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Abstract. In the Forschungszentrum Karlsruhe an experi-over areas in planes perpendicular to the cylinder axis cov-
ment has been constructed which demonstrates a homogering the cross-sections of several cell&dRr et al., 1996,
neous dynamo as is expected to exist in the Earth’s interiorl997a,b, 1998b). The essential induction effect of the fluid
This experiment is discussed within the framework of mean-motion is then, with respect to the mean magnetic field, de-
field dynamo theory. The main predictions of this theory arescribed as an anisotropiceffect.

explained and compared with the experimental results. In order to obtain estimates of the self-excitation condition
for the magnetic field in the experimental device and to give
predictions of its geometrical structure, several kinematic
mean-field dynamo models have been investigated, and cal-
culations of thex-coefficient and related quantities have been
carried out (Rdler etal., 1996, 1997a,b, 1998b, 1998dRr

1 Introduction and Brandenburg, 2002). In addition, the back-reaction of the
magnetic field on the motion has been taken into account in

Itis generally believed that thg magnetic fields of the Earth'some approximation and so estimates for the saturation field
the Sun and other cosmic bodies result from dynamo mECh'strengths of the dynamo were derivedaifer et al., 1998a,

anisms. In the Forschungszentrum Karlsruhe a device ha§000a,b). Parallel to the elaboration of the mean-field ap-

been constructed for an experiment which should demony, - 15 the theory of the experiment several direct numeri-

strate a homogeneous dynamo as is expected to exist in they) 5 lations of the dynamo process have been carried out
Earth’s interior or in cosmic bodies (see, e.g. Stieglitz a”d(TiIgner 1996, 1997)

Miller, 1996). The experiment was run the first time suc-
cessfully In pecemb_er 1999 (seeliler and Stieglitz, 2000, mean-field theory of the experiment and compare the results
2002; Stlegllt_z and MII(_er, 2001_). with the measured data.

The basic idea of this experiment was proposed by Busse
(1975, 1978, 1992). It is very similar to an idea discussed
before by Gailitis (1967). The essential piece of the experi-2 The mean-field concept
mental device, the dynamo module, is a cylindrical container
as shown in Fig. 1, with both radius and height somewhat lesé-€t us assume that the magnetic flux denditynside the
than 1 m, through which liquid sodium is driven by external dynamo module is governed by the induction equation
pumps. By means of a system of channels with conductingy x (v x B—ux B)+ B =0, V-B=0, (1)
walls, constituting 52 “spin-generators”, helical motions are
organized. The flow pattern resembles one considered in th
theoretical work of Roberts (1972) which proved to be capa- i .
ble of dynamo action. It is sketched in Fig. 2. incompressible, tha}t = 0 i

It seems appropriate to discuss the experiment in the We use a Cartesian co-ordinate system. z as indicated

framework of the mean-field dynamo theory. Going beyondm Fig. 1, with thez-axis aligned with the cylinder axis but

simple considerations of this kind (Busse, 1992; Busse et all= Qin the middle of the dynamo module. The flow pattern

1996, 1998: Stieglitz and Mler, 1996) a systematic theory inside the module is assumed to coincide, apart from some

has been developed with mean fields defined by averagingOundary layer, with a pattern as depicted in Fig. 2, showing
eriodicity in x and y with a period length @, and being
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In this paper we give a summarizing representation of the

}Q/heren is the magnetic diffusivity of the conducting fluid
andu the velocity of its motion. The fluid is considered as
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Fig. 1. The dynamo module (after Stieglitz andiiNer (1996)). - - - -
The signs+- and — indicate that the fluid moves up or down, re- fii ¥ i © T 1 + !' 1 l © T a
spectively, in a given spin generatoR = 0.85m, H = 0.71m, _ - - -
a=021m. , - -
oo

For the sake of simplicity we ignore until further notice o
(Sect. 7.1.2) the peculiarities at the curved boundaries of th&19- 2. The Roberts flow pattern. The flow directions correspond to
dynamo module, that is, assume a flow pattern as in Fig éhe situation in the dynamo module if the co-ordinate system coin-
for all x andy. We admit, however, at first a dependence of cides with that in Fig. 1.
the flow onz. When speaking of a “cell” of this pattern we
mean a unit like that defined by 8 x, y < a. We further
assume, again for simplicity, that does not depend on
andy. E=uxDPB, (5)
Let us follow the lines of the mean-field dynamo theory . .
(see, e.g. Krause andaRler, 1980). For each given field is a mean electromotive force due to the fluctuatians
we define a mean field by taking an average over an area andB’.

where€&, defined by

corresponding to the cross-section of four cells in thye The de/terminat_io_n of for a givenu requires the knowl-
plane, edge ofB’. Combining Egs. (1) and (4) we easily arrive at
o Vx(@VxB —uxB—uxB))+dB =0,
f(x’y,z)zm//F(X'FE»)"FU,Z)dEd’? (2) VB/ZO? (6)
—a —da

where(u x B'Y =u x B’ —u x B’. We conclude from this
We note that the applicability of the Reynolds averagingthatB'is, apart from initial and boundary conditions, deter-
rules, which we use in the following, requires tifatvaries ~ mined byu and B and is linear inB. We assume here that
only weakly over distances in x- or y-direction. By the B’ vanishes ifB does so. Thug, too, can be understood as
way, all what follows applies also with a definition 6fby ~ a quantity determined by and B only and being linear and
averaging over an area corresponding to two cells only (Pluhomogeneous iB. Of course € at a given point in space
nian and Rdler, 2002), but we do not want to consider this and time depends not simply arandB in this point but also

possibility here in detail. on their behaviour in the neighbourhood of this point.
We split the magnetic flux densit§ and the fluid velocity We adopt the assumption th# varies only weakly in
u into mean fieldsB andz and remaining field8’ andu’, space and time so thdt and its first spatial derivatives in
that is this point are sufficient to define the behaviour®fin the
o relevant surroundings. Thehcan be represented in the form
B=B+B', u=u+u. (3) -
- dB;
Although in this papeB’ andu’ are more or less regular € =aij Bj + bijk ox )

fields we will adopt the notation of mean-field theory and N
call them “fluctuations”. As long as we, in the sense ex- Where the tensors;; andb,;j; are averaged quantities deter-
plained above, do not consider the situation near the curvedined byu. We use here and in the following the notation
boundaries we havi = 0, that is.u = u'. x1 = x, x2 = y, x3 = z and adopt the summation con-
Taking the average of Eq. (1) we see tiahas to obey vention. Of course, the neglect of contributionsé&awith
higher-order spatial derivatives or with time derivativesBof
Vx(WVxB—-—&+3B=0, V-B=0, (4)  remains to be checked in all applications (see Sect. 7.3).
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Before giving results of calculations &fwith specific as-
sumptions one, we write down its most general form com-
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3 Simple kinematic mean-field dynamo models

patible with Eq. (7), which can be determined by standardLet us consider simple kinematic mean-field dynamo mod-

methods of mean-field theory (see, e.g. Krause aadldr,

els which reflect essential features of the experimental de-

1980). Due to our definition of averages and the periodic-vice. We assume here that the mean magnetic flux defsity

ity of the flow patterng;; andb;;; are independent of and
y. Clearly a 90 rotation of the flow pattern about theaxis
as well as a shift by the length along thex-or the y-axis
change only the sign af so that simultaneous rotation and

inside a cylindrical body which corresponds to the dynamo
module is governed by Eq. (4). For the sake of simplicity we
specify the electromotive forc€ so that it covers only the
anisotropicx-effect and consider bothanda | as indepen-

shift leaveu unchanged. This is sufficient to conclude that dent of space coordinates and time. So we have inside this

a;; andb;;; are axisymmetric tensors with respect to the
axis. That is,q;; is a linear combination o8;;, &;;,¢; and
e;e;, andb; i alinear combination of;j«, 8;;ex, Sike;, 8 jkei,
gijielek, girere), €jkiere; ande;e;jer. Heres;; means the
Kronecker tensorg; ;. the Levi-Civita tensor and the unit
vector inz-direction. With this specification af;; andb; j«
Eq. (7) turns into

EI—(XJ_E—((X” —aj_)(e-E)e—yexﬁ
—B1LV x B — (B —BL)(e- (Vx B))e
—Bze x (V(e-B)+ (e-V)B)

—81V(e-B)—382(e-V)B —63(e-V(e-B))e, (8)

with coefficients, «, ¥, BL, By. - . ., which are averaged
guantities determined hy and are independent afand y

but may depend opn The terms withy; ande describe the
a-effect, which is in general anisotropic, those with and

body

nV?B —a,V x (B—(e-B)e)— B =0,

V-B=0. (10)

In the outer space the-effect is taken to be zero, and various
assumptions concerning the electric conductivity are consid-
ered, which will be specified later.

In models of that kind several types of magnetic fields
showing different symmetries with respect to the axis and the
middle plane of the cylinder are possible. Equations (10) al-
low independent solutionB which vary like exginmg) with
the azimuthal co-ordinate of a cylindrical system whose
axis coincides with that of the dynamo module. The fields
with m = 0 are symmetric, such withh £ 0 non-symmetric
with respect to this axis. In the axisymmetric case there are
again two independent types of fields. For one the poloidal
part is antisymmetric and the toroidal part symmetric with

B give rise to the introduction of a mean-field conductivity respect to the middle plane, and for the other vice versa.
different from the original electric conductivity of the fluid Such fields are denoted by AS or SA, respectively. The
and again in general anisotropic. The term withlescribes  poloidal part of an AS field is dipole-like, that of a SA field
atransport of mean magnetic flux like that due to a fluid mo-quadrupole-like. In the simplest non-axisymmetric case, that
tion with the velocity—ye. The remaining terms are less ism = 1, the field corresponds roughly to that of a dipole
easily to interpret. We note that in contrast to theand g lying in the middle plane, but its field lines above and be-
terms thess term is not connected witR x B but with the  low this plane are distorted as it would happen with opposite
symmetric part of the gradient tensor Bfand can therefore  rotations of the fluid in these regions about thaxis. In
not be interpreted in the sense of a mean-field conductivity. the casen = 0 we haveB, = B, = 0 on thez-axis, in

We proceed now to the case in whiglis independent of the casen = 1 we haveB, = 0; and form > 2 finally
(butreturn to the case in which it dependscan Sect. 7.1.1). B, =B, = B, = 0.
Consider for a momenB as a homogeneous field in the We may measure all lengths in units of the radkusf the
direction. ThenV x (u x B) vanishes, and we have to con- cylindrical body considered and the time in units ®&4/1.
clude from Eg. (6) thaB’ = 0. This in turn leads t&€ = O, Then Eq. (10) takes the form
and therefore Eq. (8) can only be correcrjf = 0. Re- - - - -
turning again to arbitrary® we further consider the fact that V?B—CV x (B—(e-Be)— 3B =0,

averaged quantities determinedygan never imply a pos- V.B=0, (11)

sibility to distinguish between the positive and the negative

z-directions. This means th&tin the form given by Eq. (8) whereC is a dimensionless measure of theffect,

must be invariant under exchangiegwith —e, which re- o R

quires thaty = 81 = §2 = 83 = 0. Thus we arrive at c=x= (12)
n

E=-a (B—(e-B)e)
—BLV x B— (B —BL)(e-(VxB))e
—pse x (V(e- B) + (e- V)B).

In general the solution® of Eq. (11) for a givenn are
superpositions of independent solutions each of which varies
with time like exp(pt), wherep is in general complex. For
each such solution Eqg. (11) together with proper boundary
conditions pose an eigenvalue problem wijthbeing the
eigenvalue parameter. Of course, the eigenvaludspend
onC. Clearly the growth ratg, given byxr = R(p), must be

(9)

Here thex-effect has an extremely anisotropic form. It is
able to drive electric currents in the and y-direction but
not in thez-direction.
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Table 1. Marginal valuesC* for cylindrical dynamo models of
types (i) and (ii) and different types of magnetic fields

model m=0 m=0 m=1 m=2
AS SA

(i) e=1 822 846 641  8.62

() £=001 864 918 7.70  9.67

() £§=0001 9.02 960 812 10.12
(ii) 855 855 628 855

Fig. 3. Concerning the numerical calculations: the cylindrical body
embedded in a sphere

O

negative for smalC. For each type of solutions with a given
m, in the casen = 0 with a given specification AS or SA,
we define a marginal valué* of C so that alls are negative
for C < C*, but at least one of them vanishestat= C*.
This marginal value* defines the self—excitation condition
for the corresponding type of magnetic fields.

Estimates for the marginal valués' where derived from _ o o
models treated in other contexts in which theffect was not F;g}f' Ma%”‘ft'c field ‘r’]f_t¥p|9(:’|_= OAfS'hS = ?-Q;- l'-eft- isolines
restricted to a finite cylinder but was assumed to act eithe! the toroidal part, right: field lines of the poloidal part
in all space, in an infinite slab, in an infinite cylinder, or in
a sphere. The results obtained in this way suggest that for, . . .

L . 4 Thea-effect under idealiz ndition
our cylindrical bodyC* < 10 (Radler et al., 1996; Gailitis, e a-effect under idealized conditions

1967). 4.1 General considerations
Several numerical studies of dynamo models as described

above, that is, with the-effect restricted to a finite cylinder, In order to formulate the self-excitation condition in terms of
have been carried out. For most of them a code develope¢he rates of the flow through the spin generators we need to
for spherical models (Fuchs et al., 1993) was used, with theknow howa , or C, depends on them. In the following we
cylinder embedded in an electrically conducting sphere surfocus attention on the calculation of the coefficientin the
rounded by free space. As sketched in Fig. 3 the smallestase in whiche is independent of (but will come to a case
sphere just containing the cylinder was chosen. The conducin which it depends on in Sect. 7.1.1). For this purpose it is
tivity of the parts of the sphere outside the cylinder was as-sufficient to restrict our considerations to the case in which
sumed to be equal ptimes that inside the cylinder. Inthese B is a homogeneous field. For the sake of simplicity we
calculations the ratio of radiug and heightl of the cylin-  further assume again thatis constant. Them x B’ is also
der was fixed ak/H = 1. Using another method (Dobler cqnstant, that i x (x x B') = 0, and Eq. (6) forB’ takes
and Radler, 1998), models with the same conductivity ev- the simple form
erywhere inside and outside the cylinder aRdH = 1.21
were also investigated. We denote the two kinds of models; V2B’ + (B’ -V)u — (u-V)B — ,B' = —(B - V) u,
by (i) and (ii). The marginal value€* for some magnetic V.B =0. (13)
fields with lowm are presented in Table 1 (see alsadiRer
etal., 1996, 1998b). Figs. 4 and 5 exhibit examples of fieldwe may assume th&’ like B is independent of. Let us put
structures. All these fields are steady, that is, non-oscillatoryB’ = B + B]I andu =u, +uywithB', =B —(e-B')e
Our results show that the non-axisymmetric field with= 1 andB/, = (e- B') e, andu ; andu defined analogously. We
is clearly preferred over the axisymmetric and the other nonpyt furtheru | = u | andu | = uyity, whereu | andu are
axisymmetric fields. Thatis, magnetic fields of the symmetryfactors independent afandy characterizing the magnitudes
typem = 1 can be generated or maintained with the lowestof 5 | andu;, andit; andi fields which are normalized in
requirements concerning theeffect. some way. We may conclude from Eq. (13) tiBt depends
Results for a more sophisticated mean-field dynamo modebnly onx; and not onu, and thatB’H depends again on
will be given later (Sect. 7.4). u but only in a linear and homogeneous way:gn This
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in the neglect of the two terms withon the left-hand side of
Eqg. (13). In both cases we will start with this simple approx-

“““ 2 imation but then proceed to results for arbitrary magnitudes
""""""" of u.

4.2 Roberts flow

RN We define the Roberts flow by

u:ulge X Vx —u”(z)zxe,

N 2 2
........ o r
: ) =sin(—x)sin(—y), 14
x = sin(—x)sin(=y) (14)
i = 9556400 or, more explicitly,
. T b
u, =—u| —SIN|—x)Cos(—y),
v =—usZsin(Cx)cos( T y)
S b b . b
L Uy = u)—cos(—x)sin(—y),
S S e y= urzcos(—x)sin(=y)
Aty NN T2 i (T8 N ain(E
, ;{{;///Ar:::?:?i: U, = _MH(E) Sln(;x) Sln(;y). (15)
1 o
LA T T U U RN /\\\xxxr\
e Qii::::::;fff f f ‘ Hereu, is the average of the modulus of the velocity com-
T ponent in thexy-plane perpendicular to a line running from
,,,,,,,,,,,,,,,,, the centre of a cell to its boundary taken over this line, e.g.,
S the average of-u, atx = a/2 over 0< y < a/2, or ofu, at
y =a/2over0< x < a/2,andu is the average of the mod-
ulus ofu, over the cross-section of a cell, e.g<0x, y < q,
t = 6.30e+00 that iS,
a/2
2
uj_z—; ux(a/2, y)dy,
0
a a
1
u| = 3 u;(x,y)dxdy. (16)
0

0

Using u; and ) we define magnetic Reynolds numbers
Rm andRm” by

RMJ_:M, Rm”:m. (17)
2n n

I = 9.80e+00

_ - We also introduce volumetric flow rat&s and V) by
Fig. 5. Magnetic field of typen = 1, & = 0.01. Top: planey = 0,
middle: planex = 0, bottom: plane =0 ah

VvV, = UL V| = d%uy, (18)

implies that€ and thereforer; may depend in a complex where h _means q length character_izing_ the .pitches qf the
P 1 mey aep P stream lines, which we will later identify with the pitch

way onu | but must be linear and homogeneous jn ) )
. . . . of the helical channel of a spin generator. We note that
We will consider here two kinds of flow patterns, a highly v

. . . . . | = Rm hnandV = Rmjan.
idealized one prew_ously |nvest_|gz_ite_d b_y Roberts (1.972) and We consider first the second-order approximation, which
another one which is more realistic in view of the spin gener-

. i - A applies in the limit of smallu, more precisely for
ators of the experimental device. As indicated in Fig. 1 eachle’ Rmy < 1. It allows us a simple determination of the

spin generator consists of an central axial and an outer helicaslteady solutiorB’ of Eq. (13) (see Appendix A). Calculating

channel. In the ideal situation the fluid outside the channels - )
is at rest thenu x B’ we find

For sufficiently small magnitudes o& the so-called ’a 7? T2 V.V

n
second-order approximation can be justified, which consist$*t = ﬁ;“i”\l = E;RmLRmH = 16 a%hn

(19)
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Fig. 6. The functionsp(Rm ) andRm | ¢ (Rm )

Fig. 7. The dependence afa | on Vc andVy, all three quantities

According to our remarks in Sect. 4.1 the Relations (19)measured in units afy, for h = 0.90%

must also hold true for arbitrary, that is, arbitraryRm

andVj. Therefore, generalizations of the form value V¢ (in the units of Fig. 7 we hav&} < 2.5) so that

2, oy (Ve, V) for any fixedVe < V& grows with Viy. For
= 5;uwnqs(ula/zn) Ve > V&, however,o_u(vc, Vu grows for smaIIVH only,
then reaches a maximum and decays again for laviger
This decay is again a consequence of the magnetic flux ex-
pulsion from the inner parts of the cells. Later in Fig. 11

o

= Z—GZRmLRm”d)(RmL)

n2 Vv, isolines of C in the V¢ Vy-plane are shown, which because
~ 16 aZhn ¢ (VL/hm) (20) of C = o R/n can easily be interpreted as isolinesxof.
must apply for arbitrary. | andu ), or arbitraryRm  , Rm, 4.3 Spin generator flow
V1 andV). Here¢ is a function satisfying (0) = 1, which
remains to be determined. Let us now proceed to a flow pattern which is more realistic

Equations (13) foB’ have been reduced to a system of or- in view of the flow in the array of spin generators in the ex-
dinary differential equations for its Fourier components with perimental device. In order to describe the fluid veloaity
respect tax andy, and these have been integrated numeri-we consider it at first only in a single cell, say<Ox, y < a.
cally. From the result foB’ in the steady final state again We introduce there a cylindrical co-ordinate systeme,

u x B’ and in the endr, have been calculated (se@dter ~ z With the axiso = 0 at the centre of this cell, that is, at
etal., 1997a, b). In this way the functigr(Rm | ) shownin X =y = a/2. In this cell the fluid velocity: is, with respect
Fig. 6 was determined. As can also be seen thgrecon- 10 this co-ordinate system, assumed to be given by
sidered as function akRm | , first grows with growingRm | ,
reaches a maximum d@&m,; = 2.6, and then decays again.

This decay results from magnetic flux expulsion out of the ro-yith u, and u, depending orp only and vanishing for

tating inner parts of each cell. By the way, in agreementwith, ~ /2. The complete flow pattern in atly-plane is then

results of asymptotic studies (Soward, 1987) it was founddefined by periodic continuation of the pattern described for

that¢ behaves Iikeleg/2 and, thereforey like lel/z the cell considered here to all cells, with changes of the sign

asRm,j — oo. from each cell to its neighbouring cells as indicated in Fig. 2.
Let us interpret our result in view of an array of spin gener-  We specifyu further by putting

ators. We denote the volumetric flow rates through the cen-

tral and the helical channel of a spin generatorteyand 4y =0, u; = —u(e)for0 <o < o1

WV, respectively. ClearlyV, corresponds t&/y, and V) to "

Vc + Vi. Then, using Eq. (20) and putting, = V4 and ¢

up =0, wuy=uy(), u;=u o), (22)

h
=-w(o, u; = —Zw(g) foro1 <o <o2

Vi = Vc + VH, we arrive at uy, =0, u; =0forpo > 0. (23)
72 Wy Hereu andw are arbitrary functions of. Furthero1 andoz
“L=176 a2hn (Ve + Vi) ¢(Vi/hm) - (21)  mean the radius of the central channel and the outer radius

of the helical one, respectively, andhe pitch of the helical
Figure 7 shows the dependenceadfr; on V¢ and Vy for channel; see Fig. 8. The signs in Eq. (23) make thatand
h = 0.90% (chosen with a view to Eq. 32). There is a « can be considered as positive. The coupling betwgen
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Eq. (13) (see Appendix A). So we arrive at

02 4
T
-5 f 4p(0) / u(0he' o
¥V,
S 0 0
02

+uz(g)9/u¢(g’) do') do. (27)
4
Interestingly enough, as can be shown by an integration by

parts, the two double integrals on the right-hand side are
equal to each other. We may therefore also write

02 o
21 ,
o] = E/(”w(@)/”z(@ )o'do')do
0 0

02 02
2
Fig. 8. Cross-section of a spin generator =—— /(uz(g) 0 / uy(0)do')do. (28)
asn
0 0

andu, in o1 < ¢ < g2 considers the constraint on the flow  Let us evaluate these relations ter with the more spe-
resulting from those walls of the helical channel which are cific assumptions (Eqg. 23) an, andu,. We find then
no cylindrical surfaces. We define further the averages

ujc anduH of the relevant velocities, o) = e U <M||C + E”lH)
2 2
2 7 nn 1
up = —/w(@)@ do = Rmy <Rmnc + ERmnH>
a
o1 Vu 1
= Ve+-WVH) . 29
e (ve+ ) (29

ujc = —/M(Q)QdQ U = —/w(Q)QdQ, (24)

K Obviously the axial flow in the central channel of the spin
1

generator, where no azimuthal flow exists, is more effective
and note thatyyy = (h/2a)uy. On this basis we define in view of «; than the axial component of the flow in the

magnetic Reynolds numbeRsn |, Rmc and Rmy by helical channel. Note that in particular the relation between
ua uca Ha a,, Vc andVy applies independently @f; andos.
Rm, = ZL , Rmc= e, Rmy = ad , (25) We leave now the second-order approximation. With the
n n

same arguments as used in the case of the Roberts flow we
where, of courseRmy = (h/a)Rm, . Note that the av- find that the general forms ef,, which apply for arbitrary
erages: |, ujc anduy are related to the lengt/2 or the w1, u|c, uyn, Rmy, --- Vc andVy, are given by

areaa? and not to the actual extents of the respective flows.

: . 1
By this reason als®m , Rm c and Rmy have to be in- 4, = a uy <M||C¢C(MJ_61/277) + §M|H¢H(”M/2ﬂ)>

terpreted with some care. Finally we introduce the volumet- 2n
ric flow ratesV¢ and Vy through the central and the helical 1
c H g =1 Rmy  Rmjc ¢c(Rm ) + = Rmy ¢px(RmL)
channel, a 2
ah Vu 1
Ve = a? uic, V= > u| = azu”H . (26) = h Ve dc(Va/hn) + - VH dH(Vu/ hn) (30)

In the second-order approximation, that is for suf- The functions ¢c and ¢y, which have to satisfy
ficiently small magnitudes ofu, more precisely for ¢c(0) = ¢4(0) = 1, may depend, apart from the arguments,
Rm, Rmjc, Rmjy < 1, the quantityr; can be calculated also on the profile ob.
by taking the average of, sagy x B’), over a single cell In order to determine;; and sopc andg¢y the Egs. (13)
ignoring the contributions t@’ resulting from the flow out-  have been solved numerically in the regien < x,y < a
side, and dividing it byB,. It can be shown that these contri- using proper periodic boundary conditionsfer and Bran-
butions toB’ produce only such parts @f: x B’), which denburg, 2002). For the sake of simplicity batandw were
vanish under averaging (see Appendix B). Assuming thertaken as constants, that is, rigid-body motions of the fluid, or
thatu in the considered cell is given by Eq. (22) and van- piston profiles, were assumed in each of the channels. Re-
ishes outside, it is again easy to find the steady solution obults for¢c(Rm ) and¢y(Rm ) obtained in this way are
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Fig. 9. The functionspc(Rm 1 ) and¢y(Rm 1) for rigid-body mo- Fig. 10. The dependence af« | on V¢ andVy, all three quantities
tion of the fluid in each of the channels with = a/4, 02 = a/2 measured in units afn, with o1 = a/4, 02 = a/2 andh = 0.90%
andh = 0.90x

shown in Fig. 9. The dependenceddx, on Ve and Vi for Finally we put for the magnetic diffusivity of liquid sodium

01 = a/4, 02 = a/2 andh = 0.90% (chosen in agreement n = 0.1n#/s. (33)

with Eq. 32) is represented in Fig. 1. Again the com-

ment given with Fig. 7 applies according to which there is  We return first to the dimensionless measaref the «-
avalueVg (hereVg < 4) so thate (Ve, V) for any fixed  effect introduced with Eq. (12) and express it by the volu-
Ve < V& grows withVy, for Vo > V&, however, grows for  metric flow ratesVc and V. With the result (21), which
small V4 only, then reaches a maximum and decays again fowas obtained for the Roberts flow, we find the dependence
larger V4. We also refer to Fig. 12 which shows isolines of of C on V¢ and V4 depicted in Fig. 11. In the same way
C, which because of = « R/n can easily be interpreted the result (30) for the spin generator flow leads to the de-
as isolines oty . pendence shown in Fig. 12. For the Roberts flow we can
show that, when admitting arbitraft andVy, each isoline

of C cuts theVy-axis and continues until infinit®c. Pre-
sumably the same applies to the spin generator flow. The
non-uniqueness dfy as a function ot is, of course, again

a consequence of the magnetic flux expulsion from the inner
parts of the spin-generators. Remarkably enough, in the re-

In the following we will apply the results obtained so far to 910nS 0f Ve andViy which are of interest for the experiment,

the experimental device and compare them with experimenthatis 0< Vc, Vi < 200 m?/h, the isolines ot essentially -
tal findings. For this purpose we choose for the raditend coincide for both kinds of flow patterns. Considering the spin

5 The self-excitation condition of the experimental
device in comparison with experimental results

5.1 Self-excitation condition

the heightH of the dynamo module the values generator flpw as more realisti_c thz_in the_Roberts flow we will
refer to the isolines of shown in Fig. 12 in what follows.
R=085m, H=071m. (31) We recall that in our approach the self-excitation condi-

More precisely, as indicated in Fig. 1 these values correspond©n for the dynamo readé’ > C* and that values oC*
to the “homogeneous part’ of the dynamo module, which obtained under various assumptions are listed in Table 1. For

does not include the regions with connections between th&"y given value oC* we have a “neutral lineC = C* in
spin generators, etc. We further adopt for the edge lemgth the VcVh-plane separating the region in which the dynamo

of a spin generator, the radigs of the inner channel, the ¢&n work from the one where it can not. As can be seen
outer radiup; and the pitch: of the helical channel from Figs. 11 and 12 dynamo action should be possible for
arbitrarily small vy if only V¢ exceeds a sufficiently large

a=021m, 01=025%, ¢2=05a, h=019m. (32)  value depending ofvy. Likewise a dynamo should work
with Vo = 0 and a sufficiently larg#y.

1The results presented in some of our earlier papeédigR
et al.,, 1997a,b, 1998b) were obtained with an analytic solution )
of Egs. (13) for a single spin generator ignoring the influence of5'2 Experimental results
the neighbouring ones, what is not completely correct beyond the . ) . . o
second-order approximation. The numerical investigations men-USing data measured in the experimenti{dr and Stieglitz,
tioned confirm the essential features of the results but show thaPrivate communication) the real neutral line in thegVu-
corrections of numerical data are necessargif | is no longer  plane separating dynamo and non-dynamo regions has been
small compared to unity. These corrections are considered here. determined. Figure 13 shows a detail of Fig. 12 with this
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Fig. 11. Isolines ofC, obtained with the result (21) for the Roberts Fig. 13. A detail of Fig. 12 with the experimentally determined neu-
flow, in the Ve Vy-plane. BothVc andVy in m3/h. When starting  tral line (the thick line) separating regions with and without dynamo
from the numerical values related to the units used in Fig. 7 thoseaction

related to m/h follow by multiplication by a factor 7.

ments are somewhat higher than those giverwfoe= 1 in
Table 1 is well understandable. As we will explain in more
detail below (Sect. 7) improvements to the simple models for
which Table 1 applies lead to higher valuessf. Such im-
provements consider in particular the variability of the coef-
ficienta; and the occurrence of effects describedxpyand

y near the boundaries of the dynamo-active body as well as

I
—

300

i

= 200 ] the effects described k., 8; and gz inside this body.
N
100 f 6 On the back-reaction of the magnetic field on the fluid
~ & flow and the saturation of the magnetic field
0 E— ——— 6.1 A simple dynamo model involving the back-reaction of
5 100 200 00 w00 the magnetic field

<

C

So far we considered kinematic dynamo models only, that
Fig. 12. Isolines of C, obtained with the result (30) for the spin is, we ignored the influence of the Lorentz forces on the fluid
generator flow, in th&’c Viy-plane. BothVc andViy inm3/h. When  flows. The Lorentz forces are of second order in the magnetic
starting from the numerical values related to the units used in Fig. 1Gjeld, and their influence on the fluid flow grows with the
those related to fiyh follow by multiplication by a factor 7%. magnetic field and limits so its magnitude. In order to study

this process in detail in addition to the induction equation

(Eg. 1) the hydrodynamic equations involving the Lorentz
line added. It corresponds to values ©f in the interval  fgrces have to be taken into account.
84...93. Instead of investigating the very complex problem which

Magnetic field measurements have been carried out at se\bceurs in this way we deal here only with a simple model of
eral points along the axis of the dynamo module. Itturned outhe dynamo in the nonlinear regime (see alsalRr et al.,
that the field there consists mainly of andy-components.  1998a). It considers no other consequence of the back-
Compared to them no noticeabi€omponent was observed. reaction of the magnetic field on the fluid motion than the
This applies likewise to the components®fsee Appendix  magnetic contribution to the pressure drops in the channels
C) and indicates that, as expected, the generated fields aisf the spin generators. Influences of the magnetic field on the
of the symmetry typen = 1. It should, however, be noted flow profiles in the channels (as discussed @dRr et al.,
that the variation of the- and y-components o derived  2000a) or the generation of motions in the fluid outside the
from the observed field along the axis of the dynamo mod-channels are ignored.
ule (see again Appendix C) are not in satisfactory agreement W start again from Egs. (10) f@, with o considered as
with calculated field structures as shown in Fig. 5. afunction of the flow rate¥c andVy, and add two equations
The fact that the values @f* derived from the measure- for these quantities. The latter equations are to be understood
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as consequences of the Navier-Stokes equation, relating theherew is the magnetic permeability of free space.

flow rates to the pressures built up by the pumps and the pres- We restrict ourselves first to the second-order approxima-

sure losses due to the hydraulic resistance and the magnetiion as explained in the context of Eq. (13) and replace in

field. The full set of these equations reads the same sensB + B’ in Eq. (37) simply byB. For the

— — — calculation of the averages ¢f which are of interest below

0B = ’7_VZB +aL(Ve, Vi)V x (B — (e Be), it is then again justified to consider a single spin generator

V-B =0, only, that is, to ignore any motion in the neighbouring ones.

d, Ve = Kc(Pc(Vc) — Re(Ve) — Le(B, Ve, VH)), As in Sect. 4.3 we consider the spin-generator defined by
0 < x,y < a and use again the co-ordinate systemp,

A Vi = in (Pu(Vi) = Ru (Vi) — Lu(B. Ve, Vi) .(34)  _iniroduced there. We can easily find a steady soluBon

where, of course, the first line must be completed usingof Ed. (13) (see Appendix A) and calculafeaccording to
proper boundary conditions. Heke andxy are factors of ~ EQ. (37). Averaging itgp andz-components ovep and de-
the structures/pm! Wheres is the cross-section of the con- hoting these averages lfy and f. we have

sidered type of channelsy, the mass density of the fluid and 1 1

I the total length of the considered circuRe and P4 are the fw = ——o’u‘ﬂBJZ_ . = __guZBi , (38)
pressures generated by the pumps in these circkgsand 2 2

Ry the pressure drops due to the hydraulic resistances, whereo is the electric conductivity of the fluid; = 1/40n,
andLy the pressure drops due to Lorentz forces, &nd a  and B, the mean magnetic flux density in the-plane. Of
quantity depending on the magnitude of the relevant compocourse,ﬁa andﬂ depend o if u, andu do so.

nents of the magnetic field, which will be specified later. We  Consider first a central channel. The magnetic pressure
point out that according to our above assumptiordepends  drop per unit lengttidpm/d) of this channel is, apart from

only via Vc and Vi on the magnetic field, that is, a possible the sign, just the average gf over its cross-section, that is
dependence via the flow profiles is not taken into account.

It should be noted that there is one circuit in the experi- %) 1 (1) B2 (39)
mental device which contains the central channels of all 52\ d/ /. T2 W1
spin generators but there are two circuits for the helical chan-
nels, each feeding 26 of them. Here these two circuits arévhere{u;) means the average of over the volume or, what
assumed to be equal to each other, that is, described by orfé theé same, over the cross-section of the channel. Denot-
flow rate, Vi, only. ing this cross-section byc, wheresc = ng%, and using
We specify Eq. (34) by further assumptions concerning (#)sc = a®ujc we find further
Pc, P4, Rc, RH, Lc and Ly. For the pressures generated 212 5 5
by the pumps we put dp_m) = a‘; BLu”c = aB} Rm|c = ﬂVc. (40)
c sC 21L0sC 2sc

Pc =kcPE(1—cpcVe), Pu=knP3(1—cpuVH) ., (35)

. ) . . Consider next a helical channel. For the pressure drop per
where the factorgc andky describe with which fractions of unit length(dpm,/dl); we can derive a relation analogous to
the maximum pressure the pumps work<Okc, kn < 1. g4 (39) with(u,) replaced by CO8(u,) + Sind(u,). Heres

o 0 1
Further,P¢ and P are the maximum pressures, apcand  eans the angle between some central stream line at a radius
cpH are constants considering the pressure drops inside thg — g and a circle witho = g andz = const, that is

pumps urllder load (see hSt'Egl'tZ alr_ldJMr_, 1996). Forthe  yans — /273, and(u,) and(u.) are now averages over the
pressure losses due to the hydraulic resistance we assume | ;me of the channel or, what is the same, over its section

Che 1/4 , , with a planez = const. We defineg by fQle uy(0)odo =
Rc=RZ(1+ CRC(1+ Ve ) V&, Ru = R{}V}5.(36) 0 [5Zug(0)do and pute = &'(o1 + 02)/2 whereg’ is a
factor close to unity. Further we introduce the cross-section

whereR2, Ry}, crc andc ¢ are constants (see again Stieglitz s+ as the area of a plane fitting into the channel and being
and Muller, 1996). The main contributions to the resistancesperpendicular to the central stream line mentioned, that is

/

are due to the bends of the tubes. sH = (02 — 01) h c0SS. So we arrive at
Corresponding relations fdtc and Ly will be given be- 5
low. dpm _ cah'Bl
a )y, dsy ot
6.2 Estimates of the Lorentz forces hE/Bf aé’Bi y @)
o = mJ_ = H-
For an estimate of the Lorentz forces we assume Bnegt a 21108H 2sH

homogeneous field. Then the force exerted on a unit volume | ot s now leave the second-order approximation in

of the fluid, f, is given by Eqg. (13) and the analogous one in Eq. (37). Using ana-
Iytical solutions of Eq. (13) for an isolated spin generator,

1 _
f= o (V x B) x (B+B'), (37)  thatis, ignoring as before the influences of the neighbouring
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Fig. 14. The functionyc(Vc, V) for two special values oV c Fig. 15. The functionyy(Vc, V) for two special values o¥/c
given by the labels of the curves, with = a/4 andgy = a/2. given by the labels of the curves, with = a/4 andgy = a/2.
Both Ve and Vy in m3/h. The functionyc varies monotonically  Both V¢ and Vy in m3/h. The functionyy varies monotonically
with Ve. with Ve.

ones, and assuming rigid-body motions, that is piston pro-Pc(Vc) — Rc(Ve) — Biic(vc, Vi) =0

files, (dpm/dl)c and(dpm/dl)y for both channels have been _ _ p27 _
determined fo(r: arbitraryc anTj Vu. We present the result in Pr(Vi) = Ru (Vi) = BLL(Ve, Vi) = 0. (44)
the form Eliminating Bi from the last two lines of Eq. (44) we find
(dgﬁ> OB e e tVe, Vi (Pe(Veo) = Re(Vo)) Lu(Ve, Vi)

; 4 2“}32 —(Pu(Vi) — Ru(Vin) Le(Ve, Vi) = 0. (45)

o
(%) = ;Hl Vi yn(Ve, Vi), (42)  If all other relevant parameters are given the first line of
H Eq. (44) together with Eq. (45) allows us to determine a pair,

with two functions ¥¢ and ¢y satisfying ¥c(Ve,0) = or possibly several pairs, of valuég and Vy without con-
YH(Vc,0) = 1. These functions wittps = a/4 and  sideringB2. With the help of the second or the third line of
02 = a/2 are shown in Figs. 14 and 15. Eg. (44) we can afterwards find the corresponding value of

We complete now the Egs. (34) to (36) by Bi . We must, however, discard all pairs @& and V4 for

_ p27 F o which B? takes negative values.
Le= Béljc’ I:C = acVeye(Ve, i) on thé basis of Eq. (44), completed by Egs. (35), (36) and
Ly =BiLy, LH=cuVuyH(Vc, V) (43)  (43), we may calculate the quantiti&®, Vi and B, if, for
example C*, kc andky are given. For this purpose we need
the numerical values ofg, P3, cpc, cpH, RE, R, cre
Cru cLc andcpy. Without going into details we note that
the parameters of the device (see Stieglitz aridléd, 1996)
lead to

wherec| ¢ andc 4 are constants of the structuré/2s, with

o, [ ands being the electric conductivity of the fluid, the total
length of all channels in the considered circuit antheir
cross-section.

6.3 Saturated dynamo states P = PY = 710kPa cpc = cpp = 101 (m?/s) !
We consider now our dynamo model defined by the Eq. (34)RE = 1.31- 10° Pa(m®/9) 2, R, = 1.99- 10° Pa(m®/9) 2
together with Eq§. (35), (36) and (43) for a state in which crc=354.10°L, Che=3.54- 102md/s
B, Vc and Vi neither grow nor decay. We already know 0 4 o1
from kinematic dynamo models that for fixed Ve and Vi cLc = 1.88- 10"%g(m’sT?)
shows a non-oscillatory behaviour, and we could not find anye, 4 = 2.31- 101%g(m*sT?)~1 (46)
example of a different behaviour &, Vc and V4 in the case
considered here. Therefore we restrict our attention here tésee also Rdler et al., 2000a,b). .

In Table 2 flow rated/c and Vy and the quantitys; char-

the steady case. o ) o
y acterizing the magnitude of the generated magnetic field in

Steady solutions of the equations ®r1in Eq. (34) require : .
that C(Ve, Viy) takes its marginal valug*. Hence the con- steady states of the dynamo are listed for various values of
c 'H ' C*, kc andky. In addition, the total powew is given which

ences of the Egs. (34) with (35), (36 d (43) for the. L .
?eq:dyngasse read gs. (34) with (35), (36) and (43) for eIS needed to maintain these states as well as the relative frac-

tion fonm fed into the magnetic field and converted into heat
C(Vc,Vy) =C* by ohmic dissipation. Since some of the numerical values
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Table 2. The flow ratesV¢ and Vy and the measur® of the 3(
magnitude of the magnetic field for steady states of the dynamo, 1
further the total poweN needed to maintain these steady states and N e b | —
its relative fractionfynm corresponding to ohmic dissipation / ~ ( ~ / ~_ ! ~
(11141 [0t f1+/)
C* ke ko Vc VH By N fohm : :\ > ;\
mé/h méhl (107471 [kw] - | ~ || I
80 1 1 106 92 303 42 0.73 //-i—///@/// ///@/ f
1 05 127 78 215 28 057 o> N ~ ~
05 1 84 108 256 36 063 ~ N e S - X
05 05 102 94 169 21 0.45 / /8/ / /:/ / /\/ f /:
85 1 1 110 96 291 43 0.70 / ~~ / ~ / ~a / \/ /
1 05 130 82 204 29 052 - N o S > -
05 1 89 113 243 37 0.59 ~ ~ ~ ~
05 05 106 98 155 21 0.40 ”/+///®/ ‘/ ///@// .
~~ ~ ~ ~
90 1 1 114 100 281 44 0.67 > . S > S ~
1 05 134 86 193 29 0.49 -
05 1 93 118 230 38 0.54 a
05 05 110 103 140 22 0.33
95 1 1 118 104 270 45 0.64 Fig. 16. A flow pattern with connecting flows between the spin
1 05 138 90 182 30 0.44 generators
05 1 97 123 216 39 0.49
05 05 114 108 123 22 0.26

and vanish outside the module. A flow pattern in a region
with varying f1 and fj is shown in Fig. 16. With this flow
a1 is no longer independent ef ande andy are unequal
in Eq. (46) have noticeable uncertainties, the values of to zero in and near to the regions with varyiig and fj.
N and fohm must be considered as rough estimates. In thisCalculations of these coefficients have been carried out for
sense they are in good agreement with the experimental rethe two cases in which there is either free space beyond the
sults. covers of the dynamo module or a medium at rest with the
same electric conductivity as the fluidg&er et al., 1996).

) ) We may represent the results in the form
7 Steps toward a refined theory of the experiment
2 2

Tca TN
7.1 Boundary effects AL = g L ho(§) = 7= RmiRmh (0)
224 2
7.1.1 The plane bottom and top boundaries of the dynamg, — 7 ¢ uwuh” ) = n—szJ_Rm”h” @)
module 329 16a
2,
b
The calculations of the electromotive forEaeported above ¥ = 167 u|| 2k(@) = Rmﬁk(C) (48)

ignored the fact that the fluid flow is restricted to the dy-

namo module and that near its bottom and top covers therith the dimensionless functiorts , 7 andk of ¢ = 2z/H.
are flows between the spin generators. In order to get an ideli f1L and fj are symmetric iy then’ and# are again
on the influence of this type of boundary effect on the excita-Symmetric buk is antisymmetric irt.

tion condition of the dynamo, a calculation of the coefficients ~ Let us consider the simple example in whigh = 1 in
a1, ) andy occurring in Eq. (8) has been carried outin the 0 =< [¢] < 1, furtherfj = 1in0 < |¢| < 1—¢, fj = ps(IZ])
second-order approximation no longer assuming a Robertf 1 —€ < [¢| < 1, andf, = fj = O for[¢| > 1, where

flow as given by Eq. (14) but the modified flow defined by € is & constant angs a polynomial of the fifth degree such
that f and its first and second derivatives are continuous ev-

u= Mﬁe x V(fLx) + u“(f)zv x (e x V(fix)). erywhere. The profiles di, # andk for the case of free
27T . 2 space beyond the covers of the dynamo module are shown
X = sin(—x) sin(—y), 47 in Fig. 17. Those for the case with a fluid at rest are very
a a

similar. Note that the sign df corresponds to a transport of
where f| and fj are functions ot (see Radler et al., 1996). magnetic flux out of the dynamo module.
With £ = fj = 1 wereturnto Eq. (14). We think, however,  The influence of the connecting flows in the sense dis-
of functionsf, and fj which are equal to unity in some inner cussed so far, that is, of the reductionaof and the occur-
part of the dynamo module only but decay with growipg  rence of non-zerey; andy in the boundary layers, on the
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1o 7 ] T can be interpreted in the sense that they contribute to a mean-
C ] field conductivity, and it is to be expected that they lead to an
0.8 i enhanced dissipation of the mean magnetic field. However,
B h | ] the last one does not need to act in this sense. A straightfor-
0.6 - . ward calculation with the Roberts flow defined by Eq. (14)
oal . using the second-order approximation yields
. ] 2 2 2
N : _ a4~ o T oo 2 U p 2
0.2: /,/”;\\\hH ] ﬂJ_— %(ulﬁ-jun)— E(RmL+1—6Rm||)
B I N A 2
0.0 1 o _ 4 2 _ N2
02 . L P P - 2 > 2
0.0 0.2 0.4 0.6 0.8 1.0 . a 2 L N 2 s 2
¢ ﬁ3——w(u¢—ZMH)——l—e(RmJ_—ERmH)

Fig. 17. The functions | , hj andk for f| and f| as described in ~ (see Radler et al.,, 1996). Note tha#, and g are positive
the text ande = 0.4 in the case of free space beyond the covers ofdefinite, that is, must indeed lead to an enhanced dissipation
the dynamo module of the mean magnetic field, wheregsmay take both signs
so that it is difficult to predict its influence. Note also that we
haveBs = 1 — B
self-excitation of the dynamo has been studied with a sim- Theg, and g, -effects necessarily lead to higher values of
ple model in which the dynamo acts in an infinite slab sur- c* for any given dynamo model. Estimates with a very sim-
rounded by free space &8ler et al., 1996). In this model the ple model show that this tendency is maintained if in addi-
marginal valueC*, here related to a definition @ analo-  tion the 8s-effect is taken into account ERller et al., 1996).
gous to Eg. (12) but with the thickness of the slab instead ofagain an increase of * up to 10% is to be expected as a
R, depends om as introduced above and gn= Rm|/Rm,,  consequence of the effects discussed here. This statement is
too. Compared to the case with constantand vanishing;  in agreement with results of another way of calculating the
andy, the value ofC* grows both withe andg. Fore <0.2  , -effect and thes, , g and z-effects and their influences
andg < 1the increase is less than 10%. We may expect thabn C* (Radler and Brandenburg, 2002).
in the experimental device the boundary effects discussed so
far let C*, compared to the idealized case, grow to a similar7.3 On the limits of the mean-field approach
extent.
As usual in mean-field dynamo theory we have adopted the
7.1.2 The curved boundary of the dynamo module assumption thaB varies weakly in space and time so that all
contributions ta€ with higher than first-order spatial deriva-
It is difficult to determine the mean veloci@ of the fluid  tives and with any time derivatives df are negligible. We
or the mean electromotive fore for the curved boundary ~may consider the radiug of the dynamo module as a charac-
regions of the dynamo module. In any casenust deviate teristic length scale aB and the edge lengthof a spin gen-
from zero, and it must vary with the azimughwith the pe-  erator as the averaging length scale. According to Egs. (31)
riod . Likewise the coefficients of as, e.g.¢.; mustshow and (32) we havea/R = 0.25. That is, the above assump-
such a variation withp. It is the neglect of these boundary tion is not well satisfied and the statements derived from
effects which made that in the mean-field approach considimean-field considerations should be checked in an indepen-
ered so far the dynamo module appeared to be an axisyndent way.
metric object and, as a consequence, there was no coupling In this context investigations of subharmonic solutions of
betweenB-fields differing inm. Of course, in a more de- the original Roberts dynamo problem (Tilgner and Busse,
tailed theory this axisymmetry of the dynamo module and1995; Plunian and &ller, 2002) are of interest. We rely
its consequences must disappear. In the experiment indedtkre on the recent one of them (Plunian arédiigr, 2002),
a clearly preferred direction for the generated fields occursvhich is widely elaborated in view of the Karlsruhe dynamo,

(Muller and Stieglitz, private communication). and adopt the definitions introduced above for the original
z-independent Roberts flow. In particular such subharmonic
7.2 Mean-field conductivity, etc. solutions of the induction equation fd& with u specified

by Eqg. (14) have been considered which possess no part in-
So far we have not considered the contributions to the elecdependent ofc and y and whose period lengths i+ and
tromotive force€ which are connected with derivatives of y-direction are integer multiples of the length of a diagonal
B. Dealing now with these contributions, we again restrict of a cell in the flow pattern, that is/2Na with an integerv.
ourselves for the sake of simplicity to the case in which theAn arbitrary period length in-direction was admitted, here
flow pattern is independent ef that is, to thes , ) andBs denoted byw/2«a with an arbitrary positive real constant
terms in Eq. (9). As already mentioned (Sect. 2) the first twoSubharmonic field® of that kind have been determined by
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numerical solution of the eigenvalue problem posed by the s—0 ¢ d
Fourier-transformed induction equation. Y
Instead of the cylindrical dynamo module we consider :
now a rectangular “dynamo box” with the edge lengths
thex- andy-direction andH in the z-direction. We consider
a subharmonic fiel# such that the dynamo box contains just st
a “half wave” of its leading Fourier mode, that is, the mode
with the largest period lengths. This meavis/~/2 = L and
ka/~2 = H. We then interpret the leading Fourier mode
as the mean field. Instead of characterizing the situation
considered by the parametevsand« we may also use the it
aspect ratiod./H anda/H of the dynamo box and of the
spin generators. ; : :
Before presenting specific results derived from subhar- 0 2 4 o 8
monic solutions of the Roberts dynamo problem let us have a
look on a result of_the mean-field approach, that s, as0'““”\39. 18. Neutral lines for the rectangular dynamo box with
of the Eq. (10) forB with o given by Eq. (20) whichfitsin 7,5 = 2 in the Rm | Rmi-plane. Line(a) is defined by the
the same sense to our dynamo box as we required it abovg,g it Rm_ Rm?¢(Rm1) = 1 of the mean-field approach. The
for the leading mode of a subharmonic fighd As can be  other lines are derived on the basis of subharmonic solutions for

Rmj

easily shown the self-excitation condition reads L/H = 2 and various values of/H, (b) for a/H = 0.177,(c) for
& 5 a/H = 0.283 and(d) for a/H = 0.356. The diagram essentially
Rm Rmy¢(Rm) > = (1 42 (Z) ) (50) represents results shown in Fig. 6 of Plunian a&dIBr (2002).
b4

with ¢ as introduced with Eq. (20). We may rewrite this into module, we may assume that the dependence of the self-
* excitation condition on the aspect ratigH for the real dy-
Rm 1 Rmj¢(Rm) = 1 (1) namo module is similar to that observed here. Considering
with Rm} defined by thatL/H = 2 anda/H = 0.3 correspond roughly to the real
I Ll .
cylindrical dynamo module and that the dynamo works in a

16a H\?2 . regime withRm  , Rm) < 2, which impliesRm"T < 0.9, we
Rm) = TH 1+2 (f) Rm . (52) may conclude that the marginal val@é can again be up to
10% higher than predicted by the mean-field approach.
Figure 18 shows the neutral IianLle*‘qb(RmL) =1,in We may further conclude that the neutral line of the ex-
the RmLRm]’“-plane. perimental device does not need to coincide exactly with an

We return now to subharmonic field® adjusted as de- isoline of C in the VcVy-diagram like Figs. 11 or 12. Us-
scribed above to our dynamo box. Within this framework we ing the results represented in Fig. 18, expresgtng, and
rediscover the result Eq. (50), or Eqg. (51), of the mean-fieIdRm"‘[ by V| andV} and putting as in the context of Eq. (21)
approach in the double limit/H — oo anda/H — 0. Any againV, = Vy andV) = Vc + V4, we have constructed
deviation of L/H anda/H from this limit leads to higher the neutral lines inVcVy-diagram. For reasons of compa-
requirements for dynamo action. In particular,Rfn  is rability of these lines we have introducé@t = /H/a Vc
fixed, higher values okm| are necessary. For example, for qndﬁH = ./H/a Vy. Figure 19 shows the neutral lines in a
L/H <2,a/H — 0andRm_ < 2 the necessary values of VcVy-diagram. The lines based on the subharmonic analysis
Rm are up to about 10% higher than predicted by the meanwith finite a/H deviate from that obtained in the mean-field
field approach. Figure 18 shows the neutral linelfpf{ = 2 approach in the same sense as in Fig. 13 the experimentally
in the Rm Rm‘*l‘—plane obtained in the mean-field approach determined neutral line deviates from the isoline€ afhich
and three such lines derived from subharmonic solutions fowere obtained in the mean-field approach. That is, this de-
finite a/H. Whereas in the mean-field approach dynamo ac-viation is understandable as a consequence of the neglect of
tion seems possible for arbitrafm  if only Rmj is suffi- higher-order derivatives a8 in the mean-field approach.
ciently large, we see now that it is only possible for not too
smallRm . Thatis, there is not only a critical value Bin?l‘ 7.4 A kinematic dynamo model withky; varying across

but also a critical value oRm so that a dynamo can never some boundary layer
work without exceeding these valuesalfH grows, for any
given Rm the requirements tﬁmﬁ‘ also grow. Quite a few numerical investigations have been carried out

Although the shape of our dynamo box is different from with a kinematic dynamo model which deviates from those
that of the real cylindrical dynamo module and the consid-considered in Sect. 3 by assuming that decays from its
ered magnetic fields satisfy some kind of periodic bound-value in the interior of the dynamo module across some
ary conditions rather than such which are realistic for thisboundary layer to zero @ller et al., 1999). All induction
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Fig. 19. Neutral lines for the rectangular dynamo box withH = Fig. 20. The growth rates in s™~ in dependence o

2 in the Ve Viy-plane. BothVc and Vi in m3/h. The labelga), (b),

(c) and(d) correspond to those in Fig. 18. its dependence on the rates of flow through the axial and the

helical channels of the dynamo module. In agreement with
Table 3. Marginal valuesC* for magnetic fields with different. the_se predic_tions magnetic fields were observed in the ex-
The lowest value o€* for m = 0, which is given here, belongs to periment which correspond to mean fields of the symmetry

field of AS type. typem = 1. As explained above it was clear from the very
beginning that the marginal valué* of C, which defines
m 0 1 2 3 4 the excitation condition, is somewhat underestimated by the

simple theory. In Sects. 7.1 to 7.3 a few aspects are discussed
which explain why the realistic valué* may well be up to
30% above the prediction of this theory. Considering these
improvements of the theory there is again satisfactory agree-
. ment between experiment and theory. It seems even surpris-
effects other than the  -effect were again neglected. ing that the experimentally determined regionf is only

In order to explain the distribution af, ando, which  ahout 109% above the prediction of the simple theory. There
was chosen with a view to the real structure of the dynamqs 4 slight deviation of the predicted shape of the neutral line
module, we define first a small cylinder by< 0.941R and i the plane of the flow ratec and Vi through the two types
2| = 0.458H, and a large cylinder by < 1.081rR and  of channels from the shape of the line derived from the mea-
z| < 0.680H, wherer = \/x?+ y2. We assume that;,  surements. Again this deviation is understandable with the
is constant inside the small cylinder, decreases in the spacgorrections to the simple theory presented in Sect. 7.3. Of
between the cylinders linearly in bothandz and vanishes  course the preferred orientation of the magnetic fields in the
on the surface of the large cylinder and outside it. Considerexperimental device is, again by reasons already discussed,
ing the large cylinder to be embedded in a sphere as showpeyond the scope of the simple theory. In Sect. 6 we have
in Fig. 3 we further assume thatis constant inside the large  studied the back-reaction of the magnetic field on the fluid
cylinder, is constant and smaller by a factor 100 in the re-motion, more precisely the pressure drop due to the mag-
maining parts of the sphere and vanishes outside this sphergetic field and its influence on the flow rates in the channels
We adopt the definition (12) af with «; andy interpreted  of the dynamo module, and developed on this basis a simple
as their values inside the small cylinder. model for the dynamo in the nonlinear regime. In this way

Marginal values"* of C are given in Table 3. The dynamo we gave estimates of the saturation field strengths of the dy-
has again a non-oscillatory behaviour. The dependence of theamo, which are again in fair agreement with experimental
growth rates. on C is depicted in Fig. 20. Some aspects of findings.
the structure of the magnetic field with = 1 are shown in
Fig. 21. The field is to a large extent concentrated inside the

dynamo module and varies there strongly4direction. Appendix A Steady solution of Eq. (13) in the second—
order approximation

C* 8432 7276 9.262 1135 1354

Consider Eq. (13), which apply for homogeneous fieltls

8 Concluding remarks in the steady case in the second-order approximation, that is,

The simple kinematic mean-field theory as explained inyV?B' = —(B-V)u, V-B' =0. (A1)
Sects. 2 to 5 describes indeed essential features of the Karl@ve
ruhe dynamo experiment. It predicts the structure of the most

easily excitable magnetic field and the excitation conditioninu =V xa, V-a=0,

may put
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Table Al. Some values o ande,

Vymdh] O 25 50 75 100 125 150 175 200
€x 0 017 030 039 045 047 048 048 047
€y 0 021 044 068 091 113 131 147 161

a/2

a, =— / uz(0")In(eo'/00)o'do’
o

o
—1In(o/00) / uz(0")eo'do’ . (A6)
0

Appendix B Concerning the determination of o
for the spin generator flow in the second-order
approximation

In contrast to our explanations on the second-order approxi-
mation in Sect. 4.3 we ignore here no longer the fluid motion
outside the considered cell but assume again a flow pattern
which is periodic everywhere. We continue to use, however,
the cylindrical co-ordinate system ¢, z with the axiso = 0

in the centre of a given cell and consider a Fourier decom-
position of the fluid velocity: and of the magnetic fieldB
andB’ with respect tap, that is, a decomposition into modes
proportional to exfime). As for u its part inside the given
cell contributes only to modes with = 0, and that out-

plane. Vectors: components tangential to the surface, grey encodedide due to the symmetry of the flow pattern only to modes

normal component

a=Vxa, V-a=0, (A2)
so that
u=-vaa. (A3)

Then we have7?(nB’ — (B - V)a) = 0, that is
nB' — (B -V)a=V® andA® = 0, and can conclude that

B = %(E- V)a. (A4)

In the case of the Roberts flow, in whiehis given by
Eqg. (14) we have simply
a.2

a=(—)u. (A5)
T

For the spin generator flow witia defined by Eq. (22) inside

with m = +4, 48, - - .. SinceB possesses only modes with
m = *1, the parts of: outside the given cell produce in the
second-order approximation no other mode®6than such
withm = 4+3, £5, £7, - - - . Thus these parts afproduce no
contributions to they, ¢ or z-components oft x B’ inside

the given cell other than such with theme Consequently

its x, y and z-components possess only contributions with
|m| > 2. These vanish under averaging over this cell, that is,
they do not contribute te x B’.

These considerations also make clear that in higher than
second-order approximations the motion in neighbouring
cells may well influence the averagewk B’ over the given
cell.

Appendix C Relations between local and mean
magnetic fields on the axis of the dynamo module

the considered cell and being equal to zero outside we haveThe magnetic probes on the axis of the dynamo module mea-

G, =0
a/2 1 o
~ 2
iy =3 [ wn@rde’ + 5 [ ugtero’ae
e 0

sure the components of the local magnetic figldvhich dif-

fers from the mean fiel® by the fluctuationsB’. According

to the construction of the module the rotational motion of the
fluid in the four spin-generators around the axis corresponds
to flows away fromx = y = 0 in the vicinity of thex-axis
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and towardsx = y = 0 in the vicinity of they-axis; see Nonlinear Processes in Geophysics, in print, 2002.
Fig. 2. Assuming thaiB can be considered as a homoge- Plunian, F. and Rdler, K.-H., Subharmonic dynamo action in the
neous field and using symmetry arguments we can conclude Roberts flow, Geophys. Astrophys. Fluid Dyn., in print, 2002.

that Radler, K.-H. and Brandenburg, A.: Contributions to the theory of
the Karlsruhe dynamo experiment, in preparation, 2002.

B, = —€, By, B; = eyEy , B; =0, (C1) Radler, K.-H., Apel, A., Apstein, E., and Rheinhardt, M.: Contribu-
tions to the theory of the planned Karlsruhe dynamo experiment,

or Tech. rep., Astrophysical Institute Potsdam, 1996.

N B, N B. N Radler, K.-H., Apstein, E., Rheinhardt, M., and 8tgr, M.: Con-

B, = By, = Y . =B, (C2) tributions to the theory of the planned Karlsruhe dynamo exper-

1-& T 1+e iment — Supplements and Corrigenda, Tech. rep., Astrophysical
at the axis of the dynamo module, with positive coefficients R__'(;‘ISt't”ée E"tijar:"_lgga' 4 Stfer. M. The alohacffect |

¢, ande, depending orVy but not onVe. These relations ~ ~2¢'eh B, ApSIEN, ., and Sater, .. 1he apha-efiect in
have been confirmed by numerical solutions of Eq. (13) for the Karlsruhe dynamo experiment, in Proceedings of the Inter-
h . fl S | fand b . d national Conference "Transfer Phenomena in Magnetohydrody-
t .e spin generator- ow. Ome Va_l uescpfande) obtaine namic and Electroconducting Flows” held in Aussois, France,
with these calculations are given in Table 4. Note #Batnd 1997, pp. 9-14, 1997b.

B, and in particular their directions, can differ markedly. Radler, K.-H., Apstein, E., Fuchs, H., and Rheinhardt, M.:

Kurzberichtiber Untersuchungen zum Projekt GEODYNAMO:
Abschatzungen zu den Lorentz—&ften. Zeitliche Entwicklung
eines Magnetfeldes und maximale Fekdke, Tech. rep., Astro-
physikalisches Institut Potsdam, 1998a.

Radler, K.-H., Apstein, E., Rheinhardt, M., and 8t#r, M.: The
Karlsruhe dynamo experiment — a mean—field approach, Studia
geoph. et geod., 42, 224-231, 1998b.

Radler, K.-H., Apstein, E., and Rheinhardt, M.: Kurzberi¢ier
Untersuchungen zum Projekt GEODYNAMO: Ein modifiziertes
Modell des Dynamomoduls. Fremderregte Magnetfelder im un-
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