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Modeling stretched solitary waves along magnetic field lines
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Abstract. A model is presented for a new type of fast soli-
tary waves which is observed in downward current regions
of the auroral zone. The three-dimensional, coherent struc-
tures are electrostatic, have a positive potential, and move
along the magnetic field lines with speeds on the order of the
electron drift. Their parallel potential profile is flattened and
cannot fit to the Gaussian shape used in previous work. We
develop a detailed BGK model which includes a flattened po-
tential and an assumed cylindrical symmetry around a centric
magnetic field line. The model envisions concentric shells of
trapped electrons slowly drifting azimuthally while bounc-
ing back and forth in the parallel direction. The electron
dynamics is analysed in terms of three basic motions that
occur on different time scales characterized by the cyclotron
frequency�e, the bounce frequencyωb, and the azimuthal
drift frequencyωγ . The ordering�e � ωb � ωγ is re-
quired. Self-consistent distribution functions are calculated
in terms of approximate constants of motion. Constraints on
the parameters characterizing the amplitude and shape of the
stretched solitary wave are discussed.

1 Introduction

One of the interesting findings of the FAST mission has been
the presence of rapidly-moving solitary potentials in down-
ward current regions of the auroral zone. Propagating along
the magnetic field lines with a speed on the order of the elec-
tron drift, they appear as positive potential pulses of the or-
der of hundreds of volts and create a bipolar electric signal:
first directed upward, then downward. The structures were
dubbed “fast solitary waves” to stress their large velocity
(∼ 1000 km/s) (Ergun et al., 1998) and have been interpreted
as traveling electron holes carried by the drifting electron dis-
tribution (Muschietti et al., 1999a). They may result from a
two-stream instability occuring at lower altitudes (Goldman
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et al., 1999; Mandrake et al., 2000). Similar measurements
have been reported by other satellites in the polar cap and
the plasma sheet boundary layer (e.g. Tsurutani et al., 1998;
Cattell et al., 1999; Franz et al., 2000).

Earlier investigations (Ergun et al., 1998, 1999) of these
fast solitary waves focused on structures for which the elec-
tric signal in the parallel direction fits well to the derivative
of a Gaussian. Among the potential structures observed by
FAST, however, there is another class of intense structures
where the conjugate electric spikes are set apart (see Fig. 1
bottom) and thus cannot fit to the derivative of a Gaussian.
These dispersed bipolar spikes have also been identified by
Tsurutani et al. (1998) in the polar cap data set of the Polar
satellite. The underlying potential structure, whose passage
by the satellite creates the bipolar electric signal, must be
somewhat boxy with a potential profile much flatter than a
Gaussian. In this article we present an extended BGK (Bern-
stein et al., 1957) model for these structures, that we call
“stretched solitary waves”.

The bipolar signal observed in the parallel direction is ac-
companied by a unipolar electric signal in the perpendicu-
lar direction, showing that the structure is at least two or
three-dimensional. We improve upon our previous theoret-
ical modeling (Muschietti et al., 1999a) by including a per-
pendicular profile for the potential. While an experimental
determination of the perpendicular profile is impossible due
to the parallel motion of the structure relative to the space-
craft, an adequate description of the perpendicular electric
field is desirable. The latter is likely responsible for the en-
hanced ion heating found during periods of intense solitary
waves as evidenced by the 90◦ conics (Ergun et al., 1999).
The potential model presented here has a radial dependence
with an assumed cylindrical symmetry, and as such can de-
scribe the unipolar electric field recorded in the perpendicular
direction.

The plasma environment of the spikes observed by FAST
is strongly magnetized with a ratio gyro-to-plasma frequency
�e/ωe > 5, a large parallel Debye length of the order of
100 m, and a small electron gyroradius less than a meter.
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Fig. 1. Example of stretched solitary wave showing the profiles of
various quantities alongz, distance parallel to the magnetic field
B. (Top) Profiles of the potentialφ and the associated densityns
(dashed curve). (Bottom) Parallel and perpendicular profiles of the
electric field. The plot is computed from Eqs. (1), (2), (3), and (4)
with the parameters:ψ = 0.6, 1 = 6, β = 1.3, andδ⊥ = 6.
Distance off the centric magnetic field liner = 4. Note the two
conjugate electric spikesEz separated by a distance 21.

With electrons tightly tied to a magnetic field line, their dy-
namics is characterized by motions on different time scales
of which the cyclotron period is by far the shortest. This
enables us to build a three-dimensional trapped distribution
consistent with both parallel and perpendicular fields.

In Sect. 2 the model of potential is presented as well as
the density perturbation it requires. The orbits of electrons
in the presence of such a potential are examined in Sect. 3.
Using the BGK method, we build a trapped distribution con-
sistent with the potential model in Sect. 4. Finally, we close
the paper with a short discussion in Sect. 5. Throughout
the article one uses the standard dimensionless units where
length is normalized by the Debye lengthλd , time by the in-
verse plasma frequencyω−1

e , velocity by the (parallel) elec-
tron thermal velocityve‖ ≡

√
Te/m = ωeλd , and potential

expressed inmv2
e‖/e units.

2 Potential model

We assume that there exists a frame moving alongB in which
potential and electron distribution are in self-consistent
steady state. Working in this frame, a potential cylindrically
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Fig. 2. A contour plot representation of the potential model. The pa-
rameter values are as for Fig. 1. The 9 contours are linearly spaced
from 0.56 down to 0.06 in units ofmv2

e‖
/e. Note the stretching

alongz.

symmetric around a centric magnetic field line is defined in
terms ofz, the coordinate alongB, andr =

√
x2 + y2, the

radius away from the centric line:

φ(z, r) = ψ h(z)a(r) (1)

with h(z) = [1 + η cosh(βz)]−1

anda(r) = exp
[
−(r/δ⊥)

2
]
.

An illustration of the profile alongz is shown in Fig. 1.
The parameterβ determines the width of the electric spikes,
or alternately the parallel gradients of the potential where
these are strong. The two spikes are separated by the dis-
tance 21, which can be several Debye lengths. This is also
the length of the perpendicular electric pulse. The derived
parameterη ≡ 2 exp(−β1) is normally a small number,
typically less than 0.01, whereby the potential profile is flat
about the top. Only where|z| > −(1/β) ln(2η), does the po-
tential significantly drop from its maximum,ψ/(1+η) ' ψ .
For η → 1/2, one recovers a peaked potential similar to the
case we previously studied (Muschietti et al., 1999b). As for
the radial dependencea(r), we choose a Gaussian fall-off
with characteristic widthδ⊥. The choice is arbitrary and dic-
tated for the sake of simplicity only. A view of the potential
by means of contours is shown in Fig. 2.

The parallel electric fieldEz, the radial electric fieldE⊥,
and the density perturbationns are obtained through deriva-
tions

Ez(z, r) = βψa(r)
η sinh(βz)

[1 + η cosh(βz)]2
(2)

E⊥(z, r) =
ψa(r)

1 + η cosh(βz)

2r

δ2
⊥

. (3)

A display of the profiles ofEz andE⊥ as a function ofz is
visible in Fig. 1. Due to the relative motion between space-
craft and potential structure, the latter is sampled alongB.
Thus, the profiles in Fig. 1 represent the idealized electric
signal to be detected, according to the model, for a given
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Fig. 3. Profiles of the densityns alongz at various radii:(a) r = 0,
(b) r = δ⊥/2, (c) r = δ⊥, (d) r = 3 δ⊥/2. Note the similitude
between the different radii. There are differences though in the rel-
ative weight between density enhancements at|z| > 1 and density
perturbations aboutz ∼ 0 due to ther-dependence in the last term
of Eq. (4). The inhomogeneous density is for the most part due
to the electrons trapped in the potential. Parameters as in Fig. 1:
ψ = 0.6,1 = 6,β = 1.3, andδ⊥ = 6.

“impact parameter” off the centric magnetic field line. Atr
fixed (herer = 4), the peak amplitude of the bipolar spikes is
(βψ/4)a(r), while that of the unipolar signal in the perpen-
dicular direction is 2ψra(r)/δ2

⊥
. The electron density per-

turbation is given by Poisson equation as

ns(z, r) = β2 ηψa(r)

2
[
1 + η cosh(βz)

]3

×

[
− 2η − cosh(βz)+ η cosh2(βz)

]
+

2ψa(r)

1 + η cosh(βz)

r2
− δ2

⊥

δ4
⊥

(4)

The case of a planar structure is recovered withδ⊥ → ∞,
hencea(r) → 1. Then, the radial fieldE⊥ vanishes and
the density perturbationns (4) reduces to a simpler expres-
sion without the last term inδ−4

⊥
. The effect of this term is

to decrease the overall density at small radius and increase
it for r > δ⊥. Figure 3 shows the perturbed density profile
as a function of the distance alongB for different radii. The
perturbation is symmetric inz and includes an enhancement
for |z| > 1, a depletion for|z| < 1, and a more neutral
region aroundz ∼ 0. To understand how an electron popula-
tion can behave in order to self-consistently maintain such a
perturbation, we need to examine the electron orbits.

3 Electron dynamics

Electrons in the presence of potential (1) obey the following
equations of motion:

ẍ +�eẏ = −ψh(z)a(

√
x2 + y2)

2x

δ2
⊥

(5)

ÿ −�eẋ = −ψh(z)a(

√
x2 + y2)

2y

δ2
⊥

(6)

z̈ = −Ez(z,

√
x2 + y2) , (7)

where�e is the electron cyclotron frequency in absolute
value. We have numerically integrated the equations, which
showed that the electron behaviour can be analysed in terms
of three basic motions occuring on different time scales:
the fast cyclotron gyration, the parallel motion including the
bounce back and forth of the trapped particles, and a slow
azimuthal drift along a shell at constant radius. An important
consideration is the parallel distance covered by the electrons
during a cyclotron period. If the distance is short compared
to the parallel scale length ofφ, the termh(z) in Eqs. (5)
and (6) can be considered constant for the time of a gyration.
While this condition is not satisfied for the fast passing parti-
cles, it is satisfied for those electrons whose dynamics is the
most important to support the potential structure, namely the
trapped ones and the slow passing ones that are close to the
separatrix. These are strongly accelerated then decelerated,
hence they contribute significantly to the density perturba-
tion which has to self-consistently create the potential. Since
their parallel velocity is less than maxż ∼

√
ψ , the condi-

tion can be expressed asβ
√
ψ � �e. It is reminiscent of the

relation between the bounce frequencyωb and�e, which is
necessary for the existence of electron phase-space holes in a
magnetized plasma (Muschietti et al., 2000). The bounce pe-
riod associated with the stretched solitary waves is discussed
below.

Since the cyclotron gyration in the[x, y] plane is the
fastest eigenmotion, we rewrite Eqs. (5) and (6) in terms of
the independent time variableτ = �et . This yields the set

ẍ + ẏ = −εh(z)a(

√
x2 + y2)2x

ÿ − ẋ = −εh(z)a(

√
x2 + y2)2y ,

which features the small parameterε ≡ ψ/(�eδ⊥)
2

� 1. To
solve the set of equations we apply the two time scale method
(e.g. Bender and Orszag , 1978, p. 549) where the slow time
is τ̃ = ετ . Gyrocenter coordinates are introduced through
the ansatz

x = Rx(τ̃ )+ ρ cos
(
τ + θ(τ̃ )

)
(8)

y = Ry(τ̃ )+ ρ sin
(
τ + θ(τ̃ )

)
, (9)

whereθ is the gyrophase andRx , Ry denote the gyrocen-
ter’s position. We assume that the gyroradius is constant and
furthermore, that the radial profilea(r) varies little over a
gyroradius, a very reasonable assumption in FAST’s envi-
ronment. After substitution of the ansatz and an expansion
to terms of the order ofO(ε2), one obtains these dynamical
equations for the slow evolution,

dRx

dτ̃
= +2h(z) a(R)Ry (10)

dRy

dτ̃
= −2h(z) a(R)Rx (11)
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dθ

dτ̃
= 2h(z) a(R) , (12)

with R ≡

√
R2
x + R2

y and where terms of the order of

(ρ/δ⊥)
2 have been neglected. The two Eqs. (10) and (11) de-

scribe an azimuthal drift of the gyrocenter on a shell of con-
stant radius and Eq. (12) describes a frequency shift. Thus,
the quantityR is a constant of motion. Let a time-dependent
angleγ (t) denote the azimuth of the electron gyrocenter:
Rx = R cos(γ ) , Ry = R sin(γ ). Returning to the origi-
nal unit of time, we obtain from either Eqs. (10) or (11) an
equation for the slow azimuthal drift

γ̇ = −
2ψ

�eδ
2
⊥

h(z) a(R) . (13)

Equation (12) shows that in association to the drift, the gyra-
tion frequency is slightly altered from�e to�e−γ̇ . Note that
becausez = z(t) does change on the time scale of the drift,
the quantityh(z) varies, hence the ratėγ is not constant.

3.1 Passing electrons

Figure 4 shows the parallel velocityvz and the perpendicular
velocityv⊥ for an electron that crosses the potential structure
slightly off the centric magnetic line. The particle approaches
slowly the positive potential, its parallel velocity strongly
increases on the upslope then decreases on the downslope.
Meanwhile, the perpendicular velocity is constant, oscillates
as the particle crosses the potential structure, and regains
nearly the same constant value on the downstream side. The
oscillations are due to the radial electric fieldE⊥. Using the
gyrocenter coordinates, we can rewrite the perpendicular (by
contrast to parallel) velocityv⊥ ≡ (ẋ2

+ ẏ2)1/2 as

v⊥(t) =

[
ρ2(�e − γ̇ )2 + R2γ̇ 2

+2Rρ(�e − γ̇ )γ̇ cos(�et − 2γ (t)+ γ0)
] 1

2
(14)

with γ0 the azimuth of the gyrocenter att = 0. The velocity
oscillates at approximately the cyclotron frequency between
|ρ�e ± (R ∓ ρ)γ̇ |, while the electron crosses the potential
structure, meaninġγ 6= 0.

This behaviour enables us to average out the oscillations
in the perpendicular kinetic energy. As a result, the parallel
energy

w ≡ v2
z − 2φ(z, R) (15)

is a constant of motion on the slower time scale. We assume a
distribution of passing electrons of the formfe(w), which is
homogeneous away from the potential structure yet becomes
radially inhomogeneous near the structure. The density of
passing electronsnp decreases in the vicinity of the poten-
tial structure as they are accelerated by the positive potential.
The actual amount of decrease depends upon their distribu-
tion as is clear from the density integral

np(φ) =

∫
∞

0

1

2
[f+
e (w)+ f−

e (w)](w + 2φ)−1/2dw , (16)

wheref+
e , f−

e refer to right-moving and left-moving elec-
trons, respectively.

The electron distributions measured by FAST are drift-
ing and broad in the parallel direction with a flat-top max-
imum (Carlson et al., 1998). In the satellite frame, the elec-
tron distributions appear to have an average drift smaller
or comparable to the velocity of the spikes (Ergun et al.,
1999). We shall here assume that the electron drift is zero
in the frame of the potential structure. For simplicity, we
shall furthermore assume that the distributions are symmet-
ric, f+

e (w) = f−
e (w) = fe(w), and use the same model as

in Muschietti et al. (1999a):

fe(w) =
6
√

2

π(8 + w3)
with w > 0 . (17)

The “temperature”, or spread, 2
∫

∞

0 dv v2fe(v
2), is normal-

ized to unity. An electron withw = v2
= 1 is a “thermal”

electron (in the solitary structure’s frame). For smaller ener-
gies,fe(w) is flat, while it drops as a power-law for larger
energies.

Although there is no simple explicit expression fornp(φ)
that can be obtained with the distribution (17), one can use an
expansion for smallφ to analyse the behaviour of the passing
electrons (Krasovsky et al., 1997),

np(φ) = 1 −
3φ1/2

π
+
φ

2
−

3φ2

16
+O(φ5/2) . (18)

The main response is a reduction in density scaling asφ1/2.
An obvious yet important consequence is that the density of
passing electrons is depleted and approximately constant be-
tween−1 + β−1 < z < +1 − β−1. Therefore, it is the
role of the trapped electrons to provide the structured density
profile seen in Fig. 3.

3.2 Trapped electrons

As the particles move back and forth in the parallel direc-
tion, their gyrocenters remain on the same shell at constant
R. Due to the radial electric field, these gyrocenters drift in
the azimuthal direction. Figure 5 illustrates the motion of one
trapped electron by showing two phase-space views. The or-
bits were obtained from numerically integrating Eqs. (5), (6),
and (7). The left plot depicts the slow azimuthal drift at con-
stant radius and displays a trochoid-like orbit. The right plot
depicts the variation of the two componentsvx andvy of the
perpendicular velocity; the latter rapidly oscillates between a
minimum and maximum value, as described by Eq. (14).

Sincez = z(t), the azimuthal driftγ̇ (see Eq. 13) is, in
general, not constant. However, for many trapped electrons
the bounce period is short as compared to the drift time, so
that one can averageh(z) over the periodic bounce motion.
Such is the case for the electron orbit shown in Fig. 5. This
orbit has a bounce frequencyωb = 0.1�e and a turning point
at |z| = 2.2, less than the potential width1 = 4. Hence,
assumingψh(z) ≈ ψ = 0.4 and substituting the numerical
values ofR = 3, δ⊥ = 6, one findsγ̇ = 0.017�−1

e . In
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Fig. 4. Evolution of the parallel and perpendicular velocity for a slowly passing electron. Note the acceleration/deceleration inv‖ and the

oscillations inv⊥ ≡ (v2
x + v2

y)
1/2 as the particle crosses the potential structure aboutωet = 50. The oscillations are caused by the radial

electric field, occur close to the frequency�e, and average to nearly zero change in perpendicular kinetic energy (see Eq. 14). Parameters:
ψ = 0.4,1 = 4,β = 1.5, andδ⊥ = 6.
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Fig. 5. Orbit of a trapped electron projected in the perpendicular(x, y) plane for a magnetic fieldB pointing in the−ẑ direction. (Left)(x, y)
coordinates describe an azimuthal drift with a trochoid-like orbit. “In” refers to initial position; See text near Eq. (13) for details. (Right)vx
andvy oscillate at frequency�e around an averagedv⊥ value. Parameters:ψ = 0.4,1 = 4, β = 1.5, andδ⊥ = 6. The additional choice
�e = ωe brings cyclotron and azimuthal time scales closer for the sake of plot legibility.

dimensional units this readṡγ /�e = 0.017 (ωe/�e)2 and
shows that the azimuthal time scale is indeed very long as
compared to the bounce period and the cyclotron period. The
three time scales follow the ordering

γ̇ � ωb � �e . (19)

The termh(z) can thus be replaced by a value averaged over
the trapped orbit (denoted by〈〉), and the angular drift be-
comes a constantωγ :

ωγ = −
2ψ

�eδ
2
⊥

〈h〉 a(R) . (20)

The constant angular drift is visible in Fig. 5. In the left
panel, it shows as the regular indentation of the trochoid-like
orbit. The magnetic fieldB was set to point in the−ẑ direc-
tion, hence the positive angular drift. In the right panel, the

perpendicular velocity is seen to regularly oscillate between a
minimum and maximum value. Upon replacingγ̇ in Eq. (14)
by ωγ , one obtains exactly this behaviour with the perpen-
dicular velocity oscillating at the frequency�e − 2ωγ ≈ �e
between

min[v2
⊥
] = [ωγ (R + ρ)−�eρ]

2 and

max[v2
⊥
] = [ωγ (R − ρ)+�eρ]

2 .

On average, the perpendicular energy is a constant equal to
ω2
γR

2
+ (�e − ωγ )

2ρ2. Therefore,w defined in Eq. (15) as
the parallel energy is also a constant.

The bounce period depends upon the particle’s parallel en-
ergyw. For the potential of a stretched solitary wave, this
dependence is peculiar, decreasing at first for deeply trapped
electrons (see Fig. 6). This characteristic comes from the
very shallow potential well at low energies. From Eq. (15),
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we obtain a formal expression for the period of an oscillatory
motion between symmetric turning points±zτ (w):

Tb =
4

[2ψa + w]
1
2

∫ zτ (w)

0
dz

[
1 + η cosh(βz)

1 +
ηw

2ψa+w cosh(βz)

] 1
2

,(21)

wherea = a(R) has a fixed value associated with the shell
where the electron gyrocenter lies. Kinetic energy and turn-
ing point are related via 2ψa + w = −ηw cosh(βzτ ). If the
kinetic energy is not too small, 2ψa + w � −ηw, we can
approximate the integrand by

(
1 + eβ(z−1)

) 1
2
(

1 +
w

2ψa + w
eβ(z−1)

)−
1
2

and after a long quadrature obtain

Tb =
41

√
2ψa + w

[
1 +

1

β1
ln

(
4 +

2w

ψa

)]
+

4

β
√

−w

[
π

2
+ arctan

(
w + ψa

√
−w(2ψa + w)

)]
. (22)

With w increasing, the term on the first line decreases,
whereas the term on the second line increases. At large ener-
gies the second term dominates, which is independent from
1, the parallel size of the potential structure. At small en-
ergies the first term dominates, which is proportional to1.
If the kinetic energy is vanishingly small, Eq. (22) breaks
down; then the period is given by

Tb0 =
2π

β
√
ηψa

, (23)

which contains1 through the factorη ≡ 2e−β1. The solid
curve in Fig. 6 shows Eq. (22) as a function ofw forψ = 0.4,
1 = 4, β = 1.5, andR = 0, while the star indicates the
value at the bottom of the potential well (Eq. 23).

The analysis above demonstrates that the condition
ωγ � ωb can be satisfied for a large class of trapped parti-
cles. Also, to require a sufficiently long drift period by com-
bining Eqs. (20) and (23) yields a bound on the minimum
perpendicular size for the solitary wave

δ2
⊥

�
2

�eβ

√
ψ

η
. (24)

The weaker the magnetic field, the larger the perpendicular
scale needs to be. Note also that a larger parallel size (η → 0)
imposes a larger perpendicular scale. Implications for the
space observations are discussed below in Sect. 5.

4 Trapped distribution function

The net density perturbationns required by the shape of
our cylindrically symmetric potential is made up of both the
trapped electron densitynt and the response of the passing
electronsnp: ns = nt + np − 1. Here,−1 represents the

[t]
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w
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T
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�

Fig. 6. Bounce period for an electron trapped in a stretched soli-
tary wave. Shown dependence on energyw is from Eq. (22). The
very shallow potential well leads to the peculiar behaviour for lower
energies, wherebyTb increases towardTb0 at the well’s bottom (∗
given by Eq. 23). Parameters:ψ = 0.4, 1 = 6, β = 1.5, and
r = 0.

ions which we assume to form an homogeneous, neutraliz-
ing background. Considering the results of Sect. 3, we write
the density of trapped electrons on each shellR as

nt (φ;R) =

∫ 0

−2φ

ft (w;R)

(w + 2φ)
1
2

dw , (25)

whereft (w;R) denotes the trapped distribution andR is
considered from now on a parameter. Our goal is to find an
explicit expression forft (w;R). The integral Eq. (25) can
be inverted forft (w;R) with the help of Laplace transforms
(see Sect. 2.3 in Muschietti et al. (1999b) for details). The
result reads

ft (w;R) =
1

2π

∫
−w

0
(−w − p)−

1
2
d

dp
nt (p;R) dp , (26)

where the range of possible energiesw differs on each shell,

−2ψa(R) ≤ w < 0 . (27)

Now sincent (φ;R) is made up ofns(φ;R) andnp(φ), the
quadrature Eq. (26) splits into two: one forns and one fornp.
Using the relation between the value of the potentialφ and
the positionz for a givenR

1 + η cosh(βz) = ψa(R)/φ , (28)

one rewrites the density perturbationns of Eq. (4) into

ns(φ;R) =

(
β

ψa(R)

)2

φ2
[
2(1 − η2)φ − 3ψa(R)

]
+φ

[
β2

−
4

δ2
⊥

(
1 −

R2

δ2
⊥

)]
. (29)
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Fig. 7. Distribution as a function of the parallel energyw for three
radiiR. The plot is computed from Eq. (34) with the same parame-
ters as in Fig. 1:ψ = 0.6,1 = 6, β = 1.3, andδ⊥ = 6. Note the
enhancement of deeply trapped electrons (w near minimum) and the
dearth of more energetic trapped electrons. As the location of the
shellR increases, the trapped part shrinks to negligible importance.

After differentiating Eq. (29), we substitute the expression
into Eq. (26). The resulting quadrature can be integrated ex-
actly and yields

fts(w;R) =
β2

π
(2ψa)

1
2

{
16

5
(1 − η2)u

5
2 − 4u

3
2

+u
1
2

[
1 −

4

β2δ2
⊥

(
1 −

R2

δ2
⊥

)]}
(30)

with u ≡ −w/(2ψa) , where the subscripts associates the
quadrature withns . Recallη is normally very small,η � 1,
and the perpendicular scale is expected to makeβδ⊥ � 2.
The expression above is a non-monotonous function ofw

through the three powers ofu. Starting from the separatrix,
w = 0, with w increasingly negative,u varies from zero
to one. Hence,fts first rises from zero because of theu1/2

term, then dips due to theu3/2 term, to finally bounce back
for deeply trapped electrons,u ∼

< 1. Assumingη � 1 and
βδ⊥ � 2, one easily can find the minimum offts(w;R). It
occurs for

w0/(2ψa) = −(3 +
√

5)/8 , (31)

wherefts reaches the negative value

fts(w0;R) = −β2(ψa)
1
2

√
5 − 1

10π
(3 +

√
5)

1
2 . (32)

The second quadrature, associated withnp, is exactly that
which we previously calculated since we use the same model
of passing electrons (Muschietti et al., 1999b). It yields

ftp(w) =
6 + (

√
2 +

√
−w)(1 − w)

√
−w

π(
√

2 +
√

−w)(4 − 2w + w2)
(33)

which is monotonously and slowly decreasing asw becomes
increasingly negative. The trapped distribution function is
obtained by adding the two quadratures Eqs. (30) and (33),

ft (w;R) = fts(w;R)+ ftp(w) . (34)

The behaviour offt (w;R) is illustrated in Fig. 7, which
shows the distribution as a function of the parallel energy
for 3 different radii. On the left, the trapped part is displayed
over its range of possible energies (−2ψa(R) ≤ w < 0); on
the right (w > 0) just a short section of the passing distribu-
tion is shown. The trapped part of the distribution displays
the minimum atw0 from Eq. (31) and shrinks as the radius
increases, a reflection of the “self-similarity” embedded in
the variableu of Eq. (30).

Figure 8 provides an illustration of the distribution func-
tion in the familiar(z, v) phase-space. It shows

F(z, v) =

 ft
(
w = v2

− 2φ(z)
)
, if w < 0

fe

(
w = v2

− 2φ(z)
)
, if w > 0

, (35)

where we have setR = 0. Note the complex structure of
the distribution, which exhibits a narrow lip near the separa-
trix and a secondary bulge aboutz = 0, v = 0 within the
large “caldera”. This enhanced trapped population is charac-
teristic of the stretched solitary wave. Its role is to offset the
decreased density of passing electrons in order to produce the
weak curvature of the potential in the flat-top region. It does
not exist for a “classic” Gaussian potential (Muschietti et al.,
1999a), which has a substantial curvature at its center. Note
also how the flanks ofF swell for−6< z/λd < 6. This fea-
ture is expected to translate into a broadening of the electron
distributions observed in the spacecraft frame for the time
interval between the two conjugate parallel electric spikes.

5 Discussion

We have constructed a BGK nonlinear object that models a
new type of fast solitary wave observed in the auroral zone.
The positive potential has a parallel profile with a flat max-
imum between the opposite gradients, which sets apart the
conjugate electric spikes. The parameter measuring the dis-
tance between the two spikes is 21, while that measuring
their individual width isβ−1. The potential model includes
a perpendicular Gaussian profile with an assumed cylindrical
symmetry and a characteristic widthδ⊥. As such, it predicts
the detection of a unipolar perpendicular electric pulse that
is delimited by the two parallel spikes (see Fig. 1), as ob-
served. Cylindrical symmetry with concentric shells of elec-
trons slowly drifting azimuthally, while bouncing back and
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Fig. 8. Distribution function in(z, vz) space wherez andvz denote
the position and velocity in the parallel direction. Perspective view
made from Eq. (35) with same parameters as in Fig. 7 andR = 0.
Note the bulge aboutz = 0 andv = 0 within the large “caldera”, a
characteristic signature of the stretched solitary wave.

forth in the parallel direction, makes the potential structure
self-consistent and contained in a finite portion of the three-
dimensional space. The construction of such an object im-
poses a number of constraints on the parameters1, β, and
δ⊥, the significance of which we examine now.

First, as in the case of the classic electron hole, there is a
relation between the amplitude and the parallel scale length
of φ. The condition comes from imposing thatft (w;R) ≥ 0
where it reaches minimum. SettingR = 0 in Eqs. (31) and
(32), one obtains

β2
≤ 11× ψ−1/2ftp(w = −1.3ψ) , (36)

where the RHS is a slowly decreasing function of the ampli-
tudeψ (see Eq. 33). Restricted to small amplitudesψ , the
condition can be simplified and expressed in physical units as
(βλd)

−1 > 0.5 (eψ/Te)1/4. The inequality dictates that the
scale lengthβ−1, or width of the electric spike, increases for
a growing amplitude, a behaviour typical of electron holes
(Muschietti et al., 1999a).

Second, the model imposes an ordering of the three time
scales:ωγ � ωb � �e. Inequality Eq. (24) shows that the
perpendicular widthδ⊥ needs to increase for a decreasing
ratio�e/ωe lest the slow azimuthal drift becomes compara-
ble to the bounce. It has been pointed out (Franz et al., 2000)
that the solitary potential structures measured along magnetic
field lines at various distances from Earth appear more oblate
the smaller�e/ωe is. Inequality Eq. (24) is consistent with
this trend. We can also apply the inequality to the strongly
magnetized potential structures measured by FAST. If we as-
sume that the perpendicular scaleδ⊥ is independently deter-
mined by a “channel” whose dimension is related to the ion

gyroradius, we can invert Eq. (24) to obtain a condition on
the parallel size1. In dimensional units one finds

1

λd
�

−1

βλd
ln

[
2

(βλd)2
(
ωe

�e
)2(
λd

δ⊥
)4
eψ

Te

]
. (37)

Substituting the numerical values ofβλd = 1,�e/ωe = 5,
eψ/Te = 1, andδ⊥/λd = 10 (for a 1 km channel), one ob-
tains1 � 12λd . Due to the logarithm, moderate changes
to the parameter values do not significantly modify this in-
equality, and we conclude that the parallel size of a stretched
solitary wave alongB is limited to at most several Debye
lengths.

The analysis presented says nothing about the stability of
the nonlinear structure. In particular, the narrow lip border-
ing the “caldera” in Fig. 8 may seem a fragile element. We
note, however, that the feature is very sensitive to the value
of β. By decreasingβ from 1.3 toβ = 0.8 one can virtually
eliminate it. Still, a powerful way to test the stability of the
structure is to load it as an initial condition in a 3D particle-
in-cell code and explore its evolution or lack thereof within
the parameter space. This would also be a good way to in-
vestigate the effects of the ions which have been assumed so
far to provide a homogeneous background. In the frame of
the solitary wave the ions appear as a cold beam impinging
on the potential structure. Due to the lastingE⊥ we can ex-
pect a significant transfer of momentum in the perpendicular
direction, creating a wake behind the solitary wave. These
questions cannot be addressed here and must await future
work.
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