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Abstract. In the Forschungszentrum Karlsruhe an experi-
ment has been constructed which demonstrates a homoge-
neous dynamo as is expected to exist in the Earth’s interior.
This experiment is discussed within the framework of mean-
field dynamo theory. The main predictions of this theory are
explained and compared with the experimental results.
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1 Introduction

It is generally believed that the magnetic fields of the Earth,
the Sun and other cosmic bodies result from dynamo mech-
anisms. In the Forschungszentrum Karlsruhe a device has
been constructed for an experiment which should demon-
strate a homogeneous dynamo as is expected to exist in the
Earth’s interior or in cosmic bodies (see, e.g. Stieglitz and
Müller, 1996). The experiment was run the first time suc-
cessfully in December 1999 (see Müller and Stieglitz, 2000,
2002; Stieglitz and M̈uller, 2001).

The basic idea of this experiment was proposed by Busse
(1975, 1978, 1992). It is very similar to an idea discussed
before by Gailitis (1967). The essential piece of the experi-
mental device, the dynamo module, is a cylindrical container
as shown in Fig. 1, with both radius and height somewhat less
than 1 m, through which liquid sodium is driven by external
pumps. By means of a system of channels with conducting
walls, constituting 52 “spin-generators”, helical motions are
organized. The flow pattern resembles one considered in the
theoretical work of Roberts (1972) which proved to be capa-
ble of dynamo action. It is sketched in Fig. 2.

It seems appropriate to discuss the experiment in the
framework of the mean-field dynamo theory. Going beyond
simple considerations of this kind (Busse, 1992; Busse et al.,
1996, 1998; Stieglitz and M̈uller, 1996) a systematic theory
has been developed with mean fields defined by averaging
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over areas in planes perpendicular to the cylinder axis cov-
ering the cross-sections of several cells (Rädler et al., 1996,
1997a,b, 1998b). The essential induction effect of the fluid
motion is then, with respect to the mean magnetic field, de-
scribed as an anisotropicα-effect.

In order to obtain estimates of the self-excitation condition
for the magnetic field in the experimental device and to give
predictions of its geometrical structure, several kinematic
mean-field dynamo models have been investigated, and cal-
culations of theα-coefficient and related quantities have been
carried out (R̈adler et al., 1996, 1997a,b, 1998b, 1999; Rädler
and Brandenburg, 2002). In addition, the back-reaction of the
magnetic field on the motion has been taken into account in
some approximation and so estimates for the saturation field
strengths of the dynamo were derived (Rädler et al., 1998a,
2000a,b). Parallel to the elaboration of the mean-field ap-
proach to the theory of the experiment several direct numeri-
cal simulations of the dynamo process have been carried out
(Tilgner, 1996, 1997).

In this paper we give a summarizing representation of the
mean-field theory of the experiment and compare the results
with the measured data.

2 The mean-field concept

Let us assume that the magnetic flux densityB inside the
dynamo module is governed by the induction equation

∇ × (η∇ × B − u × B)+ ∂tB = 0 , ∇ · B = 0 , (1)

whereη is the magnetic diffusivity of the conducting fluid
andu the velocity of its motion. The fluid is considered as
incompressible, that is∇ · u = 0.

We use a Cartesian co-ordinate systemx, y, z as indicated
in Fig. 1, with thez-axis aligned with the cylinder axis but
z = 0 in the middle of the dynamo module. The flow pattern
inside the module is assumed to coincide, apart from some
boundary layer, with a pattern as depicted in Fig. 2, showing
periodicity in x and y with a period length 2a, and being
independent ofz.
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Fig. 1. The dynamo module (after Stieglitz and Müller (1996)).
The signs+ and− indicate that the fluid moves up or down, re-
spectively, in a given spin generator.R = 0.85 m,H = 0.71 m,
a = 0.21 m.

For the sake of simplicity we ignore until further notice
(Sect. 7.1.2) the peculiarities at the curved boundaries of the
dynamo module, that is, assume a flow pattern as in Fig. 2
for all x andy. We admit, however, at first a dependence of
the flow onz. When speaking of a “cell” of this pattern we
mean a unit like that defined by 0≤ x, y ≤ a. We further
assume, again for simplicity, thatη does not depend onx
andy.

Let us follow the lines of the mean-field dynamo theory
(see, e.g. Krause and Rädler, 1980). For each given fieldF
we define a mean fieldF by taking an average over an area
corresponding to the cross-section of four cells in thexy-
plane,

F(x, y, z) =
1

4a2

a∫
−a

a∫
−a

F(x + ξ, y + η, z) dξ dη . (2)

We note that the applicability of the Reynolds averaging
rules, which we use in the following, requires thatF varies
only weakly over distancesa in x- or y-direction. By the
way, all what follows applies also with a definition ofF by
averaging over an area corresponding to two cells only (Plu-
nian and R̈adler, 2002), but we do not want to consider this
possibility here in detail.

We split the magnetic flux densityB and the fluid velocity
u into mean fieldsB andu and remaining fieldsB ′ andu′,
that is

B = B + B ′ , u = u + u′ . (3)

Although in this paperB ′ and u′ are more or less regular
fields we will adopt the notation of mean-field theory and
call them “fluctuations”. As long as we, in the sense ex-
plained above, do not consider the situation near the curved
boundaries we haveu = 0, that is,u = u′.

Taking the average of Eq. (1) we see thatB has to obey

∇ × (η∇ × B − E)+ ∂tB = 0 , ∇ · B = 0 , (4)

Fig. 2. The Roberts flow pattern. The flow directions correspond to
the situation in the dynamo module if the co-ordinate system coin-
cides with that in Fig. 1.

whereE , defined by

E = u × B ′ , (5)

is a mean electromotive force due to the fluctuationsu

andB ′.
The determination ofE for a givenu requires the knowl-

edge ofB ′. Combining Eqs. (1) and (4) we easily arrive at

∇ × (η∇ × B ′
− u × B − (u × B ′)′ )+ ∂tB

′
= 0 ,

∇ · B ′
= 0 , (6)

where(u × B ′)′ = u × B ′
− u × B ′. We conclude from this

thatB ′ is, apart from initial and boundary conditions, deter-
mined byu andB and is linear inB. We assume here that
B ′ vanishes ifB does so. ThusE, too, can be understood as
a quantity determined byu andB only and being linear and
homogeneous inB. Of course,E at a given point in space
and time depends not simply onu andB in this point but also
on their behaviour in the neighbourhood of this point.

We adopt the assumption thatB varies only weakly in
space and time so thatB and its first spatial derivatives in
this point are sufficient to define the behaviour ofB in the
relevant surroundings. ThenE can be represented in the form

E = aij Bj + bijk
∂Bj

∂xk
, (7)

where the tensorsaij andbijk are averaged quantities deter-
mined byu. We use here and in the following the notation
x1 = x, x2 = y, x3 = z and adopt the summation con-
vention. Of course, the neglect of contributions toE with
higher-order spatial derivatives or with time derivatives ofB

remains to be checked in all applications (see Sect. 7.3).
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Before giving results of calculations ofE with specific as-
sumptions onu, we write down its most general form com-
patible with Eq. (7), which can be determined by standard
methods of mean-field theory (see, e.g. Krause and Rädler,
1980). Due to our definition of averages and the periodic-
ity of the flow pattern,aij andbijk are independent ofx and
y. Clearly a 90◦ rotation of the flow pattern about thez-axis
as well as a shift by the lengtha along thex-or they-axis
change only the sign ofu so that simultaneous rotation and
shift leaveu unchanged. This is sufficient to conclude that
aij andbijk are axisymmetric tensors with respect to thez-
axis. That is,aij is a linear combination ofδij , εij lel and
eiej , andbijk a linear combination ofεijk, δijek, δikej , δjkei ,
εij lelek, εiklelej , εjklelei and eiej ek. Here δij means the
Kronecker tensor,εijk the Levi-Civita tensor ande the unit
vector inz-direction. With this specification ofaij andbijk
Eq. (7) turns into

E = −α⊥ B − (α‖ − α⊥)(e · B) e − γ e × B

−β⊥∇ × B − (β‖ − β⊥)
(
e · (∇ × B)

)
e

−β3 e ×
(
∇(e · B)+ (e · ∇)B

)
−δ1 ∇(e · B)− δ2 (e · ∇)B − δ3

(
e · ∇(e · B)

)
e , (8)

with coefficientsα⊥, α‖, γ , β⊥, β‖, . . ., which are averaged
quantities determined byu and are independent ofx andy
but may depend onz. The terms withα⊥ andα‖ describe the
α-effect, which is in general anisotropic, those withβ⊥ and
β‖ give rise to the introduction of a mean-field conductivity
different from the original electric conductivity of the fluid
and again in general anisotropic. The term withγ describes
a transport of mean magnetic flux like that due to a fluid mo-
tion with the velocity−γ e. The remaining terms are less
easily to interpret. We note that in contrast to theβ⊥ andβ‖

terms theβ3 term is not connected with∇ × B but with the
symmetric part of the gradient tensor ofB and can therefore
not be interpreted in the sense of a mean-field conductivity.

We proceed now to the case in whichu is independent ofz
(but return to the case in which it depends onz in Sect. 7.1.1).
Consider for a momentB as a homogeneous field in thez-
direction. Then∇ × (u × B) vanishes, and we have to con-
clude from Eq. (6) thatB ′

= 0. This in turn leads toE = 0,
and therefore Eq. (8) can only be correct ifα‖ = 0. Re-
turning again to arbitraryB we further consider the fact that
averaged quantities determined byu can never imply a pos-
sibility to distinguish between the positive and the negative
z-directions. This means thatE in the form given by Eq. (8)
must be invariant under exchanginge with −e, which re-
quires thatγ = δ1 = δ2 = δ3 = 0. Thus we arrive at

E = −α⊥

(
B − (e · B) e

)
−β⊥∇ × B − (β‖ − β⊥)

(
e · (∇ × B)

)
e

−β3e ×
(
∇(e · B)+ (e · ∇)B

)
. (9)

Here theα-effect has an extremely anisotropic form. It is
able to drive electric currents in thex- andy-direction but
not in thez-direction.

3 Simple kinematic mean-field dynamo models

Let us consider simple kinematic mean-field dynamo mod-
els which reflect essential features of the experimental de-
vice. We assume here that the mean magnetic flux densityB

inside a cylindrical body which corresponds to the dynamo
module is governed by Eq. (4). For the sake of simplicity we
specify the electromotive forceE so that it covers only the
anisotropicα-effect and consider bothη andα⊥ as indepen-
dent of space coordinates and time. So we have inside this
body

η∇
2B − α⊥∇ ×

(
B − (e · B

)
e)− ∂tB = 0 ,

∇ · B = 0 . (10)

In the outer space theα-effect is taken to be zero, and various
assumptions concerning the electric conductivity are consid-
ered, which will be specified later.

In models of that kind several types of magnetic fields
showing different symmetries with respect to the axis and the
middle plane of the cylinder are possible. Equations (10) al-
low independent solutionsB which vary like exp(imϕ) with
the azimuthal co-ordinateϕ of a cylindrical system whose
axis coincides with that of the dynamo module. The fields
with m = 0 are symmetric, such withm 6= 0 non-symmetric
with respect to this axis. In the axisymmetric case there are
again two independent types of fields. For one the poloidal
part is antisymmetric and the toroidal part symmetric with
respect to the middle plane, and for the other vice versa.
Such fields are denoted by AS or SA, respectively. The
poloidal part of an AS field is dipole-like, that of a SA field
quadrupole-like. In the simplest non-axisymmetric case, that
is m = 1, the field corresponds roughly to that of a dipole
lying in the middle plane, but its field lines above and be-
low this plane are distorted as it would happen with opposite
rotations of the fluid in these regions about thez-axis. In
the casem = 0 we haveBx = By = 0 on thez-axis, in
the casem = 1 we haveBz = 0, and form ≥ 2 finally
Bx = By = Bz = 0.

We may measure all lengths in units of the radiusR of the
cylindrical body considered and the time in units ofR2/η.
Then Eq. (10) takes the form

∇
2B − C∇ ×

(
B − (e · B)e

)
− ∂tB = 0 ,

∇ · B = 0 , (11)

whereC is a dimensionless measure of theα-effect,

C =
α⊥ R

η
. (12)

In general the solutionsB of Eq. (11) for a givenm are
superpositions of independent solutions each of which varies
with time like exp(pt), wherep is in general complex. For
each such solution Eq. (11) together with proper boundary
conditions pose an eigenvalue problem withp being the
eigenvalue parameter. Of course, the eigenvaluesp depend
onC. Clearly the growth rateλ, given byλ = <(p), must be
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Fig. 3. Concerning the numerical calculations: the cylindrical body
embedded in a sphere

negative for smallC. For each type of solutions with a given
m, in the casem = 0 with a given specification AS or SA,
we define a marginal valueC∗ of C so that allλ are negative
for C < C∗, but at least one of them vanishes atC = C∗.
This marginal valueC∗ defines the self–excitation condition
for the corresponding type of magnetic fields.

Estimates for the marginal valuesC∗ where derived from
models treated in other contexts in which theα-effect was not
restricted to a finite cylinder but was assumed to act either
in all space, in an infinite slab, in an infinite cylinder, or in
a sphere. The results obtained in this way suggest that for
our cylindrical bodyC∗ < 10 (R̈adler et al., 1996; Gailitis,
1967).

Several numerical studies of dynamo models as described
above, that is, with theα-effect restricted to a finite cylinder,
have been carried out. For most of them a code developed
for spherical models (Fuchs et al., 1993) was used, with the
cylinder embedded in an electrically conducting sphere sur-
rounded by free space. As sketched in Fig. 3 the smallest
sphere just containing the cylinder was chosen. The conduc-
tivity of the parts of the sphere outside the cylinder was as-
sumed to be equal toξ times that inside the cylinder. In these
calculations the ratio of radiusR and heightH of the cylin-
der was fixed atR/H = 1. Using another method (Dobler
and R̈adler, 1998), models with the same conductivity ev-
erywhere inside and outside the cylinder andR/H = 1.21
were also investigated. We denote the two kinds of models
by (i) and (ii). The marginal valuesC∗ for some magnetic
fields with lowm are presented in Table 1 (see also Rädler
et al., 1996, 1998b). Figs. 4 and 5 exhibit examples of field
structures. All these fields are steady, that is, non-oscillatory.
Our results show that the non-axisymmetric field withm = 1
is clearly preferred over the axisymmetric and the other non-
axisymmetric fields. That is, magnetic fields of the symmetry
typem = 1 can be generated or maintained with the lowest
requirements concerning theα-effect.

Results for a more sophisticated mean-field dynamo model
will be given later (Sect. 7.4).

Table 1. Marginal valuesC∗ for cylindrical dynamo models of
types (i) and (ii) and different types of magnetic fields

model m = 0 m = 0 m = 1 m = 2
AS SA

(i) ξ = 1 8.22 8.46 6.41 8.62
(i) ξ = 0.01 8.64 9.18 7.70 9.67
(i) ξ = 0.001 9.02 9.60 8.12 10.12

(ii) 8.55 8.55 6.28 8.55

Fig. 4. Magnetic field of typem = 0 AS, ξ = 0.01. Left: isolines
of the toroidal part, right: field lines of the poloidal part

4 Theα-effect under idealized conditions

4.1 General considerations

In order to formulate the self-excitation condition in terms of
the rates of the flow through the spin generators we need to
know howα⊥, or C, depends on them. In the following we
focus attention on the calculation of the coefficientα⊥ in the
case in whichu is independent ofz (but will come to a case
in which it depends onz in Sect. 7.1.1). For this purpose it is
sufficient to restrict our considerations to the case in which
B is a homogeneous field. For the sake of simplicity we
further assume again thatη is constant. Thenu × B ′ is also
constant, that is∇ × (u × B ′) = 0, and Eq. (6) forB ′ takes
the simple form

η∇
2B ′

+ (B ′
· ∇)u − (u · ∇)B ′

− ∂tB
′
= −(B · ∇)u ,

∇ · B ′
= 0 . (13)

We may assume thatB ′ like B is independent ofz. Let us put
B ′

= B ′

⊥
+ B ′

‖
andu = u⊥ + u‖ with B ′

⊥
= B ′

− (e · B ′) e

andB ′

‖
= (e · B ′) e, andu⊥ andu‖ defined analogously. We

put furtheru⊥ = u⊥ũ⊥ andu‖ = u‖ũ‖, whereu⊥ andu‖ are
factors independent ofx andy characterizing the magnitudes
of u⊥ andu‖, andũ⊥ andũ‖ fields which are normalized in
some way. We may conclude from Eq. (13) thatB ′

⊥
depends

only on u⊥ and not onu‖, and thatB ′

‖
depends again on

u⊥ but only in a linear and homogeneous way onu‖. This
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Fig. 5. Magnetic field of typem = 1, ξ = 0.01. Top: planey = 0,
middle: planex = 0, bottom: planez = 0

implies thatE and thereforeα⊥ may depend in a complex
way onu⊥ but must be linear and homogeneous inu‖.

We will consider here two kinds of flow patterns, a highly
idealized one previously investigated by Roberts (1972) and
another one which is more realistic in view of the spin gener-
ators of the experimental device. As indicated in Fig. 1 each
spin generator consists of an central axial and an outer helical
channel. In the ideal situation the fluid outside the channels
is at rest.

For sufficiently small magnitudes ofu the so-called
second-order approximation can be justified, which consists

in the neglect of the two terms withu on the left-hand side of
Eq. (13). In both cases we will start with this simple approx-
imation but then proceed to results for arbitrary magnitudes
of u.

4.2 Roberts flow

We define the Roberts flow by

u = u⊥

a

2
e × ∇χ − u‖

(π
2

)2
χ e ,

χ = sin
(π
a
x
)

sin
(π
a
y
)
, (14)

or, more explicitly,

ux = −u⊥

π

2
sin
(π
a
x
)

cos
(π
a
y
)
,

uy = u⊥

π

2
cos

(π
a
x
)

sin
(π
a
y
)
,

uz = −u‖

(π
2

)2 sin
(π
a
x
)

sin
(π
a
y
)
. (15)

Hereu⊥ is the average of the modulus of the velocity com-
ponent in thexy-plane perpendicular to a line running from
the centre of a cell to its boundary taken over this line, e.g.,
the average of−ux atx = a/2 over 0≤ y ≤ a/2, or ofuy at
y = a/2 over 0≤ x ≤ a/2, andu‖ is the average of the mod-
ulus ofuz over the cross-section of a cell, e.g. 0≤ x, y ≤ a,
that is,

u⊥ = −
2

a

a/2∫
0

ux(a/2, y)dy ,

u‖ = −
1

a2

a∫
0

a∫
0

uz(x, y)dx dy . (16)

Using u⊥ and u‖ we define magnetic Reynolds numbers
Rm⊥ andRm‖ by

Rm⊥ =
u⊥a

2η
, Rm‖ =

u‖a

η
. (17)

We also introduce volumetric flow ratesV⊥ andV‖ by

V⊥ =
ah

2
u⊥ , V‖ = a2u‖ , (18)

whereh means a length characterizing the pitches of the
stream lines, which we will later identify with the pitch
of the helical channel of a spin generator. We note that
V⊥ = Rm⊥hη andV‖ = Rm‖aη.

We consider first the second-order approximation, which
applies in the limit of small u, more precisely for
Rm⊥, Rm‖ � 1. It allows us a simple determination of the
steady solutionB ′ of Eq. (13) (see Appendix A). Calculating
thenu × B ′ we find

α⊥ =
π2

32

a

η
u⊥u‖ =

π2

16

η

a
Rm⊥Rm‖ =

π2

16

V⊥V‖

a2hη
. (19)



176 K.-H. R̈adler et al.: On the mean-field theory of the Karlsruhe Dynamo Experiment

Fig. 6. The functionsφ(Rm⊥) andRm⊥φ(Rm⊥)

According to our remarks in Sect. 4.1 the Relations (19)
must also hold true for arbitraryu‖, that is, arbitraryRm‖

andV‖. Therefore, generalizations of the form

α⊥ =
π2

32

a

η
u⊥u‖φ(u⊥a/2η)

=
π2

16

η

a
Rm⊥Rm‖φ(Rm⊥)

=
π2

16

V⊥V‖

a2hη
φ(V⊥/hη) (20)

must apply for arbitraryu⊥ andu‖, or arbitraryRm⊥, Rm‖,
V⊥ andV‖. Hereφ is a function satisfyingφ(0) = 1, which
remains to be determined.

Equations (13) forB ′ have been reduced to a system of or-
dinary differential equations for its Fourier components with
respect tox andy, and these have been integrated numeri-
cally. From the result forB ′ in the steady final state again
u × B ′ and in the endα⊥ have been calculated (see Rädler
et al., 1997a, b). In this way the functionφ(Rm⊥) shown in
Fig. 6 was determined. As can also be seen thereα⊥, con-
sidered as function ofRm⊥, first grows with growingRm⊥,
reaches a maximum atRm⊥ = 2.6, and then decays again.
This decay results from magnetic flux expulsion out of the ro-
tating inner parts of each cell. By the way, in agreement with
results of asymptotic studies (Soward, 1987) it was found
thatφ behaves likeRm−3/2

⊥
and, therefore,α⊥ like Rm−1/2

⊥

asRm⊥ → ∞.
Let us interpret our result in view of an array of spin gener-

ators. We denote the volumetric flow rates through the cen-
tral and the helical channel of a spin generator byVC and
VH, respectively. Clearly,V⊥ corresponds toVH, andV‖ to
VC + VH. Then, using Eq. (20) and puttingV⊥ = VH and
V‖ = VC + VH, we arrive at

α⊥ =
π2

16

VH

a2hη
(VC + VH) φ(VH/hη) . (21)

Figure 7 shows the dependence ofa2α⊥ on VC andVH for
h = 0.905a (chosen with a view to Eq. 32). There is a

Fig. 7. The dependence ofa2α⊥ onVC andVH, all three quantities
measured in units ofaη, for h = 0.905a

valueV ∗

C (in the units of Fig. 7 we haveV ∗

C < 2.5) so that
α⊥(VC, VH) for any fixedVC < V ∗

C grows withVH. For
VC > V ∗

C, however,α⊥(VC, VH grows for smallVH only,
then reaches a maximum and decays again for largerVH.
This decay is again a consequence of the magnetic flux ex-
pulsion from the inner parts of the cells. Later in Fig. 11
isolines ofC in theVCVH-plane are shown, which because
of C = α⊥R/η can easily be interpreted as isolines ofα⊥.

4.3 Spin generator flow

Let us now proceed to a flow pattern which is more realistic
in view of the flow in the array of spin generators in the ex-
perimental device. In order to describe the fluid velocityu

we consider it at first only in a single cell, say 0≤ x, y ≤ a.
We introduce there a cylindrical co-ordinate system%, ϕ,
z with the axis% = 0 at the centre of this cell, that is, at
x = y = a/2. In this cell the fluid velocityu is, with respect
to this co-ordinate system, assumed to be given by

u% = 0 , uϕ = uϕ(%) , uz = uz(%) , (22)

with uϕ and uz depending on% only and vanishing for
% > a/2. The complete flow pattern in allxy-plane is then
defined by periodic continuation of the pattern described for
the cell considered here to all cells, with changes of the sign
from each cell to its neighbouring cells as indicated in Fig. 2.

We specifyu further by putting

uϕ = 0 , uz = −u(%) for 0< % ≤ %1

uϕ = −ω(%)% , uz = −
h

2π
ω(%) for %1 < % ≤ %2

uϕ = 0 , uz = 0 for % > %2 . (23)

Hereu andω are arbitrary functions of%. Further%1 and%2
mean the radius of the central channel and the outer radius
of the helical one, respectively, andh the pitch of the helical
channel; see Fig. 8. The− signs in Eq. (23) make thatu and
ω can be considered as positive. The coupling betweenuϕ
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Fig. 8. Cross-section of a spin generator

anduz in %1 < % ≤ %2 considers the constraint on the flow
resulting from those walls of the helical channel which are
no cylindrical surfaces. We define further the averagesu⊥,
u‖C andu‖H of the relevant velocities,

u⊥ =
2

a

%2∫
%1

ω(%)% d%

u‖C =
2π

a2

%1∫
0

u(%)% d% , u‖H =
h

a2

%2∫
%1

ω(%)% d% , (24)

and note thatu‖H = (h/2a)u⊥. On this basis we define
magnetic Reynolds numbersRm⊥, Rm‖C andRm‖H by

Rm⊥ =
u⊥a

2η
, Rm‖C =

u‖C a

η
, Rm‖H =

u‖H a

η
, (25)

where, of course,Rm‖H = (h/a)Rm⊥. Note that the av-
eragesu⊥, u‖C andu‖H are related to the lengtha/2 or the
areaa2 and not to the actual extents of the respective flows.
By this reason alsoRm⊥, Rm‖C andRm‖H have to be in-
terpreted with some care. Finally we introduce the volumet-
ric flow ratesVC andVH through the central and the helical
channel,

VC = a2 u‖C , VH =
ah

2
u⊥ = a2 u‖H . (26)

In the second-order approximation, that is for suf-
ficiently small magnitudes ofu, more precisely for
Rm⊥, Rm‖C, Rm‖H � 1, the quantityα⊥ can be calculated
by taking the average of, say,(u × B ′)x over a single cell
ignoring the contributions toB ′ resulting from the flow out-
side, and dividing it byBx . It can be shown that these contri-
butions toB ′ produce only such parts of(u × B ′)x which
vanish under averaging (see Appendix B). Assuming then
that u in the considered cell is given by Eq. (22) and van-
ishes outside, it is again easy to find the steady solution of

Eq. (13) (see Appendix A). So we arrive at

α⊥ =
π

a2η

%2∫
0

(
uϕ(%)

%∫
0

uz(%
′)%′ d%′

+uz(%)%

%2∫
%

uϕ(%
′) d%′

)
d% . (27)

Interestingly enough, as can be shown by an integration by
parts, the two double integrals on the right-hand side are
equal to each other. We may therefore also write

α⊥ =
2π

a2η

%2∫
0

(uϕ(%)

%∫
0

uz(%
′) %′ d%′) d%

=
2π

a2η

%2∫
0

(uz(%) %

%2∫
%

uϕ(%
′) d%′) d% . (28)

Let us evaluate these relations forα⊥ with the more spe-
cific assumptions (Eq. 23) onuϕ anduz. We find then

α⊥ =
a

2η
u⊥

(
u‖C +

1

2
u‖H

)
=
η

a
Rm⊥

(
Rm‖C +

1

2
Rm‖H

)
=

VH

a2hη

(
VC +

1

2
VH

)
. (29)

Obviously the axial flow in the central channel of the spin
generator, where no azimuthal flow exists, is more effective
in view of α⊥ than the axial component of the flow in the
helical channel. Note that in particular the relation between
α⊥, VC andVH applies independently of%1 and%2.

We leave now the second-order approximation. With the
same arguments as used in the case of the Roberts flow we
find that the general forms ofα⊥, which apply for arbitrary
u⊥, u‖C, u‖H, Rm⊥, · · · VC andVH, are given by

α⊥ =
a

2η
u⊥

(
u‖C φC(u⊥a/2η)+

1

2
u‖H φH(u⊥a/2η)

)
=
η

a
Rm⊥

(
Rm‖C φC(Rm⊥)+

1

2
Rm‖H φH(Rm⊥)

)
=

VH

a2hη

(
VC φC(VH/hη)+

1

2
VH φH(VH/hη)

)
. (30)

The functions φC and φH, which have to satisfy
φC(0) = φH(0) = 1, may depend, apart from the arguments,
also on the profile ofω.

In order to determineα⊥ and soφC andφH the Eqs. (13)
have been solved numerically in the region−a ≤ x, y ≤ a

using proper periodic boundary conditions (Rädler and Bran-
denburg, 2002). For the sake of simplicity bothu andω were
taken as constants, that is, rigid-body motions of the fluid, or
piston profiles, were assumed in each of the channels. Re-
sults forφC(Rm⊥) andφH(Rm⊥) obtained in this way are
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Fig. 9. The functionsφC(Rm⊥) andφH(Rm⊥) for rigid-body mo-
tion of the fluid in each of the channels with%1 = a/4, %2 = a/2
andh = 0.905a

shown in Fig. 9. The dependence ofa2α⊥ onVC andVH for
%1 = a/4, %2 = a/2 andh = 0.905a (chosen in agreement
with Eq. 32) is represented in Fig. 10.1 Again the com-
ment given with Fig. 7 applies according to which there is
a valueV ∗

C (hereV ∗

C < 4) so thatα⊥(VC, VH) for any fixed
VC < V ∗

C grows withVH, for VC > V ∗

C, however, grows for
smallVH only, then reaches a maximum and decays again for
largerVH. We also refer to Fig. 12 which shows isolines of
C, which because ofC = α⊥R/η can easily be interpreted
as isolines ofα⊥.

5 The self-excitation condition of the experimental
device in comparison with experimental results

5.1 Self-excitation condition

In the following we will apply the results obtained so far to
the experimental device and compare them with experimen-
tal findings. For this purpose we choose for the radiusR and
the heightH of the dynamo module the values

R = 0.85 m, H = 0.71 m. (31)

More precisely, as indicated in Fig. 1 these values correspond
to the “homogeneous part” of the dynamo module, which
does not include the regions with connections between the
spin generators, etc. We further adopt for the edge lengtha

of a spin generator, the radius%1 of the inner channel, the
outer radius%2 and the pitchh of the helical channel

a = 0.21 m, %1 = 0.25a , %2 = 0.5a , h = 0.19 m. (32)

1The results presented in some of our earlier papers (Rädler
et al., 1997a,b, 1998b) were obtained with an analytic solution
of Eqs. (13) for a single spin generator ignoring the influence of
the neighbouring ones, what is not completely correct beyond the
second-order approximation. The numerical investigations men-
tioned confirm the essential features of the results but show that
corrections of numerical data are necessary ifRm⊥ is no longer
small compared to unity. These corrections are considered here.

Fig. 10.The dependence ofa2α⊥ onVC andVH, all three quantities
measured in units ofaη, with %1 = a/4,%2 = a/2 andh = 0.905a

Finally we put for the magnetic diffusivity of liquid sodium

η = 0.1 m2/s. (33)

We return first to the dimensionless measureC of theα-
effect introduced with Eq. (12) and express it by the volu-
metric flow ratesVC andVH. With the result (21), which
was obtained for the Roberts flow, we find the dependence
of C on VC andVH depicted in Fig. 11. In the same way
the result (30) for the spin generator flow leads to the de-
pendence shown in Fig. 12. For the Roberts flow we can
show that, when admitting arbitraryVC andVH, each isoline
of C cuts theVH-axis and continues until infiniteVC. Pre-
sumably the same applies to the spin generator flow. The
non-uniqueness ofVH as a function ofVC is, of course, again
a consequence of the magnetic flux expulsion from the inner
parts of the spin-generators. Remarkably enough, in the re-
gions ofVC andVH which are of interest for the experiment,
that is 0< VC, VH < 200 m3/h, the isolines ofC essentially
coincide for both kinds of flow patterns. Considering the spin
generator flow as more realistic than the Roberts flow we will
refer to the isolines ofC shown in Fig. 12 in what follows.

We recall that in our approach the self-excitation condi-
tion for the dynamo readsC ≥ C∗ and that values ofC∗

obtained under various assumptions are listed in Table 1. For
any given value ofC∗ we have a “neutral line”C = C∗ in
theVCVH-plane separating the region in which the dynamo
can work from the one where it can not. As can be seen
from Figs. 11 and 12 dynamo action should be possible for
arbitrarily smallVH if only VC exceeds a sufficiently large
value depending onVH. Likewise a dynamo should work
with VC = 0 and a sufficiently largeVH.

5.2 Experimental results

Using data measured in the experiment (Müller and Stieglitz,
private communication) the real neutral line in theVCVH-
plane separating dynamo and non-dynamo regions has been
determined. Figure 13 shows a detail of Fig. 12 with this
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Fig. 11. Isolines ofC, obtained with the result (21) for the Roberts
flow, in theVCVH-plane. BothVC andVH in m3/h. When starting
from the numerical values related to the units used in Fig. 7 those
related to m3/h follow by multiplication by a factor 75.6.

Fig. 12. Isolines ofC, obtained with the result (30) for the spin
generator flow, in theVCVH-plane. BothVC andVH in m3/h. When
starting from the numerical values related to the units used in Fig. 10
those related to m3/h follow by multiplication by a factor 75.6.

line added. It corresponds to values ofC∗ in the interval
8.4 · · · 9.3.

Magnetic field measurements have been carried out at sev-
eral points along the axis of the dynamo module. It turned out
that the field there consists mainly ofx- andy-components.
Compared to them no noticeablez-component was observed.
This applies likewise to the components ofB (see Appendix
C) and indicates that, as expected, the generated fields are
of the symmetry typem = 1. It should, however, be noted
that the variation of thex- andy-components ofB derived
from the observed field along the axis of the dynamo mod-
ule (see again Appendix C) are not in satisfactory agreement
with calculated field structures as shown in Fig. 5.

The fact that the values ofC∗ derived from the measure-

Fig. 13.A detail of Fig. 12 with the experimentally determined neu-
tral line (the thick line) separating regions with and without dynamo
action

ments are somewhat higher than those given form = 1 in
Table 1 is well understandable. As we will explain in more
detail below (Sect. 7) improvements to the simple models for
which Table 1 applies lead to higher values ofC∗. Such im-
provements consider in particular the variability of the coef-
ficientα⊥ and the occurrence of effects described byα‖ and
γ near the boundaries of the dynamo-active body as well as
the effects described byβ⊥, β‖ andβ3 inside this body.

6 On the back-reaction of the magnetic field on the fluid
flow and the saturation of the magnetic field

6.1 A simple dynamo model involving the back-reaction of
the magnetic field

So far we considered kinematic dynamo models only, that
is, we ignored the influence of the Lorentz forces on the fluid
flows. The Lorentz forces are of second order in the magnetic
field, and their influence on the fluid flow grows with the
magnetic field and limits so its magnitude. In order to study
this process in detail in addition to the induction equation
(Eq. 1) the hydrodynamic equations involving the Lorentz
forces have to be taken into account.

Instead of investigating the very complex problem which
occurs in this way we deal here only with a simple model of
the dynamo in the nonlinear regime (see also Rädler et al.,
1998a). It considers no other consequence of the back-
reaction of the magnetic field on the fluid motion than the
magnetic contribution to the pressure drops in the channels
of the spin generators. Influences of the magnetic field on the
flow profiles in the channels (as discussed in Rädler et al.,
2000a) or the generation of motions in the fluid outside the
channels are ignored.

We start again from Eqs. (10) forB, with α⊥ considered as
a function of the flow ratesVC andVH, and add two equations
for these quantities. The latter equations are to be understood



180 K.-H. R̈adler et al.: On the mean-field theory of the Karlsruhe Dynamo Experiment

as consequences of the Navier-Stokes equation, relating the
flow rates to the pressures built up by the pumps and the pres-
sure losses due to the hydraulic resistance and the magnetic
field. The full set of these equations reads

∂tB = η∇2B + α⊥(VC, VH)∇ ×
(
B − (e · B)e

)
,

∇ · B = 0,

dtVC = κC
(
PC(VC)− RC(VC)− LC(B̃, VC, VH)

)
,

dtVH = κH
(
PH(VH)− RH(VH)− LH(B̃, VC, VH)

)
,(34)

where, of course, the first line must be completed using
proper boundary conditions. HereκC andκH are factors of
the structures/ρml wheres is the cross-section of the con-
sidered type of channels,ρm the mass density of the fluid and
l the total length of the considered circuit.PC andPH are the
pressures generated by the pumps in these circuits,RC and
RH the pressure drops due to the hydraulic resistances,LC
andLH the pressure drops due to Lorentz forces, andB̃ is a
quantity depending on the magnitude of the relevant compo-
nents of the magnetic field, which will be specified later. We
point out that according to our above assumptionα⊥ depends
only viaVC andVH on the magnetic field, that is, a possible
dependence via the flow profiles is not taken into account.

It should be noted that there is one circuit in the experi-
mental device which contains the central channels of all 52
spin generators but there are two circuits for the helical chan-
nels, each feeding 26 of them. Here these two circuits are
assumed to be equal to each other, that is, described by one
flow rate,VH, only.

We specify Eq. (34) by further assumptions concerning
PC, PH, RC, RH, LC andLH. For the pressures generated
by the pumps we put

PC = kCP
o
C(1 − cP CVC) , PH = kHP

o
H(1 − cP HVH) , (35)

where the factorskC andkH describe with which fractions of
the maximum pressure the pumps work, 0< kC, kH ≤ 1.
Further,P oC andP oH are the maximum pressures, andcP C and
cP H are constants considering the pressure drops inside the
pumps under load (see Stieglitz and Müller, 1996). For the
pressure losses due to the hydraulic resistance we assume

RC = RoC

(
1 + cR C

(
1 +

c′R C

VC

)1/4
)
V 2

C , RH = RoHV
2
H,(36)

whereRoC,RoH, cR C andc′R C are constants (see again Stieglitz
and Müller, 1996). The main contributions to the resistances
are due to the bends of the tubes.

Corresponding relations forLC andLH will be given be-
low.

6.2 Estimates of the Lorentz forces

For an estimate of the Lorentz forces we assume thatB is a
homogeneous field. Then the force exerted on a unit volume
of the fluid,f , is given by

f =
1

µ0
(∇ × B ′)× (B + B ′) , (37)

whereµ0 is the magnetic permeability of free space.
We restrict ourselves first to the second-order approxima-

tion as explained in the context of Eq. (13) and replace in
the same senseB + B ′ in Eq. (37) simply byB. For the
calculation of the averages off which are of interest below
it is then again justified to consider a single spin generator
only, that is, to ignore any motion in the neighbouring ones.
As in Sect. 4.3 we consider the spin-generator defined by
0 ≤ x, y ≤ a and use again the co-ordinate system%, ϕ,
z introduced there. We can easily find a steady solutionB ′

of Eq. (13) (see Appendix A) and calculatef according to
Eq. (37). Averaging itsϕ andz-components overϕ and de-
noting these averages bŷfϕ andf̂z we have

f̂ϕ = −
1

2
σuϕB

2
⊥
, f̂z = −

1

2
σuzB

2
⊥
, (38)

whereσ is the electric conductivity of the fluid,σ = 1/µ0η,
andB⊥ the mean magnetic flux density in thexy-plane. Of
course,f̂ϕ andf̂z depend on% if uϕ anduz do so.

Consider first a central channel. The magnetic pressure
drop per unit length(dpm/dl)C of this channel is, apart from
the sign, just the average of̂fz over its cross-section, that is(

dpm

dl

)
C

=
1

2
σ 〈uz〉B

2
⊥
, (39)

where〈uz〉 means the average ofuz over the volume or, what
is the same, over the cross-section of the channel. Denot-
ing this cross-section bysC, wheresC = π%2

1, and using
〈uz〉sC = a2u‖C we find further(

dpm

dl

)
C

=
σa2B2

⊥

2sC
u‖C =

aB2
⊥

2µ0sC
Rm‖C =

σB2
⊥

2sC
VC . (40)

Consider next a helical channel. For the pressure drop per
unit length(dpm/dl)H we can derive a relation analogous to
Eq. (39) with〈uz〉 replaced by cosδ〈uϕ〉 + sinδ〈uz〉. Hereδ
means the angle between some central stream line at a radius
% = % and a circle with% = % and z = const , that is,
tanδ = h/2π%, and〈uϕ〉 and〈uz〉 are now averages over the
volume of the channel or, what is the same, over its section
with a planez = const . We define% by

∫ %2
%1
uϕ(%) % d% =

%
∫ %2
%1
uϕ(%) d% and put% = ξ ′(%1 + %2)/2 whereξ ′ is a

factor close to unity. Further we introduce the cross-section
sH as the area of a plane fitting into the channel and being
perpendicular to the central stream line mentioned, that is
sH = (%2 − %1) h cosδ. So we arrive at(

dpm

dl

)
H

=
σahξ ′B2

⊥

4sH
u⊥

=
hξ ′B2

⊥

2µ0sH
Rm⊥ =

σξ ′B2
⊥

2sH
VH . (41)

Let us now leave the second-order approximation in
Eq. (13) and the analogous one in Eq. (37). Using ana-
lytical solutions of Eq. (13) for an isolated spin generator,
that is, ignoring as before the influences of the neighbouring
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Fig. 14. The functionψC(VC, VH) for two special values ofVC
given by the labels of the curves, with%1 = a/4 and%2 = a/2.
Both VC andVH in m3/h. The functionψC varies monotonically
with VC.

ones, and assuming rigid-body motions, that is piston pro-
files,(dpm/dl)C and(dpm/dl)H for both channels have been
determined for arbitraryVC andVH. We present the result in
the form(

dpm

dl

)
C

=
σB2

⊥

2sC
VCψC(VC, VH)(

dpm

dl

)
H

=
σξ ′B2

⊥

2sH
VH ψH(VC, VH) , (42)

with two functionsψC and ψH satisfying ψC(VC, 0) =

ψH(VC, 0) = 1. These functions with%1 = a/4 and
%2 = a/2 are shown in Figs. 14 and 15.

We complete now the Eqs. (34) to (36) by

LC = B2
⊥
L̃C , L̃C = cL CVCψC(VC, VH)

LH = B2
⊥
L̃H , L̃H = cL HVHψH(VC, VH) (43)

wherecL C andcL H are constants of the structureσ l/2s, with
σ , l ands being the electric conductivity of the fluid, the total
length of all channels in the considered circuit ands their
cross-section.

6.3 Saturated dynamo states

We consider now our dynamo model defined by the Eq. (34)
together with Eqs. (35), (36) and (43) for a state in which
B, VC andVH neither grow nor decay. We already know
from kinematic dynamo models thatB for fixedVC andVH
shows a non-oscillatory behaviour, and we could not find any
example of a different behaviour ofB, VC andVH in the case
considered here. Therefore we restrict our attention here to
the steady case.

Steady solutions of the equations forB in Eq. (34) require
thatC(VC, VH) takes its marginal valueC∗. Hence the con-
sequences of the Eqs. (34) with (35), (36) and (43) for the
steady case read

C(VC, VH) = C∗

Fig. 15. The functionψH(VC, VH) for two special values ofVC
given by the labels of the curves, with%1 = a/4 and%2 = a/2.
Both VC andVH in m3/h. The functionψH varies monotonically
with VC.

PC(VC)− RC(VC)− B2
⊥
L̃C(VC, VH) = 0

PH(VH)− RH(VH)− B2
⊥
L̃H(VC, VH) = 0 . (44)

EliminatingB2
⊥

from the last two lines of Eq. (44) we find(
PC(VC)− RC(VC)

)
L̃H(VC, VH )

−
(
PH(VH)− RH(VH)

)
L̃C(VC, VH) = 0 . (45)

If all other relevant parameters are given the first line of
Eq. (44) together with Eq. (45) allows us to determine a pair,
or possibly several pairs, of valuesVC andVH without con-
sideringB2

⊥
. With the help of the second or the third line of

Eq. (44) we can afterwards find the corresponding value of
B2

⊥
. We must, however, discard all pairs ofVC andVH for

whichB2
⊥

takes negative values.
On the basis of Eq. (44), completed by Eqs. (35), (36) and

(43), we may calculate the quantitiesVC, VH andB⊥ if, for
example,C∗, kC andkH are given. For this purpose we need
the numerical values ofP oC, P oH, cP C, cP H, RoC, RoH, cR C,
c′R H, cL C andcL H . Without going into details we note that
the parameters of the device (see Stieglitz and Müller, 1996)
lead to

P oC = P oH = 710 kPa, cP C = cP H = 10.1(m3/s)−1

RoC = 1.31 · 108 Pa(m3/s)−2 , RoH = 1.99 · 108 Pa(m3/s)−2

cR C = 3.54 · 10−1, c′R C = 3.54 · 10−2 m3/s

cL C = 1.88 · 1010kg(m4sT2)−1,

cL H = 2.31 · 1010kg(m4sT2)−1 (46)

(see also R̈adler et al., 2000a,b).
In Table 2 flow ratesVC andVH and the quantityB⊥ char-

acterizing the magnitude of the generated magnetic field in
steady states of the dynamo are listed for various values of
C∗, kC andkH. In addition, the total powerN is given which
is needed to maintain these states as well as the relative frac-
tion fohm fed into the magnetic field and converted into heat
by ohmic dissipation. Since some of the numerical values
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Table 2. The flow ratesVC andVH and the measureB⊥ of the
magnitude of the magnetic field for steady states of the dynamo,
further the total powerN needed to maintain these steady states and
its relative fractionfohm corresponding to ohmic dissipation

C∗ kC kH VC VH B⊥ N fohm
[m3/h] [m3/h] [10−4 T ] [kW]

8.0 1 1 106 92 303 42 0.73
1 0.5 127 78 215 28 0.57

0.5 1 84 108 256 36 0.63
0.5 0.5 102 94 169 21 0.45

8.5 1 1 110 96 291 43 0.70
1 0.5 130 82 204 29 0.52

0.5 1 89 113 243 37 0.59
0.5 0.5 106 98 155 21 0.40

9.0 1 1 114 100 281 44 0.67
1 0.5 134 86 193 29 0.49

0.5 1 93 118 230 38 0.54
0.5 0.5 110 103 140 22 0.33

9.5 1 1 118 104 270 45 0.64
1 0.5 138 90 182 30 0.44

0.5 1 97 123 216 39 0.49
0.5 0.5 114 108 123 22 0.26

in Eq. (46) have noticeable uncertainties, the values ofB⊥,
N andfohm must be considered as rough estimates. In this
sense they are in good agreement with the experimental re-
sults.

7 Steps toward a refined theory of the experiment

7.1 Boundary effects

7.1.1 The plane bottom and top boundaries of the dynamo
module

The calculations of the electromotive forceE reported above
ignored the fact that the fluid flow is restricted to the dy-
namo module and that near its bottom and top covers there
are flows between the spin generators. In order to get an idea
on the influence of this type of boundary effect on the excita-
tion condition of the dynamo, a calculation of the coefficients
α⊥, α‖ andγ occurring in Eq. (8) has been carried out in the
second-order approximation no longer assuming a Roberts
flow as given by Eq. (14) but the modified flow defined by

u = u⊥

a

2
e × ∇(f⊥χ)+ u‖(

a

2
)2∇ ×

(
e × ∇(f‖χ)

)
,

χ = sin(
π

a
x) sin(

π

a
y) , (47)

wheref⊥ andf‖ are functions ofz (see R̈adler et al., 1996).
With f⊥ = f‖ = 1 we return to Eq. (14). We think, however,
of functionsf⊥ andf‖ which are equal to unity in some inner
part of the dynamo module only but decay with growing|z|

Fig. 16. A flow pattern with connecting flows between the spin
generators

and vanish outside the module. A flow pattern in a region
with varyingf⊥ andf‖ is shown in Fig. 16. With this flow
α⊥ is no longer independent ofz, andα‖ andγ are unequal
to zero in and near to the regions with varyingf⊥ andf‖.
Calculations of these coefficients have been carried out for
the two cases in which there is either free space beyond the
covers of the dynamo module or a medium at rest with the
same electric conductivity as the fluid (Rädler et al., 1996).
We may represent the results in the form

α⊥ =
π2

32

a

η
u⊥u‖ h⊥(ζ ) =

π2

16

η

a
Rm⊥Rm‖h⊥(ζ )

α‖ =
π2

32

a

η
u⊥u‖h‖(ζ ) =

π2

16

η

a
Rm⊥Rm‖h‖(ζ )

γ =
π2

16

a

η
u2

‖
k(ζ ) =

π2

16

η

a
Rm2

‖
k(ζ ) , (48)

with the dimensionless functionsh⊥, h‖ andk of ζ = 2z/H .
If f⊥ andf‖ are symmetric inz thenh⊥ andh‖ are again
symmetric butk is antisymmetric inζ .

Let us consider the simple example in whichf⊥ = 1 in
0 ≤ |ζ | ≤ 1, furtherf‖ = 1 in 0 ≤ |ζ | ≤ 1−ε, f‖ = p5(|ζ |)

in 1 − ε ≤ |ζ | ≤ 1, andf⊥ = f‖ = 0 for |ζ | ≥ 1, where
ε is a constant andp5 a polynomial of the fifth degree such
thatf‖ and its first and second derivatives are continuous ev-
erywhere. The profiles ofh⊥, h‖ andk for the case of free
space beyond the covers of the dynamo module are shown
in Fig. 17. Those for the case with a fluid at rest are very
similar. Note that the sign ofk corresponds to a transport of
magnetic flux out of the dynamo module.

The influence of the connecting flows in the sense dis-
cussed so far, that is, of the reduction ofα⊥ and the occur-
rence of non-zeroα‖ andγ in the boundary layers, on the
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Fig. 17. The functionsh⊥, h‖ andk for f⊥ andf‖ as described in
the text andε = 0.4 in the case of free space beyond the covers of
the dynamo module

self-excitation of the dynamo has been studied with a sim-
ple model in which the dynamo acts in an infinite slab sur-
rounded by free space (Rädler et al., 1996). In this model the
marginal valueC∗, here related to a definition ofC analo-
gous to Eq. (12) but with the thickness of the slab instead of
R, depends onε as introduced above and onq = Rm‖/Rm⊥,
too. Compared to the case with constantα⊥ and vanishingα‖

andγ , the value ofC∗ grows both withε andq. Forε ≤ 0.2
andq ≤ 1 the increase is less than 10%. We may expect that
in the experimental device the boundary effects discussed so
far letC∗, compared to the idealized case, grow to a similar
extent.

7.1.2 The curved boundary of the dynamo module

It is difficult to determine the mean velocityu of the fluid
or the mean electromotive forceE for the curved boundary
regions of the dynamo module. In any caseu must deviate
from zero, and it must vary with the azimuthϕ with the pe-
riodπ . Likewise the coefficients ofE as, e.g.,α⊥ must show
such a variation withϕ. It is the neglect of these boundary
effects which made that in the mean-field approach consid-
ered so far the dynamo module appeared to be an axisym-
metric object and, as a consequence, there was no coupling
betweenB-fields differing inm. Of course, in a more de-
tailed theory this axisymmetry of the dynamo module and
its consequences must disappear. In the experiment indeed
a clearly preferred direction for the generated fields occurs
(Müller and Stieglitz, private communication).

7.2 Mean-field conductivity, etc.

So far we have not considered the contributions to the elec-
tromotive forceE which are connected with derivatives of
B. Dealing now with these contributions, we again restrict
ourselves for the sake of simplicity to the case in which the
flow pattern is independent ofz, that is, to theβ⊥, β‖ andβ3
terms in Eq. (9). As already mentioned (Sect. 2) the first two

can be interpreted in the sense that they contribute to a mean-
field conductivity, and it is to be expected that they lead to an
enhanced dissipation of the mean magnetic field. However,
the last one does not need to act in this sense. A straightfor-
ward calculation with the Roberts flow defined by Eq. (14)
using the second-order approximation yields

β⊥ =
a2

64η
(u2

⊥
+
π2

4
u2

‖
) =

η

16
(Rm2

⊥
+
π2

16
Rm2

‖
)

β‖ =
a2

32η
u2

⊥
=

η

8
Rm2

⊥
(49)

β3 = −
a2

64η
(u2

⊥
−
π2

4
u2

‖
) = −

η

16
(Rm2

⊥
−
π2

16
Rm2

‖
)

(see R̈adler et al., 1996). Note thatβ⊥ andβ‖ are positive
definite, that is, must indeed lead to an enhanced dissipation
of the mean magnetic field, whereasβ3 may take both signs
so that it is difficult to predict its influence. Note also that we
haveβ3 = β⊥ − β‖.

Theβ⊥ andβ‖-effects necessarily lead to higher values of
C∗ for any given dynamo model. Estimates with a very sim-
ple model show that this tendency is maintained if in addi-
tion theβ3-effect is taken into account (Rädler et al., 1996).
Again an increase ofC∗ up to 10% is to be expected as a
consequence of the effects discussed here. This statement is
in agreement with results of another way of calculating the
α⊥-effect and theβ⊥, β‖ andβ3-effects and their influences
onC∗ (Rädler and Brandenburg, 2002).

7.3 On the limits of the mean-field approach

As usual in mean-field dynamo theory we have adopted the
assumption thatB varies weakly in space and time so that all
contributions toE with higher than first-order spatial deriva-
tives and with any time derivatives ofB are negligible. We
may consider the radiusR of the dynamo module as a charac-
teristic length scale ofB and the edge lengtha of a spin gen-
erator as the averaging length scale. According to Eqs. (31)
and (32) we havea/R = 0.25. That is, the above assump-
tion is not well satisfied and the statements derived from
mean-field considerations should be checked in an indepen-
dent way.

In this context investigations of subharmonic solutions of
the original Roberts dynamo problem (Tilgner and Busse,
1995; Plunian and R̈adler, 2002) are of interest. We rely
here on the recent one of them (Plunian and Rädler, 2002),
which is widely elaborated in view of the Karlsruhe dynamo,
and adopt the definitions introduced above for the original
z-independent Roberts flow. In particular such subharmonic
solutions of the induction equation forB with u specified
by Eq. (14) have been considered which possess no part in-
dependent ofx andy and whose period lengths inx- and
y-direction are integer multiples of the length of a diagonal
of a cell in the flow pattern, that is,

√
2Na with an integerN .

An arbitrary period length inz-direction was admitted, here
denoted by

√
2κa with an arbitrary positive real constantκ.

Subharmonic fieldsB of that kind have been determined by
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numerical solution of the eigenvalue problem posed by the
Fourier-transformed induction equation.

Instead of the cylindrical dynamo module we consider
now a rectangular “dynamo box” with the edge lengthsL in
thex- andy-direction andH in thez-direction. We consider
a subharmonic fieldB such that the dynamo box contains just
a “half wave” of its leading Fourier mode, that is, the mode
with the largest period lengths. This meansNa/

√
2 = L and

κa/
√

2 = H . We then interpret the leading Fourier mode
as the mean fieldB. Instead of characterizing the situation
considered by the parametersN andκ we may also use the
aspect ratiosL/H anda/H of the dynamo box and of the
spin generators.

Before presenting specific results derived from subhar-
monic solutions of the Roberts dynamo problem let us have a
look on a result of the mean-field approach, that is, a solution
of the Eq. (10) forB with α⊥ given by Eq. (20) which fits in
the same sense to our dynamo box as we required it above
for the leading mode of a subharmonic fieldB. As can be
easily shown the self-excitation condition reads

Rm⊥Rm‖φ(Rm⊥) ≥
16a

πH

(
1 + 2

(
H

L

)2
)

(50)

with φ as introduced with Eq. (20). We may rewrite this into

Rm⊥Rm
∗

‖
φ(Rm⊥) ≥ 1 (51)

with Rm∗

‖
defined by

Rm‖ =
16a

πH

(
1 + 2

(
H

L

)2
)
Rm∗

‖
. (52)

Figure 18 shows the neutral line,Rm⊥Rm
∗

‖
φ(Rm⊥) = 1, in

theRm⊥Rm
∗

‖
-plane.

We return now to subharmonic fieldsB adjusted as de-
scribed above to our dynamo box. Within this framework we
rediscover the result Eq. (50), or Eq. (51), of the mean-field
approach in the double limitL/H → ∞ anda/H → 0. Any
deviation ofL/H anda/H from this limit leads to higher
requirements for dynamo action. In particular, ifRm⊥ is
fixed, higher values ofRm∗

‖
are necessary. For example, for

L/H ≤ 2, a/H → 0 andRm⊥ ≤ 2 the necessary values of
Rm∗

‖
are up to about 10% higher than predicted by the mean-

field approach. Figure 18 shows the neutral line forL/H = 2
in theRm⊥Rm

∗

‖
-plane obtained in the mean-field approach

and three such lines derived from subharmonic solutions for
finite a/H . Whereas in the mean-field approach dynamo ac-
tion seems possible for arbitraryRm⊥ if only Rm∗

‖
is suffi-

ciently large, we see now that it is only possible for not too
smallRm⊥. That is, there is not only a critical value ofRm∗

‖

but also a critical value ofRm⊥ so that a dynamo can never
work without exceeding these values. Ifa/H grows, for any
givenRm⊥ the requirements toRm∗

‖
also grow.

Although the shape of our dynamo box is different from
that of the real cylindrical dynamo module and the consid-
ered magnetic fields satisfy some kind of periodic bound-
ary conditions rather than such which are realistic for this

Fig. 18. Neutral lines for the rectangular dynamo box with
L/H = 2 in the Rm⊥Rm

∗
‖
-plane. Line(a) is defined by the

resultRm⊥Rm
∗
‖
φ(Rm⊥) = 1 of the mean-field approach. The

other lines are derived on the basis of subharmonic solutions for
L/H = 2 and various values ofa/H , (b) for a/H = 0.177,(c) for
a/H = 0.283 and(d) for a/H = 0.356. The diagram essentially
represents results shown in Fig. 6 of Plunian and Rädler (2002).

module, we may assume that the dependence of the self-
excitation condition on the aspect ratioa/H for the real dy-
namo module is similar to that observed here. Considering
thatL/H = 2 anda/H = 0.3 correspond roughly to the real
cylindrical dynamo module and that the dynamo works in a
regime withRm⊥, Rm‖ < 2, which impliesRm∗

‖
< 0.9, we

may conclude that the marginal valueC∗ can again be up to
10% higher than predicted by the mean-field approach.

We may further conclude that the neutral line of the ex-
perimental device does not need to coincide exactly with an
isoline ofC in theVCVH-diagram like Figs. 11 or 12. Us-
ing the results represented in Fig. 18, expressingRm⊥ and
Rm∗

‖
by V⊥ andV‖ and putting as in the context of Eq. (21)

againV⊥ = VH andV‖ = VC + VH, we have constructed
the neutral lines inVCVH-diagram. For reasons of compa-
rability of these lines we have introduced̃VC =

√
H/a VC

andṼH =
√
H/a VH. Figure 19 shows the neutral lines in a

ṼCṼH-diagram. The lines based on the subharmonic analysis
with finite a/H deviate from that obtained in the mean-field
approach in the same sense as in Fig. 13 the experimentally
determined neutral line deviates from the isolines ofC which
were obtained in the mean-field approach. That is, this de-
viation is understandable as a consequence of the neglect of
higher-order derivatives ofB in the mean-field approach.

7.4 A kinematic dynamo model withα⊥ varying across
some boundary layer

Quite a few numerical investigations have been carried out
with a kinematic dynamo model which deviates from those
considered in Sect. 3 by assuming thatα⊥ decays from its
value in the interior of the dynamo module across some
boundary layer to zero (R̈adler et al., 1999). All induction
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Fig. 19. Neutral lines for the rectangular dynamo box withL/H =

2 in theṼCṼH-plane. BothṼC andṼH in m3/h. The labels(a), (b),
(c) and(d) correspond to those in Fig. 18.

Table 3. Marginal valuesC∗ for magnetic fields with differentm.
The lowest value ofC∗ for m = 0, which is given here, belongs to
field of AS type.

m 0 1 2 3 4

C∗ 8.432 7.276 9.262 11.35 13.54

effects other than theα⊥-effect were again neglected.
In order to explain the distribution ofα⊥ andσ , which

was chosen with a view to the real structure of the dynamo
module, we define first a small cylinder byr ≤ 0.941R and
|z| ≤ 0.458H , and a large cylinder byr ≤ 1.081R and
|z| ≤ 0.680H , wherer =

√
x2 + y2. We assume thatα⊥

is constant inside the small cylinder, decreases in the space
between the cylinders linearly in bothr andz and vanishes
on the surface of the large cylinder and outside it. Consider-
ing the large cylinder to be embedded in a sphere as shown
in Fig. 3 we further assume thatσ is constant inside the large
cylinder, is constant and smaller by a factor 100 in the re-
maining parts of the sphere and vanishes outside this sphere.
We adopt the definition (12) ofC with α⊥ andη interpreted
as their values inside the small cylinder.

Marginal valuesC∗ ofC are given in Table 3. The dynamo
has again a non-oscillatory behaviour. The dependence of the
growth ratesλ onC is depicted in Fig. 20. Some aspects of
the structure of the magnetic field withm = 1 are shown in
Fig. 21. The field is to a large extent concentrated inside the
dynamo module and varies there strongly inz-direction.

8 Concluding remarks

The simple kinematic mean-field theory as explained in
Sects. 2 to 5 describes indeed essential features of the Karls-
ruhe dynamo experiment. It predicts the structure of the most
easily excitable magnetic field and the excitation condition in
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Fig. 20. The growth ratesλ in s−1 in dependence onC

its dependence on the rates of flow through the axial and the
helical channels of the dynamo module. In agreement with
these predictions magnetic fields were observed in the ex-
periment which correspond to mean fields of the symmetry
typem = 1. As explained above it was clear from the very
beginning that the marginal valueC∗ of C, which defines
the excitation condition, is somewhat underestimated by the
simple theory. In Sects. 7.1 to 7.3 a few aspects are discussed
which explain why the realistic valueC∗ may well be up to
30% above the prediction of this theory. Considering these
improvements of the theory there is again satisfactory agree-
ment between experiment and theory. It seems even surpris-
ing that the experimentally determined region ofC∗ is only
about 10% above the prediction of the simple theory. There
is a slight deviation of the predicted shape of the neutral line
in the plane of the flow ratesVC andVH through the two types
of channels from the shape of the line derived from the mea-
surements. Again this deviation is understandable with the
corrections to the simple theory presented in Sect. 7.3. Of
course the preferred orientation of the magnetic fields in the
experimental device is, again by reasons already discussed,
beyond the scope of the simple theory. In Sect. 6 we have
studied the back-reaction of the magnetic field on the fluid
motion, more precisely the pressure drop due to the mag-
netic field and its influence on the flow rates in the channels
of the dynamo module, and developed on this basis a simple
model for the dynamo in the nonlinear regime. In this way
we gave estimates of the saturation field strengths of the dy-
namo, which are again in fair agreement with experimental
findings.

Appendix A Steady solution of Eq. (13) in the second–
order approximation

Consider Eq. (13), which apply for homogeneous fieldsB,
in the steady case in the second-order approximation, that is,

η∇2B ′
= −(B · ∇)u , ∇ · B ′

= 0 . (A1)

We may put

u = ∇ × a , ∇ · a = 0 ,
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Fig. 21.Structure of the marginal magnetic field withm = 1. Upper
panel: cylindrical surface with radius 0.46 m, lower panel: mid-
plane. Vectors: components tangential to the surface, grey encoded:
normal component

a = ∇ × ã , ∇ · ã = 0 , (A2)

so that

u = −∇
2ã . (A3)

Then we have∇2(ηB ′
− (B · ∇)ã) = 0, that is

ηB ′
− (B · ∇)ã = ∇8 and18 = 0, and can conclude that

B ′
=

1

η
(B · ∇)ã . (A4)

In the case of the Roberts flow, in whichu is given by
Eq. (14) we have simply

ã = (
a

π
)2u . (A5)

For the spin generator flow withu defined by Eq. (22) inside
the considered cell and being equal to zero outside we have

ã% = 0

ãϕ =
%

2

a/2∫
%

uϕ(%
′)d%′

+
1

2%

%∫
0

uϕ(%
′)%′2d%′

Table A1. Some values ofεx andεy

VH [m3/h] 0 25 50 75 100 125 150 175 200

εx 0 0.17 0.30 0.39 0.45 0.47 0.48 0.48 0.47

εy 0 0.21 0.44 0.68 0.91 1.13 1.31 1.47 1.61

ãz = −

a/2∫
%

uz(%
′) ln(%′/%0)%

′d%′

− ln(%/%0)

%∫
0

uz(%
′)%′d%′ . (A6)

Appendix B Concerning the determination of α⊥

for the spin generator flow in the second-order
approximation

In contrast to our explanations on the second-order approxi-
mation in Sect. 4.3 we ignore here no longer the fluid motion
outside the considered cell but assume again a flow pattern
which is periodic everywhere. We continue to use, however,
the cylindrical co-ordinate system%, ϕ, z with the axis% = 0
in the centre of a given cell and consider a Fourier decom-
position of the fluid velocityu and of the magnetic fieldsB
andB ′ with respect toϕ, that is, a decomposition into modes
proportional to exp(imϕ). As for u its part inside the given
cell contributes only to modes withm = 0, and that out-
side due to the symmetry of the flow pattern only to modes
with m = ±4,±8, · · ·. SinceB possesses only modes with
m = ±1, the parts ofu outside the given cell produce in the
second-order approximation no other modes ofB ′ than such
withm = ±3,±5,±7, · · · . Thus these parts ofu produce no
contributions to the%, ϕ or z-components ofu × B ′ inside
the given cell other than such with thesem. Consequently
its x, y and z-components possess only contributions with
|m| ≥ 2. These vanish under averaging over this cell, that is,
they do not contribute tou × B ′.

These considerations also make clear that in higher than
second-order approximations the motion in neighbouring
cells may well influence the average ofu×B ′ over the given
cell.

Appendix C Relations between local and mean
magnetic fields on the axis of the dynamo module

The magnetic probes on the axis of the dynamo module mea-
sure the components of the local magnetic fieldB, which dif-
fers from the mean fieldB by the fluctuationsB ′. According
to the construction of the module the rotational motion of the
fluid in the four spin-generators around the axis corresponds
to flows away fromx = y = 0 in the vicinity of thex-axis
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and towardsx = y = 0 in the vicinity of they-axis; see
Fig. 2. Assuming thatB can be considered as a homoge-
neous field and using symmetry arguments we can conclude
that

B ′
x = −εxBx , B ′

y = εyBy , B ′
z = 0 , (C1)

or

Bx =
Bx

1 − εx
, By =

By

1 + εy
, Bz = Bz , (C2)

at the axis of the dynamo module, with positive coefficients
εx andεy depending onVH but not onVC. These relations
have been confirmed by numerical solutions of Eq. (13) for
the spin generator flow. Some values ofεx andεy obtained
with these calculations are given in Table 4. Note thatB and
B, and in particular their directions, can differ markedly.
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Rädler, K.-H., Apstein, E., and Rheinhardt, M.: Kurzberichtüber
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Rädler, K.-H., Apstein, E., Fuchs, H., and Rheinhardt, M.:
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