
Lyapunov exponent of the system.

Fig. 15. The second resonant orbit, viewed in the transformed co-
rotating frame, appears to be a period-six orbit.

6 Bifurcations with increasing β

So far we have concentrated on bifurcations occurring for a
single value ofβ. Pedlosky (1981b) performed a numerical
study of the consequences of varyingβ on the chaotic mo-
tion observed in the two-layer model. His main conclusion
was that such behavior observed on thef -plane was strongly
suppressed by the addition of aβ-effect. Furthermore, he
found that increasingβ led to a sequence of inverse period-
doubling bifurcations which produced successively less com-
plicated behavior. In this section, we investigate the effects
of increasingβ in the spectral amplitude equations. We shall
show that the spectral amplitude equations can reproduce the
inverse period-doubling cascade observed by Pedlosky for
certain values ofr. We also show that increasingβ can lead
to other changes in the dynamics of the two-layer model.
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6.1 Two parameter continuation

Using AUTO86, a two-parameter continuation of the prin-
cipal bifurcations observed in the weakly dispersive, weakly
dissipative regime was performed in the(r, β)-plane forF =

11 andε = 0.05. Figure 17 shows the curves of Hopf, torus,
and saddle-node bifurcations, together with the last period-
doubling bifurcation (which was found to correspond to the
symmetry-breaking bifurcation on thef -plane).

We see that at higherβ, fewer bifurcations are encoun-
tered asr is decreased and consequently, the behavior of the
system becomes less complicated. The critical value ofr at
which the trivial solution loses stability in a Hopf bifurca-
tion decreases untilr = 0 at β ≈ 11. For all higher val-
ues ofβ, the trivial solution of the two-layer model is sta-
ble. We observe also that asβ is increased, the curves of
torus and saddle-node bifurcations converge and appear to
merge in a cusp bifurcation at(r, β) = (0.069, 1.51). The
existence of this cusp bifurcation means that asβ increases
throughβ = 1.51, the torus bifurcation changes from being
subcritical to beingsupercriticaland persists toβ = 1.84,
above which no torus bifurcations are present in the two-
layer model.

To clarify this behavior, a series of one parameter continu-
ations usingr as the bifurcation parameter was performed at
F = 11 (see Fig. 16). For each runβ was held constant, but
with a different value each time and initialized on the trivial
solution atr = 1. The paths of these continuations in the
(r, β)-plane are also shown in Fig. 17.

It has already been argued that theβ-plane saddle-node bi-
furcation arises from thef -plane homoclinic connection as
the O (2) symmetry is broken. For small values ofβ, the
saddle-node bifurcation and the period-doubling bifurcation
are very close together, suggesting that the presence of the
period-doubling bifurcation might also be a consequence of
breaking theO (2) symmetry on thef -plane homoclinic or-
bit. Following the locus of the period-doubling bifurcation
in the [r, β] plane reveals that it “bends around” and reap-
pears on thef -plane atr = 0.043. Any chaotic attractor
that may be present in theβ-plane system will most likely be
created by Feigenbaum’s route of an accumulation of period-
doubling bifurcations. An outer bound to the region of pa-
rameter space in which chaos can occur is, therefore, pro-
vided by the locus of the last period-doubling bifurcation.

A second series of continuations (shown in Fig. 18) was
also performed atF = 11, withβ chosen as the control pa-
rameter and withr held constant for the duration of each run,
but varied between continuations. The paths of these contin-
uations on the(r, β)-plane are also shown in Fig. 17.

From Fig. 18a, it can be seen that decreasingβ from
β = 12 causes the trivial solution to lose stability to a travel-
ling wave in a supercritical Hopf bifurcation. This travelling
wave then undergoes a supercritical torus bifurcation to an
amplitude vacillation that remains stable for all subsequent
values ofβ. From Fig. 17, it can be seen that decreasingβ

will only give rise to chaotic motion for 0.069 < r < 0.14,
since the trivial wave bifurcates to a travelling wave then

to an amplitude vacillation in a subcritical torus bifurcation
and finally undergoes a series of period-doublings. A one-
parameter continuation performed in this region is shown in
Fig. 18b.

For 0.14 < r < 0.38, the situation was slightly more com-
plicated (see Fig. 18c). The initially stable trivial solution bi-
furcated to a travelling wave asβ was decreased. This wave
did not undergo any further bifurcations. Note, however, the
presence of a disconnected branch of solutions, or anisola,
in the system. These solutions were created in a saddle-node
bifurcation, and correspond to amplitude vacillation and its
subsequent period-doublings. Figure 19 shows an enlarge-
ment of the isola.

For 0.14 < r < 0.38, the initially stable trivial solution
bifurcated to a travelling wave asβ was decreased. This trav-
elling wave then remained stable asβ was decreased to zero.

6.2 Vertical phase tilt

The phase difference,2, determining the vertical phase tilt
of the travelling wave solution, becomes less negative asβ

increases. For example, whenr = 0.25 andF = 11.0, 2

varies monotonically from∼ −1.6 to∼ −1.8 asβ increases
from 0 to 6. This implies that increasingβ suppresses the
westward tilt with height of the instability. Physically, this
reflects the fact that asβ increases, the velocity of the travel-
ling wave increases. Consequently, there is an increase in the
amount of the energy extracted from the mean-flow which
is converted into the kinetic energy of the wave. Therefore,
there is less potential energy available to support the west-
ward tilt of the wave and so2 decreases. This, in turn, re-
duces the ability of a growing disturbance to draw energy
out of the mean-flow, thereby stabilizing the system. This
stabilization effect can be seen in Eqs. (21) by noting that in
the equations forS, D andXd , the nonlinear part contains a
sin2 term. The decrease in the value of2, therefore, causes
a decrease in the strength of the nonlinear coupling in the
dispersive system.

In addition to the vertical phase tilt of the travelling wave
decreasing asβ increases, thenatureof the amplitude vacil-
lation also changes. Figure 20 shows the effect of increasing
β on the amplitude vacillation. It can be seen that, while the
oscillation takes the form of a square wave on thef -plane, it
appears more rounded asβ increases, i.e. the transfer of en-
ergy from the mean-flow to the wave (and vice versa) appears
to be instantaneous on thef -plane, but becomes slower asβ

is increased.
Thus, the period-doubling behavior observed in Pedlosky

(1981a) is only typical of a small region of parameter space.
Other sequences of bifurcations with decreasingβ can be
found, depending on the strength of the dissipation present
in the system.

The complete bifurcation behavior of the two-layer sys-
tem in the(r, β, F )-parameter space is shown in Fig. 21.
The true significance of the organizing center at(r, β, F ) =(
0, 0, K2/2

)
can now be seen. It appears that the bifurcation
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(a)β = 4.0
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(b) β = 1.8
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(c) β = 1.0
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(d) β = 0.5

Fig. 16. A series of one-parameter continuations, varying the dissipation parameter,r atF = 11.0, for different values ofβ.
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Fig. 18. A series of one-parameter continuations, varyingβ atF = 11.0, for different values of the dissipation parameter,r.
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Fig. 19. An enlargement of the isolated solution branch shown in Fig. 18c.

structure of the two-layer system “originates” at this single
degenerate bifurcation. Observe that, asβ is increased from
zero, theβ-plane Hopf bifurcation arises from the pitchfork
of revolution on thef -plane; the subcritical torus bifurcation
results from the subcritical Hopf bifurcation on thef -plane;
and the saddle-node bifurcation is born from the homoclinic
bifurcation on thef -plane. This is all in agreement with the
symmetry arguments described in Sect. 4.2. Note that Fig. 21
also shows the curves derived by Pedlosky (1970) and Romea
(1977), representing the onset of instability in the inviscid
system.

7 Bifurcations in the inviscid, weakly dispersive system

In the weakly dispersive system, the first effect of dissipation
is to destabilize the system. This is reflected in the well-
known discrepancy between the inviscid stability curve and
the curve representing viscous stability in the limitr → 0, in
the full three-dimensional regime diagram of Fig. 21. Ped-
losky (1981b) made the case for the inviscid curve being the
“true” curve that marked the transition to instability, whereas
Romea (1977) argued that the inviscid limit of the viscous
theory was the “correct” curve. Romea based his argument
on the fact that a slowly growing wave can be produced on
a very long time scale in the region between the two curves
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(a)β = 0 (f -plane)

(b) β = 0.1

(c) β = 0.5

Fig. 20. The vertical phase,2, during an amplitude vacillation. As
β is increased, the response of the wave becomes slower and the
oscillation appears more “rounded”.

as a result of nonlinear interactions. Neither Pedlosky nor
Romea, however, gave detailed consideration to the type of
bifurcations occurring on each curve. These bifurcations will
now be discussed.

As has already been shown, the initial bifurcation in the
viscous dispersive system is a Hopf bifurcation. In this bifur-
cation, two complex conjugate eigenvalues cross the imagi-
nary axis, two other complex conjugate eigenvalues retain a
real part that is less than zero, and one real eigenvalue is less
than zero. In the inviscid(β, F )-plane, the system becomes
Hamiltonian, i.e. the eigenvalues are either always purely
imaginary or are equal with opposite signs. The inviscid
system is neutrally stable and is part of the center-manifold
of the degenerate bifurcation at(β, F ) = (0, K2/2) and
the Hartman-Grobman theorem (see e.g. Guckenheimer and
Holmes, 1983) no longer applies. Nonlinear terms must,
therefore, be taken into account when analysing the stability
of the system. Hence, Romea’s argument that, on ther = 0
plane, instability actually results from nonlinear interactions
is probably correct and it follows that the inviscid limit of the
viscous theory is probably the correct marker for the onset of
instability. While Romea’s work took nonlinear terms into
account, Pedlosky’s inviscid analysis concentrated on look-
ing for the transition to linear instability. This occurs in a
bifurcation specific to Hamiltonian systems that is illustrated
in Fig. 22.

For small values ofF , all of the eigenvalues are situated on
the imaginary axis and there are two distinct pairs of imagi-
nary eigenvalues and one zero eigenvalue. AsF is increased,
the imaginary pairs approach each other until, at a critical
value, the pairs become identical and we have a case of 1: 1
resonance. For values ofF larger than this critical value,
the two complex pairs are no longer purely imaginary. In-
stead they contain a real part. This bifurcation mechanism
is known as a Trojan or Hamiltonian Hopf bifurcation (see
Bridges, 1990; Woods and Champeneys, 1999; Champeneys,
1999).

In the viscous, dispersive two-layer system, the Trojan bi-
furcation mechanism is not applicable since the requirement
that the real part of two pairs of complex eigenvalues must be
zero is never satisfied. Comparing this special inviscid bifur-
cation with the Hopf bifurcation present in the viscous sys-
tem, therefore, does not make sense, since the two instability
mechanisms are different. This further strengthens Romea’s
claim that the inviscid limit of the viscous problem is the
correct limit to use when trying to determine the onset of in-
stability in the two-layer system.

8 Conclusions

In this paper, we have extended the analysis of Part I to per-
form for the first time a detailed examination of bifurcations
present in the two-layerβ-plane spectral amplitude equa-
tions. It was shown that the behavior predicted by various
multiple-scales approximations is reproduced by the spec-
tral amplitude equations. In particular, it was shown that for
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small values ofβ the spectral amplitude equations reproduce
the behavior associated with the complex Lorenz equations.

Using AUTO86 we performed a more detailed bifurcation
analysis of the weakly dispersive regime than that of Fowler
and McGuinness (1984) and support their conclusion that the
weakly dispersive system contains a subcritical torus bifur-
cation, with the solutions created in this bifurcation turning
back on themselves in a saddle-node bifurcation. The re-
sults of this study, however, disagreed with their suggestion
that a homoclinic connection is present in the system and is
responsible for the creation of period-doubling cascades. In-
deed, our study showed that theSO (2) symmetry of theβ-
plane destroyed the homoclinic connection observed in the
f -plane system, and created a saddle-node bifurcation in-
stead. The dynamics of theβ-plane system are, therefore,
fundamentally different from those of thef -plane model.
Consequently, thef -plane approximation may not simply be
viewed as theβ → 0 limit of theβ-plane approximation.

Moreover, a strong resonant response was found along
some branches of period-doubled tori and was repeated for
successive branches of period-doubled tori. Furthermore,
this investigation showed that, in the weakly dispersive
regime, the spectral amplitude equations exhibit frequency-
locking within narrow tongues emanating from various cusp
bifurcations. We argued that this frequency-locking was
probably a result of circle map dynamics, in contrast to
the work of Fowler and McGuinness who found no such
frequency-locking in their weakly-dispersive multiple-scales
approximation.

Pedlosky’s observation that a cascade of inverse period-
doubling bifurcations occurred with increasingβ was also
verified and we subsequently showed other bifurcation se-
quences to be possible, by increasingβ at different values of
the dissipationr. These sequences included a disconnected
branch of period-doubling bifurcations at large dissipation.

The analyses of Pedlosky (1970) and Romea (1977) of the
inviscid bifurcation problem in the dispersive regime were
then compared. It was concluded that Pedlosky’s study relied
on an instability mechanism specific to Hamiltonian systems,
whereas the mechanism of Romea was common to both vis-
cous and inviscid systems. Consequently, any comparison
between viscous and inviscid instability should be based on
Romea’s analysis.

Finally, a three-dimensional regime diagram showing be-
havior as a function ofr, β andF were constructed. This
allowed for the true importance of the degenerate bifurcation

at (r, β, F ) = (0, 0, K2

2 ), as an organizing center, to be seen.
The extent to which such a highly truncated model as pre-

sented here and in Lovegrove et al. (2001) provides an appro-
priate description of the bifurcation behavior in a physical
system (such as in laboratory experiments or even a plane-
tary atmosphere) is an important issue, though a detailed dis-
cussion is beyond the immediate scope of this paper. Some
general features of the transition to geostrophic chaos and
turbulence in simple models have been reviewed by Klein
(1990), in which some aspects of the generic problems are

raised concerning the possible lack of robustness of the be-
havior of spatially truncated models as the level of truncation
is relaxed (cf Curry et al. (1984) for a comparable problem
in fluid dynamics).

It has long been observed (e.g. Hide and Mason, 1975;
Hart, 1979) that the initial bifurcations from axisymmetric
flow at weak-moderate supercriticality in baroclinic systems
studied in the laboratory entail the emergence of regimes in
which the flow is dominated by just one (or a small number
of) wave mode(s), with either steady or periodically-varying
amplitude or structure. Such a regime is highly reminis-
cent of the present model, with or without aβ-effect. At
higher supercriticality, experiments (e.g. Hart, 1985; Ohlsen
and Hart, 1989; Read et al., 1992; Früh and Read, 1997)
have shown evidence for several alternative routes culminat-
ing in low-dimensional chaos, but which include interme-
diate quasi-periodic states and/or period-doubling cascades
starting from periodically vacillating waves, with similarities
in at least some cases to the bifurcation sequences found in
the present models.

As found for theβ-plane QG spectral amplitude equation
models presented above, departures from spatialO(2) sym-
metries may be important in this regard. Mundt and Hart
(1994), for example, found that the spatial complexity of
bifurcations increased sharply with supercriticality in their
numerical study of transitions to baroclinic chaos in a two-
layer, zonally-periodic rectangular channel, even though the
temporal behavior still involved bifurcations via periodic and
quasi-periodic states. In a comparable study in cylindrical
geometry, however, where the O(2) reflectional symmetry
was broken, the spatial structure of baroclinic instabilities
tended to remain much simpler (Mundt et al., 1995), in gen-
erally good agreement with experiments (Hart, 1985; Ohlsen
and Hart, 1989; Read et al., 1992; Früh and Read, 1997) and
thereby retaining many features of the present models well
into the supercritical regime.

In conclusion, we note that such spatial simplicity in mod-
erately supercritical baroclinic instability is not confined to
small-scale laboratory systems, but might also be a feature of
large-scale atmospheric flows under certain conditions (such
as those prevailing on planets such as Mars). Collins and
James (1995), for example, showed evidence for the develop-
ment of regular, near-steady baroclinic waves in a simplified,
high resolution, large-scale atmospheric general circulation
model run under conditions intended to emulate those in the
Martian atmosphere. Such results were later confirmed in a
much more sophisticated and realistic atmospheric model of
the Martian atmosphere by Collins et al. (1996); Read et al.
(1998), together with evidence from analyses of data from
the Viking Lander spacecraft for low-dimensional chaotic
motion on Mars itself. While it is highly likely that the spatial
complexity of baroclinic flows eventually diverges strongly
from that assumed in the present models, given sufficient su-
percriticality, there would seem to be substantial evidence
to suggest that idealized studies using low-dimensional sys-
tems, such as presented here, can provide valuable insights
into the nonlinear dynamics of a rich variety of physical sys-
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tems.

Appendix A Coefficients of the single-wave model

The coefficients to Eqs. (11) are:

K2
= k2

1 + l21 (A1)

1s = r
[
1 + rεK2

]
(A2)

1d =
rK2(

K2 + 2F
) [1 + rε

(
K2

+ 2F
)]

(A3)

1̄ =
rl21(

l21 + 2F
) [1 + rε

(
l21 + 2F

)]
(A4)

βs =

[
β

K2
− Us

]
k1 (A5)

βd =

[
β(

K2 + 2F
) − Us

]
k1 (A6)

νs = Udk1 (A7)

νd = Ud

(
K2

− 2F
)(

K2 + 2F
)k1 (A8)

γs =
16k1

3

6K2
(A9)

γd =
16k1

(
k2

1 − 2F
)

6
(
K2 + 2F

) (A10)

γ̄ =
32Fk1

3
(
l21 + 2F

) . (A11)

All the numerical continuation computations in this
paper were carried out using the 1986 version of the
widely available package AUTO Doedel (1981); Doedel
and Kernevez (1986). Some codes written to pro-
duce the figures in this paper, together with lists of
parameters, will be made available via the website
http://www.atm.ox.ac.uk/users/read/LMRpaper2.html.
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