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Abstract. In this paper, we apply the principles of infor- stochastic influences) and/or nonlinearity (due to chaotic dy-
mation theory that relate to the definition of nonlinear pre- namics and/or nonlinear stochastic influences).
dictability, which is a measure that describes both the linear A major concern in many scientific disciplines is whether
and nonlinear components of a system. By comparing thisa given process should be modeled as linear or as nonlinear.
measure to a measure of linear predictability, one can asses$sis currently well accepted that many natural systems are
whether a given system has a strong nonlinear or a strongonlinear with feedbacks over many space and time scales.
linear component. This provides insights as to whether theHowever, certain aspects of these systems may be less non-
system should be modeled by a nonlinear model or by a lindinear than others and the nature of nonlinearity may not be
ear model. We apply these ideas to a known dynamical sysalways clear. The work here uses a newly developed method
tem and to a time series that describe the transitions in atmoDarbellay, 1998; Darbellay and Vajda, 1999) that provides
spheric circulation. insights into the nature of linearity and/or nonlinearity, thus
allowing one to decide whether a specific process should be
modeled with a linear or a nonlinear model. We apply this
method to a time series from a known dynamical system (this
1 Introduction series serves as our control example) and then to an observ-
able from our climate system, which describes the transitions
The underlying principle behind the notion of linearity in in the atmospheric circulation. While exploring nonlinear-
dynamical systems is the fact that a linear combination ofity in other geophysical records using similar approaches is
all fundamental solutions of a system provides the generatredited to Palus and co-workers (Palus, 1996, 1995; Palus
solution of that system. Accordingly, since the general so-and Novotna, 1994; Palus et al., 1993), this work reports on
lution of linear dynamical systems is often periodic, peri- a novel time series.
odic evolutions (whether produced by linear or nonlinear de-
terministic systems) can be adequately described by linear
models. This linear character of periodic evolutions is as-2 Information and predictability
sociated with long-term predictability. A stochastic process
is defined as linear when it can be represented as a lineafhe method is based on information theory. Let us con-
combination of a sequence of white noise values with a zerasider two vectors of continuous random variablEs =
mean and variance?, which is analogous to the condition (X, ..., X,,) andY = (Y1, ...., ¥} taking real values. The
for linearity in dynamical systems. This leads to a variety of vector X can be regarded as the input set of variables of a
random processes, many of which realistically simulate natusystem andv as its output. Eaclx;, i = 1, n can be un-
ral processes. Nonlinearity can arise from chaotic dynamicablerstood as a predictor variable and ed¢hj = 1, m as a
systems that exhibit aperiodic behaviour and a rapid loss irpredicted one. The values th&f andY; are taking will be
predictability due to the sensitivity to initial conditions. It denoted as; andy;. Let p,(x) andp,(y) be the probability
can also arise from nonlinear stochastic processes, which ofdensity functions of the vectot¥ andY, andp, ,(x, y) be
ten are generated when white noise is applied to nonlineatheir joint probability density function. The densitips(x)
dynamical systems. According to the above, a given pro-and p,(y) will be referred to as the marginal densities. The
cess can exhibit linearity (due to periodicities and/or linearrandom vectorst andY are independent if and only if
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Fig. 1. A sample of the Mackey-Glass time series used here. Fig. 2. Linear predictability for the Mackey-Glass time series for

one, two, and three inputs. Linear predictability seems to saturate
after two inputs. This indicates that the linearity of this dynami-
Given an observed system, this condition is easy to Verify.c‘_"‘l syst_em is due to a simple cycle (which requires an embedding
What is more desirable is to have a single number, whichdmension of two).
will serve for comparing whether a pair of random vectors is
independent; thu_s, its range can be arbitrary. We may choos%r n=m=1ie (X,Y) = (X,Y), the above equation
zero for absolute independence and one for total dependencsecOmes
One way of obtaining zero out of the above definition is to
form the logarithm of the ratio of the joint probability with 7(X,Y) = —1/2In (1 — r2(X, Y)) ,
the product of the marginal probabilities. The expectation of
the logarithm of this ratio is called the mutual information Wherer is the correlation coefficient betweexi and Y.
1(X,Y) Given the definition op, this indicates that ifX, Y) is Gaus-
sian, theno (X, Y) = |r(X, Y)|. It follows that, in general,
DPx,y(X, y)

I1(X,Y) = / Pry(x, )N dxdy, the linear predictability ot by X is given by
re Px(X)py(¥)
det®
whered = n + m is the dimension of the space spanned by A (X, Y) = \/1 ~ Jon dem
the vectorsX andY if they are linearly independent. This el detyy

integral, 0 < I < oo, plays a central role in information
theory. To normalize it between zero and one, we can use thg Applications
transformation
Despite the fact thap is an excellent generalization af
— 1 _ -2
p=v1l-—e their difference cannot be equated to the nonlinear part of

The numbev) captures both thEnear andnon”neardepen_ the predlctablllty However, their difference does Signal the
dence betweeX andY and it can be interpreted as the pre- inadequacy of a linear model on the grounds that linear cor-
dictability of ¥ by X. This measure of predictability is based relations capture only linear relationships. As such a differ-
on the probability distributions underlying the data and doesence betweem and indicates that nonlinear models best
not depend on the particular model used to pre#idtom describe the process in question. Note that the above formu-
X. lations can be extended to time serie§,), by considering

The reason for choosing the above transformation isghat iNPUts as past values of the time series, and outputs as future
reduces to some well-known measure of linear dependencealues of the time series. For example, Fig. 1 shows a time
when the joint probability density af andY is Gaussian. Series obtained from the Mackey-Glass model. This model

For a d-dimensional Gaussian random vedoe (X, Y) is a nonlinear dynamical system described by the following
the mutual information takes the form time-delay differential equation
1 dets,.detxy, dx(t) ax(t—1)
—— = —bx(t s
I, 1) 2In detz ’ dt 14+ x¢(t —1) x ()

whereX, X, andx,, are thedxd, nxn, andmxm variance-  wherea = 0.2, = 0.1, andc = 10 are constants and=
covariance matrices &, X, andY, respectively. It can be 30 is the delay parameter. For these values, the system has a
shown that foz, the mutual information depends only on the chaotic attractor of dimension 3.6 (Wolf et al., 1985). Thus,
coefficients of linear correlation (Darbellay, 1998). In fact, to fully examine the dynamics, one needs a four-dimensional
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Fig. 3. Nonlinear predictability for the Mackey-Glass time series Fig. 4. The average hemispheric available potential energy (APE)
for the same inputs used in Fig. 2. Nonlinear predictability increasesas a function of time from 1 January 1979 to 31 December 1995.
as the number of inputs increases. This occurs because the nonlif-he time interval between successive values is 6 hours.

earity of this system needs a four-dimensional embedding and as a

result,p increases as the number of inputs increases. . . L ) .
Finally, the mutual information is obtained by summing over

all independent cells:
embedding. Figure 2 shows the linear predictabilitf Y = Px.y(Cp)
Y = x(t) as a function of time steps ahead£ 1,100) [(X,Y)= Z Px,y(Cy)In W~
using: (1) one inputX = X; = x(—1) (i.e. only the value k AR Ty Ak
1 step ago is used as a predictor of the future values; this ioing back to Figs. 2 and 3, we observe (1) a clear differ-
denoted as.1), (2) two inputs,X = (X3, X2) with X1 = ence between the two graphs as expected and (2) the nonlin-
x(—1) andX> = x(—21) (i.e. the values 1 time step ago and ear predictability increases as the number of inputs increases,
21 time steps ago are used to predict the future values; thigshereas the linear predictability remains virtually unchanged
is denoted as1 21), and (3) three inputsY = (X1, X2, X3) after two inputs. This indicates that the linearity of this dy-
with X3 = x(—1), X2 = x(—21), andX3 = x(-9) (i.e. the namical system is due to a simple cycle (which requires an
values 1 time step ago, 21 time steps ago, and 9 time stepsmbedding dimension of two). The nonlinearity, however,
ago are used to predict the future values; this is denoted aseeds a four-dimensional embedding and as a result, nonlin-
A1.9.21). ear predictability increases as the number of inputs increases.
Figure 3 shows the nonlinear predictabilityfor the same  Note that the long-term decreasedianda is a manifestation

conditions. For the above calculations, we use 100 000 valof the loss in predictability associated with chaotic systems.
ues. The algorithm for the estimation of the nonlinear pre- Next, we apply the above method to atmospheric data,
dictability is described in Darbellay (1998) and Darbellay namely mean hemispheric available potential energy (APE),
and Vajda (1999). The general idea behind this algorithmwhich can loosely be defined as the portion of the atmo-
is the partitioning ofR? into finite, non-intersecting subsets sphere’s potential energy that can be converted into kinetic
(cells) of RY whose sum is the whol&?. First, the entire  energy. APE is a very important variable since its variability
R? is partitioned into 2 cells by dividing each of itd edges  determines transitions in the atmospheric circulation. De-
into two equiprobable intervals. Then, an estimation of thetails on the calculation of APE can be found in Wintels and
various probability distributions is achieved by finding the Gyakum (2000). Figure 4 shows the time series which ex-
frequencies, i.e. by dividing the points in a cell by the total tends from 1 January 1979 to 31 December 1995 at a sam-
number of points. Subsequently, each cell is partitioned intgpling rate of 6 hours (24 836 points). Figure 5 shows the lin-
2¢ subcells and the procedure is repeated. A cell is not subdiear predictability for 1, 2, and 3 inputs (~1), x(—7), and
vided any further if local independence on that cell has beenx (—22)) and Fig. 6 shows the nonlinear predictability for the
achieved. Local independence is achieved when the followsame inputs. Here again we observe the differences between
ing condition is satisfied linear and nonlinear predictability, indicating that APE ex-

Py.y(C) Py y(C) hipits a nonlinear comppnent. Note that APE _also ex.hibits

- = : , a linear component. This component is associated with the

Px(Cu) Py(Cu)  Px(Cr) Py(Cr) diurnal variability (a periodic component) and it manifests it-
where Py, Py are the probability distributions ok and  self as an oscillation in both functions (remember {habn-
Y, respectively,Px y is the joint probability distribution of tains information about both linear and nonlinear structures
(X, Y), Cy is the cell in question an€y; is a subpartition of in the data). As can be seen from Fig. 7 (which shows the
that cell (for more details, see Darbellay and Vajda, 1999).difference betweep andx), the linear component competes
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Fig. 5. Linear predictability of APE for one, two, and three inputs. Fig. 6. Nonlinear predictability of APE for the same inputs used in

Here again linear predictability saturates after two inputs, indicatingFig. 5. Here again we observe that nonlinear predictability increases

a cycle, which corresponds to diurnal variability. as the number of inputs increases, and that the nonlinear component
in APE is stronger than the linear one.

with the nonlinear component over short time scales where
— A &~ 0, whereas the nonlinear component becomes dom- . . .
o . P o gGaussmn) process, with the same autocorrelation structure
inant at longer time scales. The above results indicate thal :
the variability superimposed on the periodic component is23 the obseryed data. The former process is ggnerated by tak-
. . ; . ~ing the Fourier transform of the data, randomizing the phases
nonlinear and as such, it should be modeled with a nonlinear : : : .
model and then taking the inverse Fourier transform. The latter in-
' ) . ) volves similar steps, but now the amplitudes are adjusted to
The question we need to ask next is: what is the source, g, ce a nonlinear transformation of a linear Gaussian pro-
of nonlinearity in APE? Is it dynamical or stochastic? In the ¢ (Theiler et al., 1992; Schreiber and Schmitz, 1996). In
case of the Mackey-Glass system, we dealt with a long tim&, ;- case, since we are investigating nonlinear components,
series and we knew a priori that the data come from & nony; js more appropriate that the null hypothesis involves non-
linear dynamical system. Thus, the differences between |inaar syrrogates. Note that since the surrogates preserve the

and 1 were expected and easy to interpret. However, wheny, i,correlation structure of the data, it is more or less guaran-
the method is applied to an observed and possibly short timg,aq thandata — ;sum However. due to the randomization of

series from a system whose mathematical formulation anqhe phases and the amplitude adjustmgfa £ oSU". This
physics may not be accurately known, one has to be carefyl,eans that i — i from the observed data is significantly dif-
In interpreting the.dn‘ferences betwegrandx. For examp!e, _ ferent from that of the surrogates, then the observed nonlin-
as the number of inputs and outputs increases, the estimatiofy j is most likely due to nonlinear dynamics and not due to
of the frequencies is done in high dimensional spaces angjs particular nonlinear noise. Accordingly, we proceed with
as such, it requires large amounts of data. Thus, if the dysg fo|10wing approach: for a given set of inputs, we calcu-

namical nonlinearity in the data is high dimensional and the|a the difference — A from the observed time series. Then

sample size is small, then the dynamical component will N0t iy the amplitude-adjusted Fourier transform method, we
be clearly delineated and will not be statistically significant.

‘ o ; , - generate many nonlinear surrogate time series of the same
It follows that. thg nonlinearity in the data is nonexistent or if length as the observed data, and for each one and for the same
the sample size is not adequate, thew 4. set of inputs, we fingh* — A*. Finally, we compare the surro-

If however, there is a difference betweemnda, then the gates and the observed data. Figure 8 shovss — A1.7.22
nonlinear part ino may be due to (1) chaotic (deterministic) for the APE data. It also shows; , ,, — A5 7 », for several
dynamics, or (2) nonlinear noise (recall the discussion in thesyrrogate time series. The curves for the surrogate data are
first paragraph of the Introduction), or (3) both. “bunched” together at aboyt — A = 0.08. The results in

The following procedure, which has become a commonFig. 8 clearly show that the surrogates deviate significantly
practice in testing for the nonlinear structure in the data, carfrom the observed data. From a set of 1000 surrogate time
be considered to address these issues. In general, when vgeries, we find that for any time step ahead that is greater
test for dynamical properties (such as dimensions, Lyapunothan 24 (4 days), the null hypothesis is rejected at a signif-
exponents, etc.), one sets the null hypothesis so that the olieance level greater than 95% (the level increases with
served data come from some appropriate stochastic surroFhis means that the nonlinearity in APE is not due to the
gate process. Depending on the application, this appropriatparticular nonlinear stochastic process used in the null hy-
surrogate process may be a linear or a nonlinear stochastigothesis. The null hypothesis is also rejected at shorter time
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Fig. 7. This plot shows the difference betweeandx and indicates ~ Fig. 8. This figure shows the difference between nonlinear and

that the linear component competes with the nonlinear componenlinear predictability for the APE data and for several surrogate

over short time scales (whege— A ~ 0), whereas the nonlinear data. The difference for the surrogate data is fluctuating at about
component becomes dominant at longer time scales. Note that since — 2 ~ 0.08, whereas for APE, it shows a steady increase with

o is the sum of the linear and nonlinear components) cannot be the time step ahead. This result indicates that APE has$o24 a

negative. The small negative values for small time steps is probablystrong nonlinear component akin to nonlinear deterministic dynam-
due to numerical artifacts. ics, whereas for < 16, it exhibits a significant linear component
(see text for details).
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