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Abstract. A model is presented for a new type of fast soli- et al., 1999; Mandrake et al., 2000). Similar measurements
tary waves which is observed in downward current regionshave been reported by other satellites in the polar cap and
of the auroral zone. The three-dimensional, coherent structhe plasma sheet boundary layer (e.g. Tsurutani et al., 1998;
tures are electrostatic, have a positive potential, and mov€attell et al., 1999; Franz et al., 2000).

along the magnetic field lines with speeds on the order of the Earlier investigations (Ergun et al., 1998, 1999) of these
electron drift. Their parallel potential profile is flattened and fast solitary waves focused on structures for which the elec-
cannot fit to the Gaussian shape used in previous work. Weric signal in the parallel direction fits well to the derivative
develop a detailed BGK model which includes a flattened po-of a Gaussian. Among the potential structures observed by
tential and an assumed cylindrical symmetry around a centrigAST, however, there is another class of intense structures
magnetic field line. The model envisions concentric shells ofwhere the conjugate electric spikes are set apart (see Fig. 1
trapped electrons slowly drifting azimuthally while bounc- bottom) and thus cannot fit to the derivative of a Gaussian.
ing back and forth in the parallel direction. The electron These dispersed bipolar spikes have also been identified by
dynamics is analysed in terms of three basic motions thafTsurutani et al. (1998) in the polar cap data set of the Polar
occur on different time scales characterized by the cyclotrorsatellite. The underlying potential structure, whose passage
frequencyg., the bounce frequenay;,, and the azimuthal by the satellite creates the bipolar electric signal, must be
drift frequencyw,. The ordering2, > wp > w, isre-  somewhat boxy with a potential profile much flatter than a
quired. Self-consistent distribution functions are calculatedGaussian. In this article we present an extended BGK (Bern-
in terms of approximate constants of motion. Constraints onstein et al., 1957) model for these structures, that we call
the parameters characterizing the amplitude and shape of thtretched solitary waves”.

stretched solitary wave are discussed. The bipolar signal observed in the parallel direction is ac-
companied by a unipolar electric signal in the perpendicu-
lar direction, showing that the structure is at least two or
three-dimensional. We improve upon our previous theoret-
ical modeling (Muschietti et al., 1999a) by including a per-

One of the interesting findings of the FAST mission has beerpendicglar'profile for the potgntial. Wh'ile.ar) experimental
the presence of rapidly-moving solitary potentials in down- determination of the perpendicular profile is impossible due

ward current regions of the auroral zone. Propagating alonéo the parallel motion of the structure relative to the space-

the magnetic field lines with a speed on the order of the electraft. an adequate description of the perpendicular electric

tron drift, they appear as positive potential pulses of the Or_field is desirable. The latter is likely responsible for the en-

der of hundreds of volts and create a bipolar electric signal"anced ion heating found during periods of intense solitary
first directed upward, then downward. The structures wergVaves as gwdenced by the“9onics (Ergun Et_ al., 1999).
dubbed “fast solitary waves” to stress their large velocity The potential model presented here has a radial dependence

(~ 1000 km/s) (Ergun et al., 1998) and have been interpreted!ith @n assumed cylindrical symmetry, and as such can de-
as traveling electron holes carried by the drifting electron dis_scnbe the unipolar electric field recorded in the perpendicular

tribution (Muschietti et al., 1999a). They may result from a direction. _ _
two-stream instability occuring at lower altitudes (Goldman _ The plasma environment of the spikes observed by FAST
is strongly magnetized with a ratio gyro-to-plasma frequency

Correspondence td.. Muschietti Q./w. > 5, a large parallel Debye length of the order of
(laurent@ssl.berkeley.edu) 100m, and a small electron gyroradius less than a meter.

1 Introduction
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Fig. 2. A contour plot representation of the potential model. The pa-
rameter values are as for Fig. 1. The 9 contours are linearly spaced
from 0.56 down to 0.06 in units ofwezn/e. Note the stretching
alongz.

symmetric around a centric magnetic field line is defined in

terms ofz, the coordinate alon®, andr = /x2 + y2, the
radius away from the centric line:

¢(z. 1) =¥ h(z)a(r) @

; _ -1
Fig. 1. Example of stretched solitary wave showing the profiles of with (z) = [1+ n cosh(pz)]
various quantities along, distance parallel to the magnetic field anda(r) = exp[—(r/él)z] .
B. (Top) Profiles of the potentigh and the associated density An illustration of the profile along is shown in Fig. 1.
(dash_ed _curve). (Botto_m) Parallel and perpendicular profiles of theThe parameteg determines the width of the electric spikes,
e'.ecmc field. The plotis computed from Egs. (1), (2), (3), and (4) 5 alternately the parallel gradients of the potential where
with the parametersyy = 0.6, A = 6,8 = 1.3, andé; = 6. - .

. i R these are strong. The two spikes are separated by the dis-
Distance off the centric magnetic field lime= 4. Note the two n_ which b | Debve | hs. This is al
conjugate electric spike8, separated by a distance2 tance 4, which can be Se_vera e ye_‘ engths. IS 1S qso

the length of the perpendicular electric pulse. The derived
parameter; = 2 exp—BA) is normally a small number,
typically less than @1, whereby the potential profile is flat
Qbout the top. Only where| > —(1/8) In(2n), does the po-
tential significantly drop from its maximung; /(14 n) >~ .
forn — 1/2, one recovers a peaked potential similar to the
consistent with both parallel and perpendicular fields. case we previously studied (Muschietti et al., 1999b). As for

In Sect. 2 the model of potential is presented as well asthe radial dependence(r), we choose a Gaussian fall-off

the density perturbation it requires. The orbits of electronsWlth characteristic W'dF'?‘L-.T.he choice IS arbitrary and d'(.:'
ated for the sake of simplicity only. A view of the potential

in the presence of such a potential are examined in Sect. 3. ¢ cont is sh i Fig. 2
Using the BGK method, we build a trapped distribution con- y means of contours 1S Shown In g. <. -
The parallel electric fieldE,, the radial electric fieldt |,

sistent with the potential model in Sect. 4. Finally, we close i : . .
the paper with a short discussion in Sect. 5. Throughout‘ffmd the density perturbation are obtained through deriva-

the article one uses the standard dimensionless units wheHeonS

length is normalized by the Debye lengtl, time by the in- B n sinh(Bz)

verse plasma frequeney, 2, velocity by the (parallel) elec- E:(z,r) = yalr) [1+ 7 coshBo) 12 @)
tron thermal velocitw,; = /T./m = w.Aq, and potential

expressed imv?, /e units. var)y 2

EJ_(Z,F)=W¥‘ 3

With electrons tightly tied to a magnetic field line, their dy-
namics is characterized by motions on different time scale
of which the cyclotron period is by far the shortest. This
enables us to build a three-dimensional trapped distributio

2 Potential model A display of the profiles of£, andE | as a function ot is
visible in Fig. 1. Due to the relative motion between space-
We assume that there exists a frame moving aBmgwhich craft and potential structure, the latter is sampled alB8ng
potential and electron distribution are in self-consistentThus, the profiles in Fig. 1 represent the idealized electric
steady state. Working in this frame, a potential cylindrically signal to be detected, according to the model, for a given
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2
Ns ¥ — Qot = —Yh()al/x2 + y2)5—2y )
1

0.05 Z=—E.(z,/x2+)?), @)
d \ where Q. is the electron cyclotron frequency in absolute
_10 \5/ 10 Z/Ad value. We have numerically integrated the equations, which
¢ showed that the electron behaviour can be analysed in terms
b of three basic motions occuring on different time scales:

the fast cyclotron gyration, the parallel motion including the
bounce back and forth of the trapped particles, and a slow
azimuthal drift along a shell at constant radius. An important
consideration is the parallel distance covered by the electrons
during a cyclotron period. If the distance is short compared
Fig. 3. Profiles of the density; alongz at various radiia) » = 0, to the parallel scale length @f, the termi(z) in Egs. (5)
(b) r =461/2,(c)r =4, (d)r = 35./2. Note the similitude  and (6) can be considered constant for the time of a gyration.
be_tween_ the different radu._There are differences though in the reAnhile this condition is not satisfied for the fast passing parti-
ative weight between density enhancementsjat A and density  ¢jeg jt js satisfied for those electrons whose dynamics is the
perturbations abouf ~ 0 due to the-dependence in the last term ot imnortant to support the potential structure, namely the
of Eq. (4). The inhomogeneous density is for the most part duetrapped ones and the slow passing ones that are close to the
to the electrons trapped in the potential. Parameters as in Fig. 1: .
_ - _ o Separatrix. These are strongly accelerated then decelerated,
Y =0.6,A=6,8=13,ands; =6. - . .
hence they contribute significantly to the density perturba-

tion which has to self-consistently create the potential. Since

“impact parameter” off the centric magnetic field line. At their parallel velocity is less than max~ /¥, the condi-

fixed (herer = 4), the peak amplitude of the bipolar spikes is ion can be expressed As/¥ < .. Itis reminiscent of the

(B /%)a(r), while that of the unipolar signal in the perpen- relation between the bounce frequengyand<2,, whichis
dicular direction is @ra(r)/Si. The electron density per- Necessary for the existence of electron phase-space holes in a

-0.15

turbation is given by Poisson equation as magnetized plasma (Muschietti et al., 2000). The bounce pe-
riod associated with the stretched solitary waves is discussed
2 nyra(r) below.
ns(z,r) =p 3 Since the cyclotron gyration in thgx, y] plane is the
2[1 T COSHﬁZ)] fastest eigenmotion, we rewrite Eqgs. (5) and (6) in terms of

« [ — 2 — cosh(Bz) + cosi‘?(ﬂz)] the independent time variabte= Q.. This yields the set

2¢a(ry  r?-s% @ ¥ +y=—€h(@a(/x?+ y?)2
1+ncoshfz) &%

y— i =—eh()a(\/x2+y?)2y,

The case of a planar structure is recovered With— oo, )

hencea(r) — 1. Then, the radial fiel, vanishes and Which features the small parametes y//(2:81)? < 1. To

the density perturbation, (4) reduces to a simpler expres- solve the set of equations we apply the two time scale method
sion without the last term ia7*. The effect of this term is ~ (6-0- Bender and Orszag , 1978, p. 549) where the slow time
to decrease the overall density at small radius and increasé T = €. Gyrocenter coordinates are introduced through
it for » > 8,. Figure 3 shows the perturbed density profile the ansatz

asa func_tion_of the distgn(_:e alom_gfor different radii. The X =R.(%)+p cos(r n 9(%)) ®)
perturbation is symmetric in and includes an enhancement . . .
for |z] > A, a depletion foriz] < A, and a more neutral ¥ = &y(D) +psin(r +6(7)), ©)
rggion around ~'0. To understand hqw an electron .popula- whered is the gyrophase angt,, R, denote the gyrocen-
tion can behave in order to self-consistently maintain such gepg position. We assume that the gyroradius is constant and
perturbation, we need to examine the electron orbits. furthermore, that the radial profile(r) varies little over a
gyroradius, a very reasonable assumption in FAST’s envi-
ronment. After substitution of the ansatz and an expansion
to terms of the order 0b) (¢2), one obtains these dynamical
equations for the slow evolution,

3 Electron dynamics

Electrons in the presence of potential (1) obey the following
equations of motion: dR,

dt

2x
£+ 905 = ~4h@at/x2 40 ® Y- a@amR, (11)

= +2h(z) a(R)R, (10)
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d_? =2h(z)a(R), (12)  whereft, f, refer to right-moving and left-moving elec-
dt trons, respectively.

with B = /R§+R2 and where terms of the order of The eIectron' distributions m'easgred py FAST are drift-
Y ing and broad in the parallel direction with a flat-top max-

(p/81)% have been neglected. The two Egs. (10) and (11) dejmum (Carlson et al., 1998). In the satellite frame, the elec-
scribe an azimuthal drift of the gyrocenter on a shell of con-yrgn distributions appear to have an average drift smaller
stant radius and Eq. (12) describes a frequency shift. Thusyr comparable to the velocity of the spikes (Ergun et al.,
the quantityR is a constant of motion. Let a time-dependent 1999). e shall here assume that the electron drift is zero
angley (1) denote the azimuth of the electron gyrocenter: i the frame of the potential structure. For simplicity, we

R, = Rcody),R, = Rsin(y). Returning to the origi-  shall furthermore assume that the distributions are symmet-
nal unit of time, we obtain from either Egs. (10) or (11) an ¢, £Fw) = £, (w) = f.(w), and use the same model as

equation for the slow azimuthal drift in Muschietti et al. (1999a):
2y
)= — h(z)a(R). 13 6v2 :
v Qe(Si ( ) fe(LU) = m with w > 0. (17)

Equation (12) shows that in association to the drift, the gyra- . ., 5 ~
tion frequency is slightly altered frog, to 2, —y. Note that The temperature’, or sprea.d,fgo dvzv Je@?), s normal-
because = z(t) does change on the time scale of the drift, ized to unity. An electron witw = v* = 1 is a “thermal

the quantityi(z) varies, hence the rafeis not constant. electron (in the solitary structure’s frame). For smaller ener-
gies, f.(w) is flat, while it drops as a power-law for larger
3.1 Passing electrons energies.

_ _ _ Although there is no simple explicit expression fg¢)
Figure 4 shows the parallel velocity and the perpendicular  that can be obtained with the distribution (17), one can use an

velocity v, for an electron that crosses the potential structureexpansion for smalp to analyse the behaviour of the passing
slightly off the centric magnetic line. The particle approacheselectrons (Krasovsky et al., 1997),

slowly the positive potential, its parallel velocity strongly

increases on the upslope then decreases on the downslopne.((p) —1_ 3¢*? i ¢ %2 +06%? (18)

Meanwhile, the perpendicular velocity is constant, oscillates ? 2 16 '

as the particle crosses the potential structure, and regainsh . . duction in densi lina4a

nearly the same constant value on the downstream side. ThEe main response is a reduction in density sca Ing .

oscillations are due to the radial electric figld . Using the An O,b"'ous yet 'mPO”a”t consequence IS that the density of

gyrocenter coordinates, we can rewrite the perpendicular (b assing electroqs is depleted and alpprommately (_:o_nstant be-

contrast to parallel) velocity, = (2 + y?)Y2 as ween—A + 7 < ¢ < +A — 7. Therefore, itis the
role of the trapped electrons to provide the structured density

v (t) = [pz(Qe — )%+ R%p? profile seen in Fig. 3.

1
N 2 3.2 Trapped electrons
+2Rp(R — 7)Y COSRet — 2D +W)]T (19) i
As the particles move back and forth in the parallel direc-

with yp the azimuth of the gyrocenter at= 0. The velocity tion. thei i . th hell at tant
oscillates at approximately the cyclotron frequency between 'O NEIr gyrocenters remain on the same shefl at constan

109 + (R = p)7|, while the electron crosses the potential R. Due to the radial electric field, these gyrocenters drift in
stru::ture meaning:j £0 the azimuthal direction. Figure 5 illustrates the motion of one

This behaviour enables us to average out the oscillation%.appe{j electron by showing two phase-space views. The or-

. . o its were obtained from numerically integrating Egs. (5), (6),
Zn?rzyperpendmular kinetic energy. As a result, the paralleland (7). The left plot depicts the slow azimuthal drift at con-

stant radius and displays a trochoid-like orbit. The right plot
w= vz2 —2¢(z, R) (15) depicts the variation of the two componentsandv, of the
perpendicular velocity; the latter rapidly oscillates between a
fhinimum and maximum value, as described by Eq. (14).
Sincez = z(t), the azimuthal drifty (see Eq. 13) is, in
eneral, not constant. However, for many trapped electrons

is a constant of motion on the slower time scale. We assume
distribution of passing electrons of the forfi(w), which is
homogeneous away from the potential structure yet become,

radially inhomogeneous near the structure. The density o he bounce period is short as compared to the drift time, so

passing electrons, decreases in the vicinity of the poten- that one can averags(z) over the periodic bounce motion.

tial structure as they are accelerated by the positive potentiaguch is the case for the electron orbit shown in Fig. 5. This

The actual amount of decrease depends upon their distribuérbit has a bounce frequenay = 0.1 2, and a turning point
=01%,

tion as is clear from the density integral at|z|] = 2.2, less than the potential width = 4. Hence,

©1 _ _12 assumingyh(z) ~ ¢ = 0.4 and substituting the numerical
1p () Z/O Q[f;(w) + fo )l(w +2¢)"2dw,  (16) values ofR = 3,8, = 6, one findsy = 0.017 ;L. In
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parallel velocity perpendicular  velocity
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Fig. 4. Evolution of the parallel and perpendicular velocity for a slowly passing electron. Note the acceleration/deceletgtamdithe
oscillations inv| = (vf + v)z,)l/2 as the particle crosses the potential structure abput= 50. The oscillations are caused by the radial
electric field, occur close to the frequen@y, and average to nearly zero change in perpendicular kinetic energy (see Eq. 14). Parameters:
¥ =04,A=4,8=15 ands; = 6.
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Fig. 5. Orbit of a trapped electron projected in the perpendiciiday) plane for a magnetic fiel# pointing in the—z direction. (Left)(x, y)
coordinates describe an azimuthal drift with a trochoid-like orbit. “In” refers to initial position; See text near Eq. (13) for details.yRight)
andvy oscillate at frequenc{, around an averaged, value. Parametergr = 0.4, A = 4, 8 = 1.5, ands | = 6. The additional choice
Q. = w, brings cyclotron and azimuthal time scales closer for the sake of plot legibility.

dimensional units this reads/ 2, = 0.017 (w./$2)? and perpendicular velocity is seen to regularly oscillate between a
shows that the azimuthal time scale is indeed very long asninimum and maximum value. Upon replacipgn Eq. (14)
compared to the bounce period and the cyclotron period. Thdy ,, one obtains exactly this behaviour with the perpen-
three time scales follow the ordering dicular velocity oscillating at the frequen€y, — 2w, ~ Q.

J <y < Q. (19) between

min[v? ] = [0, (R + p) — Qepl®> and
The termi(z) can thus be replaced by a value averaged over > 5
the trapped orbit (denoted hy), and the angular drift be- MaXvi] = [wy (R —p) + Q.p]".

comes a constaa,, : On average, the perpendicular energy is a constant equal to
w2 R? 4+ (Q, — w,)?p2. Thereforew defined in Eq. (15) as
2y : )2
@y =T 82 {n)a(R). (20)  the parallel energy is also a constant.
evl

The bounce period depends upon the particle’s parallel en-
The constant angular drift is visible in Fig. 5. In the left ergy w. For the potential of a stretched solitary wave, this
panel, it shows as the regular indentation of the trochoid-likedependence is peculiar, decreasing at first for deeply trapped
orbit. The magnetic field was set to point in the-Z direc- electrons (see Fig. 6). This characteristic comes from the
tion, hence the positive angular drift. In the right panel, the very shallow potential well at low energies. From Eq. (15),
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we obtain a formal expression for the period of an oscillatory Bounce period
motion between symmetric turning points, (w): 100
%k
1 90 ¢
4 2(w) 1+ncoshBz) |* 80 |
Tb = —1/ dZ 1 nw 7(21)
[2¢a + w]z Jo + 2parw coshBz) 70 ¢
wherea = a(R) has a fixed value associated with the shell = 60
where the electron gyrocenter lies. Kinetic energy and turn- 50 |
ing point are related viaa + w = —nw coshBz;). If the 40 ¢
kinetic energy is not too small,y&z + w > —nw, we can
. . 30 ¢
approximate the integrand by
1 -1 -0.8 -0.6 -0.4 -0.2 0
(1 4 eﬁ(z—m)? 14 2 Bed) It w
2¥a+w
. Fig. 6. Bounce period for an electron trapped in a stretched soli-
and after a long quadrature obtain tary wave. Shown dependence on eneigis from Eq. (22). The
AA 1 2w very shallow potential well leads to the peculiar behaviour for lower
Ty = —— |:1 +—1In <4 + —)} energies, whereb¥j, increases towardq at the well's bottom %
Veya+w BA Va given by Eq. 23). Parameterg: = 0.4, A = 6, 8 = 1.5, and
4 b4 w+ Ya >:| r=0.
+ —— | 7 tarctan| ———————=) | . 22
By —w [2 <«/—w(2wa+w) (22)

With w increasing, the term on the first line decreases,

whereas the term on the second line increases. At large eneiens which we assume to form an homogeneous, neutraliz-

gies the second term dominates, which is independent froning background. Considering the results of Sect. 3, we write

A, the parallel size of the potential structure. At small en-the density of trapped electrons on each sRedls

ergies the first term dominates, which is proportionalAto

If the kinetic energy is vanishingly small, Eq. (22) breaks O fi(w;R)

down; then the period is given by (s R) = /2 14
’ -2¢ (w + 2¢)2

b0 = 2n , (23) where f;(w; R) denotes the trapped distribution aidis

Bvnyra considered from now on a parameter. Our goal is to find an
explicit expression forf; (w; R). The integral Eq. (25) can
be inverted forf; (w; R) with the help of Laplace transforms
(see Sect. 2.3 in Muschietti et al. (1999b) for details). The
result reads

w, (25)

which containsA through the facton = 2¢=#4. The solid
curve in Fig. 6 shows Eq. (22) as a functionofor ¢ = 0.4,
A = 4,8 = 15, andR = 0, while the star indicates the
value at the bottom of the potential well (Eq. 23).
The analysis above demonstrates that the condition —w L d
w, < wp, can be satisfied for a large class of trapped parti- f; (w; R) = 5/ (—w—p) 2 d—nz(P; R)dp, (26)
cles. Also, to require a sufficiently long drift period by com- 0 p
bining Egs. (20) and (23) yields a bound on the minimum where the range of possible energiesliffers on each shell,
perpendicular size for the solitary wave
—2¢a(R) <w < 0. (27)
14 (24)
Q.B\ n- Now sincen, (¢; R) is made up ofi;(¢; R) andn,(¢), the
quadrature Eqg. (26) splits into two: one farand one for,.
The weaker the magnetic field, the larger the perpendiculatUsing the relation between the value of the potenti@nd
scale needs to be. Note also that a larger parallel gize Q) the position; for a givenR
imposes a larger perpendicular scale. Implications for the
space observations are discussed below in Sect. 5. 1+ ncoshBz) = Yva(R)/¢, (28)

82 >

one rewrites the density perturbatienof Eq. (4) into
4  Trapped distribution function

B \2
The net density perturbation, required by the shape of s(®: R) = (W) ¢? [2(1— n°)¢ — 3¢G(R)]

our cylindrically symmetric potential is made up of both the )
trapped electron density; and the response of the passing +¢ | B2 4 1_ R (29)
electronsn,: ny = n, +n, — 1. Here,—1 represents the 82 2 )
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The second quadrature, associated withis exactly that
which we previously calculated since we use the same model
of passing electrons (Muschietti et al., 1999b). It yields
6+ (V2+ /—w)(L—w)y/—w
T(N2+ V/=w)(4— 2w + w?)

which is monotonously and slowly decreasingiabecomes

trapped 0.5 passing

ftp (w) = (33)

05 r increasingly negative. The trapped distribution function is
\/ﬁ obtained by adding the two quadratures Egs. (30) and (33),
0/25 |-
= fi(w; R) = fis(w; R) + fip(w). (34)
_1‘.2 _6_8 _6,4 0‘.4 WiR=4 The behaviour off;(w; R) is illustrated in Fig. 7, which

shows the distribution as a function of the parallel energy
for 3 different radii. On the left, the trapped part is displayed
over its range of possible energiesZya(R) < w < 0); on

the right @ > 0) just a short section of the passing distribu-

tion is shown. The trapped part of the distribution displays
the minimum atwg from Eq. (31) and shrinks as the radius

1.2 02 o4 WIR=8 increases, a reflection of the “self-similarity” embedded in
the variable: of Eq. (30).
Fig. 7. Distribution as a function of the parallel energyfor three Figure 8 provides an illustration of the distribution func-

radii R. The plot is computed from Eq. (34) with the same parame-tion in the familiar(z, v) phase-space. It shows
tersasin Fig. 1y = 0.6, A = 6,8 = 1.3, ands| = 6. Note the
enhancement of deeply trapped electrangiéar minimum) and the fz(w — 2 _ 2¢(z)), if w<0
dearth of more energetic trapped electrons. As the location of theF'(z, v) = , (35)
shell R increases, the trapped part shrinks to negligible importance. fe(w =2 - 2</>(Z)>, if w>0

where we have seR = 0. Note the complex structure of

After differentiating Eq. (29), we substitute the expression the distribution, which exhibits a narrow lip near the separa-
into Eq. (26). The resulting quadrature can be integrated exllix and a secondary bulge abaut= 0,v = 0 within the

actly and yields

2
Jis(w; R) = P

large “caldera”. This enhanced trapped population is charac-
teristic of the stretched solitary wave. lIts role is to offset the
decreased density of passing electrons in order to produce the
weak curvature of the potential in the flat-top region. It does

(2ya)? {1—56<1—n2>u3 — a3

T

not exist for a “classic” Gaussian potential (Muschietti et al.,
+u% 1_ i _ R_Z (30) 1999a), which has a substantial curvature at its center. Note
ﬁ23§ (Si also how the flanks of" swell for—6 < z/A4 < 6. This fea-
ture is expected to translate into a broadening of the electron
with u = —w/(2yra) , where the subscript associates the distributions observed in the spacecraft frame for the time
quadrature withi,. Recally is normally very smally < 1,  interval between the two conjugate parallel electric spikes.

and the perpendicular scale is expected to make > 2.
The expression above is a non-monotonous functiomw of
through the three powers af Starting from the separatrix,
w = 0, with w increasingly negativey varies from zero
to one. Hencey;, first rises from zero because of th&/?
term, then dips due to the*’2 term, to finally bounce back
for deeply trapped electrong, < 1. Assumingy <« 1 and
B81 > 2, one easily can find the minimum ¢f; (w; R). It
occurs for

5 Discussion

We have constructed a BGK nonlinear object that models a
new type of fast solitary wave observed in the auroral zone.
The positive potential has a parallel profile with a flat max-
imum between the opposite gradients, which sets apart the
conjugate electric spikes. The parameter measuring the dis-
tance between the two spikes ia 2while that measuring
their individual width isp~1. The potential model includes
wo/(2ya) = —(3++/5)/8, (31) a perpendicular Gaussian profile with an assumed cylindrical
symmetry and a characteristic width. As such, it predicts
the detection of a unipolar perpendicular electric pulse that
is delimited by the two parallel spikes (see Fig. 1), as ob-
V5 - 1(3 n \/5)% 32) served. Cylindrical symmetry with concentric shells of elec-
107 ' trons slowly drifting azimuthally, while bouncing back and

where f;; reaches the negative value

fis(wo; R) = —B2(a)?
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gyroradius, we can invert Eq. (24) to obtain a condition on
the parallel sizeA. In dimensional units one finds

F(z,v) at r=0

A < _l In |: 2 2(&)2(A_d)4 %] . (37)
ra  Bra  L(Bra) Qe b1 T

Substituting the numerical values gh; = 1, Q./w. = 5,
ey/T, =1, andé; /A4 = 10 (for a 1 km channel), one ob-
tainsA « 12.,4. Due to the logarithm, moderate changes
to the parameter values do not significantly modify this in-
equality, and we conclude that the parallel size of a stretched
solitary wave alongB is limited to at most several Debye
lengths.

The analysis presented says nothing about the stability of
the nonlinear structure. In particular, the narrow lip border-
ing the “caldera” in Fig. 8 may seem a fragile element. We
note, however, that the feature is very sensitive to the value
of 8. By decreasing from 1.3 to 8 = 0.8 one can virtually
Fig. 8. Distribution function in(z, v;) space where andv, denote  €liminate it. Still, a powerful way to test the stability of the
the position and velocity in the parallel direction. Perspective view Structure is to load it as an initial condition in a 3D particle-

made from Eq. (35) with same parameters as in Fig. 7/nrd 0. in-cell code and explore its evolution or lack thereof within
Note the bulge about = 0 andv = 0 within the large “caldera”, a  the parameter space. This would also be a good way to in-
characteristic signature of the stretched solitary wave. vestigate the effects of the ions which have been assumed so

far to provide a homogeneous background. In the frame of
the solitary wave the ions appear as a cold beam impinging
forth in the parallel direction, makes the potential structureon the potential structure. Due to the lastiig we can ex-
self-consistent and contained in a finite portion of the three-pect a significant transfer of momentum in the perpendicular
dimensional space. The construction of such an object imdirection, creating a wake behind the solitary wave. These
poses a number of constraints on the parameterg, and guestions cannot be addressed here and must await future
81, the significance of which we examine now. work.
First, as in the case of the classic electron hole, there is a
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