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Abstract. The stationary self-focusing of whistler waves
with frequencies near half of the electron-cyclotron fre-
quency in the ionospheric plasma is considered in the
framework of a two-dimensional generalized nonlinear
Schr̈odinger equation including fourth-order dispersion ef-
fects and nonlinearity saturation. New types of soliton-
like (with zero topological charge) and vortex-like nonlinear
waveguides are found, and their stability confirmed both an-
alytically and numerically.

1 Introduction

Plane whistler waves which propagate along the magnetic
field B = (0,0, Bz) and obey the dispersion relation
k2c2/ω2

pe = ω/(ωBe − ω), are fully electromagnetic right-
hand polarized waves havingk⊥ = 0, Ez = 0. However,
when the wave beam is localized in the transverse plane,
or when the direction of propagation deviates from theOZ

axis, these properties disappear. Together with nonzerok⊥
whistler waves gain elliptic polarization (which can be as-
sumed as a presence of the left-hand polarized part of the
wave field) and the electrostatic wave component (Ez 6= 0).
Here we consider propagation of beams of whistler waves
with frequencies near half of the electron-cyclotron fre-
quency (0< ωBe/(2ω)− 1 � 1) strictly along the magnetic
field in the ionosphere. Using a hydrodynamic approxima-
tion for cold plasma one can find that the electrostatic com-
ponentEz(x, y) of the electrical field of the whistler wave in
a linear case is governed by the following equation{
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frequency shift (see Gyrevich and Shvarzburg (1973))
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and expanding Eq. (2) accurately to∼
∣∣Ez/Ep∣∣4, where

ω ≈ ωBe/2, Ep =
√

3mT (ω2 + ν2
e )δ/e

2, δ ≈ 2m/M, νe
is the frequency of electron collisions,n0 is the density of
electrons,T is the electron temperature, we obtain the Gen-
eralized Nonlinear Schrödinger Equation (GNSE):

i
∂ψ

∂ζ
+D1⊥ψ + P12

⊥
ψ + Bψ |ψ |

2
+Kψ |ψ |

4
= 0, (3)

where1⊥ = ∂2/∂ξ2
+ ∂2/∂η2, ψ = Ez/F0, δ ≈ 2m/M,

F0 =
√

12πT n0δ, ζ = zω/c, ξ = xω/c, η = yω/c,
ω ≈ ωBe/2, and the coefficients of equation are:D =

(1/(4u2) − 1)/(2
√
v), P = 1/(8v3/2), B = −v3/2, K =

v5/2ν2
e /ω

2, u = ω/ωBe, v = ω2
Pe/ω

2. Equation (3) general-
izes Eq. (1) of Zharova and Sergeev (1989) to the case of 2D
geometry and takes into account the nonlinearity saturation
effects. Gyrevich and Shvarzburg (1973) and Bharuthram
et al. (1992) pointed out that the main nonlinear effect in
the ionosphere is the plasma extrusion from the HF field re-
gion due to heating and a pressure increase. Near the point
ω ≈ ωBe/2 the thresholds of modulational instabilities for a
whistler wave decreases dramatically, and one must account
for the next terms in the nonlinearity expansion which are of
the same order as the linear terms. It leads to the appear-
ance of cubic-quintic saturable nonlinearity in the GNSE (3).
In this paper we consider the caseu ≤ 1/2, which means
ω ≤ ωBe/2 and the signs of GNSE coefficients are the fol-
lowing: D > 0, P > 0, B < 0,K > 0. We are interested
to find the conditions of the whistler wave propagation inside
stationary waveguides, or channels, formed due to nonlinear
self-interaction and localization in the plane perpendicular to
direction of propagation:OZ axis. Wave intensity profiles
across these waveguides does not depend onz.
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2 General properties of nonlinear whistler waveguides

Any wave packet localized in the plane perpendicular toz-
direction which evolves along thez-direction according to
Eq. (3) has conserved quantities:
number of quanta:

N =

∫ ∫
|ψ |

2 d2r, (4)

momentum:

I = −
i

2

∫ ∫ (
ψ∗

∇ψ − ψ∇ψ∗
)
d2r, (5)

angular momentum:
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2
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d2r, (6)
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4
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3
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6
)
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Stationary (along theOZ axis) waveguides in the framework
of Eq. (3) have the formψ(r)exp(iλζ ), where the complex
functionψ(r) obeys the partial differential equation

−λψ +D1⊥ψ + P12
⊥
ψ + Bψ |ψ |

2
+Kψ |ψ |

4
= 0. (8)

Multiplying Eq. (8) byψ∗ and integrating over space coordi-
nates in the perpendicular plane, an integral relation

λN = P
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6 d2r (9)

is obtained. Multiplying Eq. (8) byr2dψ∗/dr, integrating
and adding the complex conjugate, another integral identity
is found:
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One restriction on the parameterλ: λ < −D2/4P easily fol-
lows from the asymptotic behavior|r| → ∞ of any localized
solution of Eq. (8). After excludingλ from Eqs. (9)–(10) one
finds a simplified expression for a Hamiltonian of solitary
(which means decaying at infinity) solutions:
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From Eq. (11) it follows immediately that forD > 0, P >

0, B < 0, K > 0 (which is the case under consideration)

the Hamiltonian functional is always positive. Using integral
inequalities∫
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we find the following estimate for the Hamiltonian:
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It indicates that for a fixed value of the number of quantaN ,
a Hamiltonian functional is bounded from below and above.
This guarantees that for anyN there exists at least one stable
solitary solution which corresponds to Hamiltonian’s abso-
lute extremum.

Using integral inequalities Eqs. (12) and (13) and the iden-
tity Eq. (9) it is easy to show that the waveguide parameterλ

(the nonlinear shift of wave number) is bounded from below
and to estimate a range of accessibleλ – values:

−
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4P
−
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4K
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4P
. (15)

From the virial relation for the waveguide’s effective width

r2
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one finds that: (i) whenP = K = 0 andBD < 0, GNSE
(3) has no localized solutions at all; any wave packet moving
along thez-axis spreads out in a radial direction; (ii) in the
case ofP = 0 = K = 0,BD > 0 the virial relation gives

N
d2r2

eff

dς2
= 8DH,

and predicts the collapsing of any wave packet having
DH < 0; (iii) the sum of all linear terms in the virial relation
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are defocusing. This follows from the integral inequality∫
∞

0
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∫
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.

Thus, any linear wave packet described by the linear GNSE
will always spread out. WhenD > 0,B < 0,P > 0,K > 0
the virial relation includes focusing (proportional toKD and
to BP ) as well as defocusing (proportional toBD andPK)
nonlinear terms. Different linear and nonlinear terms come
into play at different spatial scales and on different values
of field amplitude; thus it is natural to expect that several
stationary nonlinear structures may coexist in the framework
of GNSE (3).

3 Variational analysis

In the framework of the variational approach (see Anderson,
1983) the GNSE (3) is formulated as a reduced variational
problem for functional

∫
Ldζ

δ

∫
Ldζ = 0, (17)

whereL =
∫
ld2r, l is the Lagrangian density. In cylindrical

coordinates(r, θ, ζ ) the latter may be written as:
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Here we will use a trial function in the form:

ψ =
µ

√
N√

2πI (l)H

fl(µr)exp
[
iγ ln coshµr + ilθ + iϕ(ζ )

]
,(19)

whereµ = µ(ζ ), γ = γ (ζ ), and the real functionfl(ξ)
determines the envelope profile:

fl(ξ) =
ξ |l|

cosh(ξ)
. (20)

This function describes soliton-like (atl = 0) or vortex-
like (at l 6= 0) nonlinear waveguides. The nonlinear phase
dependence onr-coordinate for this function is fixed to be
∼ iγ ln coshµr, as it was in the case of 1D exact chirped
soliton solution found by Davydova and Zaliznyak (2000).
After performing a Ritz optimization procedure, the waveg-
uide parametersµ andβ = γµ are obtained from the canon-
ical Hamiltonian set of equations
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∂H

∂µ
,
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IntegralsI (l)σ are defined by the choice of trial function:
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Stationary points of the system Eq. (21) coincide with the
extrema of the Hamiltonian functional Eq. (22):
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These points determine the waveguide parametersµ0 andβ0
for a given number of quantaN . Introducing the notation
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one obtains for the waveguides withβ = 0 the following
relation connectingµ2 andN :
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One can also find stationary solutions of Eq. (24) withβ0 6=

0 which correspond to electromagnetic beams with curved
wave fronts. In particular forl = 0 one has

µ2
c =

DI
(0)
d

P
(
I
(0)
p1 − I

(0)
p3

) 1 −N/N1

1 − (N/N2)
2
, (29)

µ2
c(N = 0) =
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(0)
d

P (I
(0)
p1 − I

(0)
p1 )

>
DI

(0)
d

PI
(0)
p2

>

DI
(0)
d

2PI (0)p1

= µ2
o(N = 0). (30)

Some stationary solutions are stable under the variation of
two parameters,β andµ, when they give maximum or min-
imum to the Hamiltonian and they are unstable when they
correspond to the Hamiltonian saddle point. It gives a stabil-
ity criterion in the framework of our variational approach in
the form:

h =
∂2H

∂β2

∂2H

∂µ2
−

(
∂2H

∂β∂µ

)2 ∣∣
β=β0, µ=µ0 > 0. (31)

The qualitative dependencies ofN onµ2
0 for waveguides

with β0 = 0, l = 0 (marked “O”) and forβ0 6= 0, l = 0
(marked “C”) are plotted in the Fig. 1. The dashed line in-
dicates the region whereβ2 < 0 and thus where waveguides
with β 6= 0 cannot exist. Stable and unstable branches are
marked in this figure by “S” and “US”, respectively. It is seen
that the variational approach with a trial function Eq. (19)
predicts a bistability phenomenon for stationary waveguide
propagation states: the coexistence of two waveguides with
the same width but with different numbers of quanta, see
Fig. 1a in the region(d/p2, µ

2
omax). The conclusion of bista-

bility also will be confirmed by the direct numerical solution
of the stationary and nonstationary equations in the next sec-
tion.

Numerical modeling

In order to perform a numerical modeling of GNSE waveg-
uides, it is more convenient to use it in a fully 3D form in
Cartesian coordinates(ξ, η, ζ ). This equation has no pecu-
liarity at the pointr = 0. After the standart rescalings, this
equation takes a form

i
∂ψ

∂ζ
+1⊥ψ +12

⊥
ψ − ψ |ψ |

2
+ κψ |ψ |

4
= 0, (32)

whereκ = KD2/PB2. Without loss of generality we shall
assume below thatD = P = 1, B = −1 and vary pa-
rameterK. Stationary (alongOZ) solutions have a form
ψ(ξ, η, ζ ) = ψ(ξ, η) exp(iλζ ) and obey the partial differ-
ential equation:

−λψ +1⊥ψ +12
⊥
ψ − ψ |ψ |

2
+ κψ |ψ |

4
= 0. (33)
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Fig. 1. N versusµ2, d = DI
(l)
d
, pσ = PI

(l)
σ (a): for the case

whenN1 < N2 (σ < 1).; (b): for the case whenN1 > N2 (σ > 1).

The Eq. (33) was integrated numerically using the relax-
ation process in the Fourier space which is a generalization
of a well-known stabilizing multiplier method, described in
Petviashvili and Pokhotelov (1989). To check the structure’s
stability, the evolutionary Eq. (32) was also integrated nu-
merically by a standart split step Fourier method (see Taha
and Ablowitz, 1984).

Simulation results are presented in a form of energy dis-
persion diagrams (EDD) – dependenciesN(λ). EDD for
soliton, like (l = 0) and vortex, like (l = 1) nonlinear struc-
tures withβ0 = 0 for different values ofκ are plotted in
Fig. 2a and b.

It is seen that soliton like and vortex-like waveguides exist
inside the restricted (both inN and inλ) area and the size
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Fig. 2. An energy dispersion diagram for stationary soliton, like
(l = 0, case(a)) and vortex, like (l = 1, case(b)) solutions of
GNSE. Numerical result. Dashed lines indicateN(λ) dependencies
predicted by the variational approach. HereD = P = −B = 1.

of their existence domain decreases whenK increases. At
every solitary or vortex branch there exists a range ofλ –
values, where our numerical simulations confirm the varia-
tional conclusions about the bistability of stationary waveg-
uide propagation states in the sense of the coexistence of two
states with the sameλ but with different energies (numbers
of quanta) and spatial scales. Examples of bistable soliton
like and vortex like states are presented in Figs. 3a and b.

A numerical verification of stationary waveguide stabil-
ity has shown that all waveguides found above withl = 0
and l = 1 are stable even with respect to sufficiently high
symmetric and asymmetric perturbations of the initial state.
Their parameters (width, amplitude, etc.) oscillate nonlin-
early in the vicinity of the stationary point. A conclusion
about the waveguide stability does not depend on the sign of
∂N/∂λ derivative in contrast to the well-known Kolokolov-
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�
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Fig. 3. Stable stationary radially, symmetric soliton, like (l = 0,
case(a), λ = −1.89) and vortex, like (l = 1, case(b), λ = −2.10)
solutions of GNSE withD = P = −B = 1,K = 0.1.

Vakhitov criterion which takes place in the case ofP = 0.
When the parameterK exceeds some threshold valueKcr ,
localized solutions of Eq. (33) disappear.

It was also confirmed numerically that soliton parameterλ

is bounded from below: for everyK there exists some mini-
mum value ofλ = λmin (see Fig. 4).

Conclusions

The propagation of whistler wave beams along the magnetic
field lines with frequencies near the half electron gyrofre-
quency (ω ≈ ωBe/2) in the ionosphere is described by the
single nonlinear Schrödinger equation for the parallel elec-
tric field component Eq. (3). This equation includes a term
∼ P12

⊥
Ez in its linear part.
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Fig. 4. The minimum possible value ofλ (where soliton, likel =

0 and vortex, likel = 1 waveguides exist) versusK. Numerical
result. HereD = P = −B = 1.

In the considered caseD > 0, P > 0, B < 0, K > 0,
the Hamiltonian of GNSE (3) is bounded from below and
above for everyN , which indicates that there exists at least
one stable solitary solution, in the Lyapunov sense, which
corresponds to the Hamiltonian’s exact extremum.

The sum of all linear terms in the virial relation for the
waveguide’s effective width acts in a defocusing manner,
which indicates that any linear wave packet described by a
linear GNSE (3) always spreads out. At the same time the
nonlinear part of the virial relation includes focusing, as well
as defocusing terms. It may result in a coexistence of several
stationary nonlinear structures with different spatial scales in
the framework of Eq. (3).

A variational approach with the trial function Eq. (19) pre-
dicts a bistability phenomenon for the stationary waveguide
propagation states: the coexistence of two stable solutions
with different energies (numbers of quantaN ) and spatial
scales for the same value of the nonlinear shift of wave num-
berλ. It also predicts that the sign of the derivative∂N/∂λ
may change within the region of stability, thus a commonly
used Vakhitov-Kolokolov criterion (which works for GNSE
with P = 0) in the considered caseP > 0,K > 0 cannot

be applied.
Direct numerical integration of stationary (with respect to

Z) (Eq. 8) and nonstationary (Eq. 3) equations showed that
there really exists soliton, like (with zero topological charge)
and vortex, like (first azimuthal model = 1) stable non-
linear waveguides. Simulations found exactly the bistability
regions for waveguides (see Fig. 2). All stationary solutions
were shown to be stable even with respect to sufficiently high
symmetric and asymmetric perturbations of the initial state.

The developed theory can be helpful for explaining the
regular structures formed during ionospheric heating experi-
ments (Bharuthram et al., 1992), e.g. for altitudeh = 300 km
that corresponds to maximum of the F-layer of the iono-
sphere: ne ≈ 2 · 106 cm, Te ≈ 103 ◦K, ωBe ≈ 8 · 106

c−1. D ≈ 2.5 · 10−2
· 1, P ≈ 1.6 · 10−5, B ≈ −8 · 103,

K ≈ 0.8ν2
e and κ =

KD2

PB2 ≈ 10−7ν2
e1

2
� 1, where

1 � 1 =
(
ωBe
2ω

)2
− 1 > 0. Thus typical space scales

of the structures depend on1: L⊥[cm]' 6 · 102/
√
1,

L||[cm]' 6 · 102/12. We think that there is a possibility
to observe such structures in ionosphere.
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