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Abstract. In this paper, we apply the principles of infor-
mation theory that relate to the definition of nonlinear pre-
dictability, which is a measure that describes both the linear
and nonlinear components of a system. By comparing this
measure to a measure of linear predictability, one can assess
whether a given system has a strong nonlinear or a strong
linear component. This provides insights as to whether the
system should be modeled by a nonlinear model or by a lin-
ear model. We apply these ideas to a known dynamical sys-
tem and to a time series that describe the transitions in atmo-
spheric circulation.

1 Introduction

The underlying principle behind the notion of linearity in
dynamical systems is the fact that a linear combination of
all fundamental solutions of a system provides the general
solution of that system. Accordingly, since the general so-
lution of linear dynamical systems is often periodic, peri-
odic evolutions (whether produced by linear or nonlinear de-
terministic systems) can be adequately described by linear
models. This linear character of periodic evolutions is as-
sociated with long-term predictability. A stochastic process
is defined as linear when it can be represented as a linear
combination of a sequence of white noise values with a zero
mean and varianceσ 2, which is analogous to the condition
for linearity in dynamical systems. This leads to a variety of
random processes, many of which realistically simulate natu-
ral processes. Nonlinearity can arise from chaotic dynamical
systems that exhibit aperiodic behaviour and a rapid loss in
predictability due to the sensitivity to initial conditions. It
can also arise from nonlinear stochastic processes, which of-
ten are generated when white noise is applied to nonlinear
dynamical systems. According to the above, a given pro-
cess can exhibit linearity (due to periodicities and/or linear
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stochastic influences) and/or nonlinearity (due to chaotic dy-
namics and/or nonlinear stochastic influences).

A major concern in many scientific disciplines is whether
a given process should be modeled as linear or as nonlinear.
It is currently well accepted that many natural systems are
nonlinear with feedbacks over many space and time scales.
However, certain aspects of these systems may be less non-
linear than others and the nature of nonlinearity may not be
always clear. The work here uses a newly developed method
(Darbellay, 1998; Darbellay and Vajda, 1999) that provides
insights into the nature of linearity and/or nonlinearity, thus
allowing one to decide whether a specific process should be
modeled with a linear or a nonlinear model. We apply this
method to a time series from a known dynamical system (this
series serves as our control example) and then to an observ-
able from our climate system, which describes the transitions
in the atmospheric circulation. While exploring nonlinear-
ity in other geophysical records using similar approaches is
credited to Palus and co-workers (Palus, 1996, 1995; Palus
and Novotna, 1994; Palus et al., 1993), this work reports on
a novel time series.

2 Information and predictability

The method is based on information theory. Let us con-
sider two vectors of continuous random variablesX =

(X1, ...., Xn) andY = (Y1, ...., Ym) taking real values. The
vectorX can be regarded as the input set of variables of a
system andY as its output. EachXi , i = 1, n can be un-
derstood as a predictor variable and eachYj , j = 1, m as a
predicted one. The values thatXi andYj are taking will be
denoted asxi andyj . Letpx(x) andpy(y) be the probability
density functions of the vectorsX andY , andpx,y(x, y) be
their joint probability density function. The densitiespx(x)

andpy(y) will be referred to as the marginal densities. The
random vectorsX andY are independent if and only if

px,y(x, y) = px(x)py(y) for all x εRnandy εRm.
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Fig. 1. A sample of the Mackey-Glass time series used here.

Given an observed system, this condition is easy to verify.
What is more desirable is to have a single number, which
will serve for comparing whether a pair of random vectors is
independent; thus, its range can be arbitrary. We may choose
zero for absolute independence and one for total dependence.
One way of obtaining zero out of the above definition is to
form the logarithm of the ratio of the joint probability with
the product of the marginal probabilities. The expectation of
the logarithm of this ratio is called the mutual information
I (X,Y )

I (X,Y ) =

∫
Rd

px,y(x, y) ln
px,y(x, y)

px(x)py(y)
dxdy,

whered = n + m is the dimension of the space spanned by
the vectorsX andY if they are linearly independent. This
integral, 0 ≤ I ≤ ∞, plays a central role in information
theory. To normalize it between zero and one, we can use the
transformation

ρ =

√
1 − e−2I .

The numberρ captures both thelinear andnonlineardepen-
dence betweenX andY and it can be interpreted as the pre-
dictability of Y by X. This measure of predictability is based
on the probability distributions underlying the data and does
not depend on the particular model used to predictY from
X.

The reason for choosing the above transformation is thatρ

reduces to some well-known measure of linear dependence
when the joint probability density ofX andY is Gaussian.
For a d-dimensional Gaussian random vectorZ = (X, Y )

the mutual information takes the form

I (X,Y ) =
1

2
ln

det6xxdet6yy

det6
,

where6,6xx , and6yy are thedxd, nxn, andmxm variance-
covariance matrices ofZ, X, andY, respectively. It can be
shown that forZ, the mutual information depends only on the
coefficients of linear correlation (Darbellay, 1998). In fact,
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Fig. 2. Linear predictability for the Mackey-Glass time series for
one, two, and three inputs. Linear predictability seems to saturate
after two inputs. This indicates that the linearity of this dynami-
cal system is due to a simple cycle (which requires an embedding
dimension of two).

for n = m = 1, i.e. (X, Y ) = (X, Y ), the above equation
becomes

I (X, Y ) = −1/2 ln
(
1 − r2(X, Y )

)
,

where r is the correlation coefficient betweenX and Y .
Given the definition ofρ, this indicates that if (X, Y ) is Gaus-
sian, thenρ(X, Y ) = |r(X, Y )|. It follows that, in general,
the linear predictability ofY by X is given by

λ(X, Y ) =

√
1 −

det6

det6xxdet6yy

.

3 Applications

Despite the fact thatρ is an excellent generalization ofλ,
their difference cannot be equated to the nonlinear part of
the predictability. However, their difference does signal the
inadequacy of a linear model on the grounds that linear cor-
relations capture only linear relationships. As such a differ-
ence betweenρ andλ indicates that nonlinear models best
describe the process in question. Note that the above formu-
lations can be extended to time series,x(t), by considering
inputs as past values of the time series, and outputs as future
values of the time series. For example, Fig. 1 shows a time
series obtained from the Mackey-Glass model. This model
is a nonlinear dynamical system described by the following
time-delay differential equation

dx(t)

dt
=

a x(t − τ)

1 + xc(t − τ )
− b x(t),

wherea = 0.2, b = 0.1, andc = 10 are constants andτ =

30 is the delay parameter. For these values, the system has a
chaotic attractor of dimension 3.6 (Wolf et al., 1985). Thus,
to fully examine the dynamics, one needs a four-dimensional
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Fig. 3. Nonlinear predictability for the Mackey-Glass time series
for the same inputs used in Fig. 2. Nonlinear predictability increases
as the number of inputs increases. This occurs because the nonlin-
earity of this system needs a four-dimensional embedding and as a
result,ρ increases as the number of inputs increases.

embedding. Figure 2 shows the linear predictabilityλ of Y =

Y = x(t) as a function of time steps ahead (t = 1, 100)
using: (1) one input,X = X1 = x(−1) (i.e. only the value
1 step ago is used as a predictor of the future values; this is
denoted asλ1), (2) two inputs,X = (X1, X2) with X1 =

x(−1) andX2 = x(−21) (i.e. the values 1 time step ago and
21 time steps ago are used to predict the future values; this
is denoted asλ1,21), and (3) three inputs,X = (X1, X2, X3)

with X1 = x(−1), X2 = x(−21), andX3 = x(−9) (i.e. the
values 1 time step ago, 21 time steps ago, and 9 time steps
ago are used to predict the future values; this is denoted as
λ1,9,21).

Figure 3 shows the nonlinear predictabilityρ for the same
conditions. For the above calculations, we use 100 000 val-
ues. The algorithm for the estimation of the nonlinear pre-
dictability is described in Darbellay (1998) and Darbellay
and Vajda (1999). The general idea behind this algorithm
is the partitioning ofRd into finite, non-intersecting subsets
(cells) of Rd whose sum is the wholeRd . First, the entire
Rd is partitioned into 2d cells by dividing each of itsd edges
into two equiprobable intervals. Then, an estimation of the
various probability distributions is achieved by finding the
frequencies, i.e. by dividing the points in a cell by the total
number of points. Subsequently, each cell is partitioned into
2d subcells and the procedure is repeated. A cell is not subdi-
vided any further if local independence on that cell has been
achieved. Local independence is achieved when the follow-
ing condition is satisfied

PX,Y (Ckl)

PX(Ckl) PY (Ckl)
=

PX,Y (Ck)

PX(Ck) PY (Ck)
,

where PX, PY are the probability distributions ofX and
Y , respectively,PX,Y is the joint probability distribution of
(X, Y ), Ck is the cell in question andCkl is a subpartition of
that cell (for more details, see Darbellay and Vajda, 1999).
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Fig. 4. The average hemispheric available potential energy (APE)
as a function of time from 1 January 1979 to 31 December 1995.
The time interval between successive values is 6 hours.

Finally, the mutual information is obtained by summing over
all independent cells:

I (X, Y ) =

∑
k

PX,Y (Ck) ln
PX,Y (Ck)

PX(Ck) PY (Ck)
.

Going back to Figs. 2 and 3, we observe (1) a clear differ-
ence between the two graphs as expected and (2) the nonlin-
ear predictability increases as the number of inputs increases,
whereas the linear predictability remains virtually unchanged
after two inputs. This indicates that the linearity of this dy-
namical system is due to a simple cycle (which requires an
embedding dimension of two). The nonlinearity, however,
needs a four-dimensional embedding and as a result, nonlin-
ear predictability increases as the number of inputs increases.
Note that the long-term decrease inρ andλ is a manifestation
of the loss in predictability associated with chaotic systems.

Next, we apply the above method to atmospheric data,
namely mean hemispheric available potential energy (APE),
which can loosely be defined as the portion of the atmo-
sphere’s potential energy that can be converted into kinetic
energy. APE is a very important variable since its variability
determines transitions in the atmospheric circulation. De-
tails on the calculation of APE can be found in Wintels and
Gyakum (2000). Figure 4 shows the time series which ex-
tends from 1 January 1979 to 31 December 1995 at a sam-
pling rate of 6 hours (24 836 points). Figure 5 shows the lin-
ear predictability for 1, 2, and 3 inputs (x(−1), x(−7), and
x(−22)) and Fig. 6 shows the nonlinear predictability for the
same inputs. Here again we observe the differences between
linear and nonlinear predictability, indicating that APE ex-
hibits a nonlinear component. Note that APE also exhibits
a linear component. This component is associated with the
diurnal variability (a periodic component) and it manifests it-
self as an oscillation in both functions (remember thatρ con-
tains information about both linear and nonlinear structures
in the data). As can be seen from Fig. 7 (which shows the
difference betweenρ andλ), the linear component competes
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Fig. 5. Linear predictability of APE for one, two, and three inputs.
Here again linear predictability saturates after two inputs, indicating
a cycle, which corresponds to diurnal variability.

with the nonlinear component over short time scales where
ρ − λ ≈ 0, whereas the nonlinear component becomes dom-
inant at longer time scales. The above results indicate that
the variability superimposed on the periodic component is
nonlinear and as such, it should be modeled with a nonlinear
model.

The question we need to ask next is: what is the source
of nonlinearity in APE? Is it dynamical or stochastic? In the
case of the Mackey-Glass system, we dealt with a long time
series and we knew a priori that the data come from a non-
linear dynamical system. Thus, the differences betweenρ

andλ were expected and easy to interpret. However, when
the method is applied to an observed and possibly short time
series from a system whose mathematical formulation and
physics may not be accurately known, one has to be careful
in interpreting the differences betweenρ andλ. For example,
as the number of inputs and outputs increases, the estimation
of the frequencies is done in high dimensional spaces and
as such, it requires large amounts of data. Thus, if the dy-
namical nonlinearity in the data is high dimensional and the
sample size is small, then the dynamical component will not
be clearly delineated and will not be statistically significant.
It follows that the nonlinearity in the data is nonexistent or if
the sample size is not adequate, thenρ ≈ λ.

If however, there is a difference betweenρ andλ, then the
nonlinear part inρ may be due to (1) chaotic (deterministic)
dynamics, or (2) nonlinear noise (recall the discussion in the
first paragraph of the Introduction), or (3) both.

The following procedure, which has become a common
practice in testing for the nonlinear structure in the data, can
be considered to address these issues. In general, when we
test for dynamical properties (such as dimensions, Lyapunov
exponents, etc.), one sets the null hypothesis so that the ob-
served data come from some appropriate stochastic surro-
gate process. Depending on the application, this appropriate
surrogate process may be a linear or a nonlinear stochastic

Fig. 6. Nonlinear predictability of APE for the same inputs used in
Fig. 5. Here again we observe that nonlinear predictability increases
as the number of inputs increases, and that the nonlinear component
in APE is stronger than the linear one.

(Gaussian) process, with the same autocorrelation structure
as the observed data. The former process is generated by tak-
ing the Fourier transform of the data, randomizing the phases
and then taking the inverse Fourier transform. The latter in-
volves similar steps, but now the amplitudes are adjusted to
produce a nonlinear transformation of a linear Gaussian pro-
cess (Theiler et al., 1992; Schreiber and Schmitz, 1996). In
our case, since we are investigating nonlinear components,
it is more appropriate that the null hypothesis involves non-
linear surrogates. Note that since the surrogates preserve the
autocorrelation structure of the data, it is more or less guaran-
teed thatλdata

= λsurr. However, due to the randomization of
the phases and the amplitude adjustment,ρdata

6= ρsurr. This
means that ifρ−λ from the observed data is significantly dif-
ferent from that of the surrogates, then the observed nonlin-
earity is most likely due to nonlinear dynamics and not due to
this particular nonlinear noise. Accordingly, we proceed with
the following approach: for a given set of inputs, we calcu-
late the differenceρ−λ from the observed time series. Then,
using the amplitude-adjusted Fourier transform method, we
generate many nonlinear surrogate time series of the same
length as the observed data, and for each one and for the same
set of inputs, we findρs

−λs . Finally, we compare the surro-
gates and the observed data. Figure 8 showsρ1,7,22 − λ1,7,22
for the APE data. It also showsρs

1,7,22 − λs
1,7,22 for several

surrogate time series. The curves for the surrogate data are
“bunched” together at aboutρ − λ = 0.08. The results in
Fig. 8 clearly show that the surrogates deviate significantly
from the observed data. From a set of 1000 surrogate time
series, we find that for any time step ahead that is greater
than 24 (4 days), the null hypothesis is rejected at a signif-
icance level greater than 95% (the level increases witht).
This means that the nonlinearity in APE is not due to the
particular nonlinear stochastic process used in the null hy-
pothesis. The null hypothesis is also rejected at shorter time
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Fig. 7. This plot shows the difference betweenρ andλ and indicates
that the linear component competes with the nonlinear component
over short time scales (whereρ − λ ≈ 0), whereas the nonlinear
component becomes dominant at longer time scales. Note that since
ρ is the sum of the linear and nonlinear components,ρ−λ cannot be
negative. The small negative values for small time steps is probably
due to numerical artifacts.

steps (t < 3 days) but this time it is rejected because of the
presence of an appreciable linear component. The data for
the three inputs were shown in this step because they delin-
eate most of the nonlinearity. These results support the view
that the observed nonlinearity in APE is a dynamical signal,
superimposed on the linear component that corresponds to
the diurnal variability.

4 Conclusions

We have applied a method that is very effective in delineat-
ing both the linear and nonlinear components in a time se-
ries, that describes the transitions in the atmospheric circu-
lation. This is important because it makes it possible to in-
fer information about the nature of the linearity and/or non-
linearity in this observable and to decide whether or not it
should be treated as linear (deterministic or stochastic) non-
linear (dynamical or stochastic), or a combination of both. In
the growing area of nonlinear time series analysis the method
presented is an additional and complimentary tool to other
already available tools (such as dimension estimates, Lya-
punov exponents, nonlinear prediction). As with all other
nonlinear methods (Tsonis, 1992; Tsonis et al., 1994) this
method is not devoid of problems. Therefore, proper analy-
sis and statistical tests must always be considered.
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Fig. 8. This figure shows the difference between nonlinear and
linear predictability for the APE data and for several surrogate
data. The difference for the surrogate data is fluctuating at about
ρ − λ ≈ 0.08, whereas for APE, it shows a steady increase with
the time step ahead. This result indicates that APE has fort > 24 a
strong nonlinear component akin to nonlinear deterministic dynam-
ics, whereas fort < 16, it exhibits a significant linear component
(see text for details).
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