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Abstract. Two-dimensional unsteady incompressible flows
in which the potential vorticity (PV) plays a key role are ex-
amined in this study, through the development of the evolu-
tion equation for the PV gradient. For the case where the
PV is conserved, precise statements concerning topology-
conservation are presented. While establishing some intu-
itively well-known results (the numbers of eddies and saddles
is conserved), other less obvious consequences (PV patches
cannot be generated, some types of Lagrangian and Eulerian
entities are equivalent) are obtained. This approach enables
an improvement on an integrability result for PV conserv-
ing flows (if there were no PV patches at time zero, the flow
would be integrable). The evolution of the PV gradient is
also determined for the nonconservative case, and a plausi-
ble experiment for estimating eddy diffusivity is suggested.
The theory is applied to an analytical diffusive Rossby wave
example.

1 Introduction

Incompressible unsteady two-dimensional flow is often used
to model mesoscale oceanic dynamics (Pedlosky, 1987; Flierl
et al., 1987; Pratt et al., 1995; Pierrehumbert, 1991; del Cast-
illo-Negrete and Morrison, 1993; Haller and Poje, 1997; Mil-
ler et al., 1996; Rogerson et al., 1999; Miller et al., 1997;
Weiss and Knobloch, 1989; Jayne and Hogg, 1999; Brown
and Samelson, 1994; Balasuriya et al., 1998). A seemingly
key physical consideration in many such models is the con-
servation, or near conservation, of a scalar quantity called the
potential vorticity (PV) following the flow (Pedlosky, 1987).
In terms of Ertel’s general result (1942), the conservation of
the potential vorticityq is given by

Dq

Dt
=
∂q

∂t
+ v · ∇q = 0,
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wherev is the unsteady velocity field. Ifx and y are the
local eastward and northwards coordinates, respectively, im-
posing incompressibility and ignoring stratification leads to
the presence of a streamfunctionψ(x, y, t) which relates to
the velocity field throughv =

(
−ψy, ψx

)
. Under these con-

ditions, the conservation of PV can be written in the form

∂q

∂t
+ J (ψ, q) = 0, (1)

whereq = q(x, y, t), and the Jacobian is defined through
J (f, g) = fxgy−fygx . In approximate or balanced models,
q andψ are linked throughq = Lψ for some appropriate
operatorL, for example

q =
1

H
∇ ·

(
1

H
∇ ψ

)
, q = ∇

2ψ − Fψ + βy, etc,

whereH(x, y) is the depth of the fluid,β the Coriolis param-
eter, andF measures the size of the horizontal length scale
in comparison with the Rossby deformation radius (see Ped-
losky, 1987; Hoskins et al., 1985, for more details). Equa-
tion (1) would, therefore, be nonlinear, rendering its solution
difficult. Somewhat more realistic in oceanographic applica-
tions is the case where the PV conservation is broken through

∂q

∂t
+ J (ψ, q) = g, (2)

for some (small) functiong which may model eddy diffusiv-
ity, wind-forcing, etc. This paper addresses both cases (1)
and (2), and develops in Sect. 2 the evolution equation for
the PV gradient following the flow.

The PV gradient evolution equation has many properties
from which nice theoretical results can be derived. For the
particular case of the PV-conserving flow, precise statements
concerning topology-conservation can be derived. These
statements strengthen the intuitively well-accepted ideas in
the oceanographic community, while also providing some
less obvious consequences. Some of the facts shown (and
fairly carefully stated) in Sect. 3 are that (i) (Eulerian defini-
tions of) eddies and saddles travel exactly with the flow; i.e.
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the Eulerian and Lagrangian objects are equivalent, (ii) the
number of (Eulerian) eddies and saddles is each conserved
by the flow, and (iii) no PV patches can be generated by the
flow.

Section 4 focuses on the integrability and existence of
PV-conserving flows. The development of Sect. 3 permits
a strengthening of an extant result (Brown and Samelson,
1994) on the integrability of such flows. It is shown that
if there were no PV patches to begin with, and if the PV re-
mains a conserved quantity for all time, then the Lagrangian
particle trajectories are integrable. Since integrability has
been a much debated issue among the oceanographic com-
munity, a discussion is provided on its consequences, with
comparisons to some available numerical results.

The more general, nonconservative, flow (2) is examined
in Sect. 5. Not surprisingly, only limited qualitative results
are obtainable from the PV gradient evolution equation. The
effects of wind-forcing, bottom-friction and eddy diffusivity
are each considered forg in (2). Strong results (akin to those
of Sect. 3) are shown to exist in some specialised instances.
A simple experiment which can be used to approximate the
size of the conservation-breaking functiong is presented.

Both the strength and the weakness of the ideas in this pa-
per is the dearth of known analytical solutions to (1) and (2).
While being unable to give many rigid examples, it is still in-
structive that nice qualitative statements concerning solutions
are possible. One example, a Rossby wave, which satisfies
(1) exactly, is presented in Sect. 6, and is seen to satisfy the
topological constraints somewhat trivially. However, this ex-
ample is used to construct an explicit solution to (2), in which
g = D∇

2q (and models eddy diffusivity). The experiment
suggested in Sect. 5 is quantified for this diffusive Rossby
wave example, suggesting a quick method of estimating the
horizontal eddy diffusivity in the ocean.

2 Evolution of PV gradient

The flow shall be assumed two-dimensional, unsteady and
incompressible, in which case, the (Lagrangian) fluid parcel
trajectories are given by the solutions to

ẋ = −
∂ψ

∂y
(x, y, t),

ẏ =
∂ψ

∂x
(x, y, t). (3)

In Sects. 2, 3 and 4, the flow (3) is assumed to conserve
q(x, y, t), as expressed mathematically through (1). Though
referred to as the potential vorticity,q, in this study may, in
fact, be any scalar field (active or passive) advected accord-
ing to (1).

Define the PV gradient functionλ(x, y, t) by

λ(x, y, t) := ∇q(x, y, t) :=

(
∂q

∂x
(x, y, t),

∂q

∂y
(x, y, t)

)
,

where the∇ operator refers only to the gradient in the(x, y)
variables. Regions in which the PV gradient has large mag-
nitude are associated with regions in which cross-gradient
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Fig. 1. Qualitative picture of PV contours and associated critical
points:(a) an eddy, and(b) a saddle.

transport is suppressed. Additionally, key Eulerian entities
can be defined with reference toλ, as is described below.

Consider the contours of the PV field drawn at any fixed
time t . This is an Eulerian picture, since a fixed time is con-
sidered, and no immediate relationship to Lagrangian trajec-
tories is indicated. However, should closed contours exists
around a point, one would expect the flow to rotate about
that point (since the flow satisfies the constraint ofq being
preserved), and thus, be associated with an (Eulerian) eddy.
The existence of such closed contours implies the presence
of a local maximum or minimum at their centre, as pictured
as pointA in Fig. 1a. Such Eulerian snapshots are often used
to identify eddies experimentally (see, for example, Richard-
son, 1983, in which sea surface height / temperature data
from remote sensing is illustrated), or numerically (such as
the pictures in Dewar and Gailliard, 1994; Rogerson et al.,
1999; Miller et al., 1996; Miller et al., 1997; Poje and Haller,
1999; Constantin et al., 1994; Bush et al., 1996; van Heijst
and Clercx, 1998; Flierl et al., 1987). Notice that the centre-
point of such an eddy (which, with an abuse of language,
shall also be referred to as an eddy) is a local extremum of
q(x, y, t), at whichλ = 0.

Also important in transport analyses are saddle points of
the Eulerianq(x, y, t) field, which have the qualitative struc-
ture of pointB in Fig. 1b. Such points appear on the bound-
aries of cats-eyes or eddies, and have a pivotal role in the
analysis of transport across such separatrices (see Bower,
1991; Pierrehumbert, 1991; del Castillo-Negrete and Mor-
rison, 1993; Weiss and Knobloch, 1989; Rogerson et al.,
1999; Miller et al., 1996; Miller et al., 1997; Balasuriya
et al., 1998). From a dynamical systems viewpoint, saddle
points are the endpoints of homo/hetero-clinic trajectories,
whose destruction leads to chaotic transport. The behaviour
of a saddle point also governs eddy detachment events from
oceanic jets; the saddle point defining the “endpoint” of the
eddy splits off from the jet boundary (see Fig. 4 in Poje and
Haller, 1999). (Notice thatλ = 0 at saddle points as well).

For each fixed timet , isolated points at whichλ = 0 shall
be defined as critical points. Eddies and saddles are both in-
cluded in this definition (analogous definitions of these enti-
ties are also considered in the kinematical analyses of Haller
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and Poje, 1997, 1998, though their scalar field of interest
in the streamfunction, rather than the PV). Connected re-
gions in whichλ = 0 have piecewise constant PV, and shall
be defined as PV patches. Saddles, eddies and PV patches
are all Eulerian objects, defined through zeros ofλ in time
snapshots. The Lagrangian behaviour of these Eulerian en-
tities can be assessed through the development of the evolu-
tion of λ.

Let (x(t), y(t)) be a trajectory of the flow, i.e. the func-
tionsx(t) andy(t) are solutions to the differential equations
(3), and describe how the position of a fluid parcel (or float)
evolves with time. Now, since (1) is the statement of conser-
vation ofq along a trajectory, it means that

∂q

∂t
(x(t), y(t), t)

+ J (ψ (x(t), y(t), t) , q (x(t), y(t), t)) = 0.

The idea now is to determine an evolution equation for
λ (x(t), y(t), t); to describe how the PV gradient vector
evolves along a fluid trajectory. Taking thex-derivative (par-
tial) of (1),

∂qx

∂t
+ J (ψx, q)+ J (ψ, qx) = 0.

Since the time-derivative operator on a functionf following
the flow is given by

D

Dt
f =

∂

∂t
f + J (ψ, f ) ,

this implies that

D

Dt
qx = −J (ψx, q) = −ψxxqy + ψxyqx .

Similarly taking they-derivative of (1) gives

D

Dt
qy = −J

(
ψy, q

)
= −ψxyqy + ψyyqx .

These can be combined to form

D

Dt

(
qx
qy

)
= −

(
−ψxy ψxx
−ψyy ψyx

)(
qx
qy

)
. (4)

Now note from (3) that the fluid velocityv is given by

v =

(
u

v

)
=

(
−ψy
ψx

)
,

and hence, its (matrix) gradient (the stress deformation ma-
trix S) is

S := ∇ v =

(
−ψyx −ψyy
ψxx ψxy

)
. (5)

Therefore, if∗ denotes the transpose of a matrix,

S∗
:= (∇ v)∗ =

(
−ψyx ψxx
−ψyy ψxy

)
. (6)

With these definitions, (4) can be represented as follows.

Statement 1 (PV gradient evolution):As long as the PV is
conserved through (1), its gradientλ = ∇ q satisfies

λ̇ = −S∗ λ. (7)

It must be emphasised that the time derivative denoted by
the dot is a time derivative following the flow of (3); when
substituting(x, y, t) into the arguments of the above, one is
restricted to(x(t), y(t), t), where(x(t), y(t)) is a fluid par-
cel trajectory. (As an aside, it must be stated that (7) may
also be instantly derived by invoking the adjoint equation of
variations from dynamical systems theory (see, for example,
Fiedler and Scheurle, 1996). However, the above develop-
ment is more transparent.)

3 Topological constraints

Flows in which PV is conserved are well-known in the ocea-
nographic community to “preserve the topology of the PV
field.” There are, however, few instances in the literature in
which the specifics of this are described, let alone justified.
It is possible to utilise the PV gradient evolution equation de-
rived in the previous section to make some precise statements
concerning this preservation of topology. Though some of
the results of this section are not surprising, it is felt that stat-
ing them carefully would avoid misconceptions. The power
of using the current approach is that some less obvious con-
sequences can also be stated.

Notice that an absence of PV patches at some timet0 can
be expressed by the statement:λ(x, y, t0) is zero at most, at
finitely many isolated points. With this definition in mind,
the following can be shown:
Statement 2 (PV patch prohibition): Suppose there were
no PV patches at time zero. Then, as long asq remains a
genuine conserved quantity for the flow (3), no PV patches
can appear.

As long as conservation persists, no PV patches can be
generated. This automatically enforces regular motion, since
piecewise constant areas of PV, in which particles may roam
freely while still satisfying PV conservation, are not formed
(piecewise constant PV by itself does not mean nonregular
motion; see the PV conserving cusped jet model in Pratt
et al., 1995, for example). Statement 2 is proven by show-
ing that for anyt , λ(x, y, t) = 0 at most at isolated points.
This is facilitated by the observation from (7) that, ifλ = 0 at
some point on a trajectory,λ must be zero at every point on
the trajectory. A straightforward intuitive interpretation of
this observation yields the desired result; the technicalities
associated with the proof are given in Appendix A.

Statement 2 does not preclude the possibility of the PV
field gradually flattening over time, such that PV patches are
approached as time goes to infinity. On the other hand, the
generation of PV patches in finite time is an indication that
PV conservation is being violated in some way.

Critical points (whereλ(x, y, t) = 0) identify (Eulerian
definitions of) eddies and saddles, whose Lagrangian behaviour
is of interest. Do critical points move with the flow, i.e. if a
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dyed fluid parcel is at a saddle/eddy at a given instance in
time, will it remain at a saddle/eddy? Can an eddy flip into
a saddle, or vice versa? Can new saddles/eddies be created?
Can they be destroyed? Is the number of eddies in a flow
constant? In answering these questions, the PV gradient evo-
lution equation proves invaluable. The structure of (7) shows
that, if λ = 0 at some point on a trajectory, thenλ must be
zero at every point on a trajectory, sinceλ is a fixed-point of
the evolution equation (7). As long as PV is conserved, this
shows that critical points would travel with the flow. In other
words, a float placed at a critical point will always remain at
a critical point. It is also not possible for a critical point to
suddenly appear in a PV conserving flow. If it did, a zero ofλ

would have emerged from nowhere (which is impossible by
(7), sinceλ must be zero in backwards time along that trajec-
tory). Similarly, critical points cannot disappear, leading to
the following result.
Statement 3 (Critical points are Lagrangian and immor-
tal): As long as PV conservation is satisfied, critical points
(i) travel with the flow (3), and (ii) cannot be born or de-
stroyed.

It is intuitively pleasing that the Eulerian description of
critical points (which were defined in terms of a fixed-time
scalar field) maintains a strong connection with a Lagrangian
description; the Eulerian entity is identified precisely with a
Lagrangian particle. A float positioned at a critical point at
time zero, would remain exactly at a critical point forever!
This is a special feature of PV conserving flows; there is
no necessity for such correspondence if PV is not conserved
(except in certain special cases, which shall be described in
Sect. 5).

Notice that Statement 3 does not, by itself, preclude the
possibility of an eddy becoming a saddle, or vice versa, while
preserving PV conservation. Critical points remain critical
points, but there is no guarantee that eddies remain eddies.
In a recent numerical experiment by Constantin et al. (1999),
using a surface-geostrophic relationship betweenq andψ ,
(1) was numerically solved to simulate the behaviour near a
saddle point. In their Fig. 4, Constantin et al. (1999) noticed
that the saddle angle gradually closes with time, thereby get-
ting closer to a front. Nevertheless, the front was never actu-
ally achieved; the saddle existed for all finite times. The in-
dications are then that a saddle maintains its structure within
a PV conserving flow.

It is indeed possible to prove using (7) that a saddle re-
mains a saddle (and cannot flip into an eddy), under PV con-
servation. Similarly eddies are prohibited from flipping into
saddles. The proof of this result (stated below) is relegated
to Appendix A.
Statement 4 (Eddy/Saddle flip): In the presence of a PV
conserving flow, an eddy cannot flip into a saddle (or vice
versa) at any instance in time.
Statement 5 (Eddy/Saddle conservation):Suppose that the
only critical points in the flow (3) are eddies and saddles. If
there weree eddies ands saddles initially, there will continue
to bee eddies ands saddles as long as PV conservation is
satisfied.

jet
jet

(b)(a)

Fig. 2. Merging of two saddles: a cats-eye becomes an eddy ready
to detach.

Statement 5 is an immediate consequence of Statement 4,
and states that the number of eddies (resp. saddles) in the
flow would be conserved as long as PV is conserved. Patho-
logical types of critical points are debarred from the flow in
making this statement; only eddies and saddles are permitted
(this is an effective constraint on the smoothness ofq).

Statements 2, 3, 4 and 5 together give specific instructions
on how the potential vorticity fieldq(x, y, t) must maintain
its topological structure. Topological changes would result,
for example, in the merging of two saddles, or in the detach-
ment of an eddy from the main jet. Two saddles coalescing
can be used to model the creation of an eddy (in readiness
for detachment) from a cats-eye structure (see Fig. 2). In this
figure, the temporal evolution of PV contours is presented. In
Fig. 2a, a cats-eye is shown, and the main jet flows towards
its south. The two saddle points, which define the cats-eye,
have approached each other, and are preparing to coalesce.
By Fig. 2b, these saddles have merged to form just one sad-
dle; the eddy is in a preparatory stage for detachment from
the main jet. Thus, a critical point has disappeared, thereby
contradicting Statement 3. This scenario is often used as a
“thought-experiment” on how mesoscale eddies (rings) may
detach from the Gulf Stream. Given the topological change,
the time evolution presented in Fig. 2 is an indication of non-
conservation of PV.

Formation of an eddy in the form of Fig. 2 can be thought
of as a precursor to an eddy detachment event. During the de-
tachment process, some numerical studies show that eddies
may maintain a long, thin, attachment to the main stream for
some time (see Fig. 4 (t = 40) of Rogerson et al., 1999;
Fig. 4 (t = 33.2, 39.8,49.8) of Flierl et al., 1987). This
can be interpreted as a reluctance to detach, since that would
topologically change the PV field further (the saddle at the
connection point would disappear). In other words, the pres-
ence of the thin attachment would support the fact that the
flow is attempting to maintain conservation of PV. In the nu-
merical studies mentioned, the eddies do eventually detach,
despite apparently attempting not to do so. Small diffusivity
is present in these models; the conjecture from the present
results is that nonzero diffusivity can cause eventual topo-
logical change, but, if sufficiently small, will display resis-
tance to it. A further discussion on diffusive issues appears
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in Sect. 5.3, with a specific example also examined in Sect. 6.

4 Integrability and existence of solutions

The paper by Brown and Samelson (1994), which states
that particle motion in a PV-conserving incompressible two-
dimensional flow is integrable, has led to much discussion
among the oceanographic community. In retrospect, this re-
sult is not surprising, since it effectively claims that a flow in
2-D, possessing an integral of motion, is integrable. The in-
tegral of motion for the trajectory equation (3), in this case, is
the PV fieldq(x, y, t). If, by adopting the dynamical systems
viewpoint, one imagines the Lagrangian motion in the three-
dimensional phase space(x, y, t), the presence ofq(x, y, t)
as a constant of motion implies that the flow of (3) is confined
to surfacesq(x, y, t) = constant. Ifq(x, y, t) possesses the
necessary smoothness, and is not degenerate, these surfaces
will demarcate the(x, y, t) phase space smoothly; the flow
is, therefore, integrable.

It turns out that Brown and Samelson’s hypotheses (1994)
for integrability can be weakened, using Statement 2. To
show how this is achieved, their result is stated first:
Integrability statement of Brown and Samelson (1994):
Assume a PV conserving flow satisfying (1) for all time, in
whichλ 6= 0 for all (x, y, t). Then, the flow (3) is integrable.

The assumption of interest in the above is thatλ 6= 0 for
all (x, y, t) (critical points are prohibited from the flow for
all time). This is clearly restrictive, and Brown and Samel-
son (1994) attempted to weaken this condition by consider-
ing certain types of invariant submanifolds in the domain.
However, the results of Sect. 2, in fact, can be used to im-
prove this result in a clearer fashion. First, it can be noted
that Brown and Samelson (1994) were unnecessarily restric-
tive in their assumption thatλ 6= 0 at all points(x, y, t). It
is, in fact, sufficient forλ 6= 0 except possibly at a finite
number of isolated points for each fixedt . This is the first
improvement that can be made; a justification appears in Ap-
pendix A.

To enable an additional weakening of the assumption, the
result of Statement 2 (no PV patches can be generated if the
PV is genuinely conserved) can be used. The necessary as-
sumption for integrability is that for any timet , there can
only be a finite number of isolated points at whichλ(x, y, t)

= 0. This can be guaranteed from Statement 2 ifλ = 0
at most at a finite number of isolated points, at time zero.
Should there be no PV patches in the initial (time zero) PV
field, this condition is satisfied. Thus, the assumption of
Brown and Samelson (1994) on the nondegeneracy ofq for
all time, can be reduced to a nondegeneracy requirement only
at time zero, and even at this time, a finite number of isolated
critical points may exist. This permits the following stronger
version of integrability.
Statement 6 (Integrability): Assume a PV conserving flow
satisfying (1) for all time, in which there were no PV patches
at time zero. Then, the flow (3) is integrable.

Therefore, an incompressible, two-dimensional flow

which possesses a conserved quantityq for all time, and
which is not piecewise constant at time zero, produces parti-
cle trajectories that are integrable. It must be noted that this
is a statement on the integrability of the ordinary differential
equations (3), and not on the partial differential equation (1),
per se.

There is an innocuously powerful assumption in both
Statement 6 and in the original statement in Brown and
Samelson (1994): that the flow is PV conserving for all time.
Thus, the functionq(x, y, t) exists as a smooth function for-
ever. However, sinceq andψ are typically interrelated, the
conservation equation (1) (when expressed purely in terms of
the streamfunction) is nonlinear. Such equations, in general,
can be ill-posed, and may possess solutions which blow up
in finite time. In other words, it is not clear that smooth solu-
tionsq(x, y, t) exist to the conservation equation (1) for all
times. Should such solutions not exist, then the integrability
result of Statement 6 does not apply. On the other hand, for
any flow which genuinely satisfies PV conservation for all
time, integrability holds.

It is of interest, then, to address the existence of solutions
to (1) for times approaching infinity. Under some restric-
tive assumptions which are nevertheless sometimes used in
modelling, such infinite time solvability of (1) is justifiable.
For example, if one looks for solutions which are “steady in
a moving frame,” the temporal evolution of the PV can be
eliminated, and thus, solutions will automatically exist for
all time. Such models are often used in addressing the Gulf
Stream (“steady in a frame moving eastward”) or detached
eddies (“steady in a frame moving westward”). No compli-
cated behaviour is possible in these simple models. Another
simplifying case is that of time-periodicity, an often used
assumption in dynamical systems theory (the motion of the
Gulf Stream appears “close to” periodic, lending some sup-
port to this assumption). In this case, existence of smooth so-
lutions for the time duration of the period immediately gives
infinite time existence. In both of these cases, chaotic parti-
cle motion cannot occur, since the surfacesq(x, y, t) = con-
stant (when drawn in the(x, y, t)-space) provide a smooth,
infinite-time demarcation of the phase-space.

It is also possible that infinite-time solutions to (1) exist,
yet have no “nice” limit ast → ∞. For example, contours of
PV may gradually contort and approach one another as time
proceeds, causing some level of mixing in the flow. How-
ever, these contours cannot contort arbitrarily, or cross, since
topological preservation is required from Sect. 3.

The alternative scenario is that solutions to (1) cease to
exist in finite time. The precise nature of the PV model that
is in use may have profound implications on this “blow-up
in finite time” issue. Depending upon the relationship be-
tweenq andψ , different types of nonlinear partial differ-
ential equations result. If using a barotropic version, such
as q = ∇

2ψ − Fψ + βy, the resulting nonlinear equa-
tion (1) is in fact fairly similar to the (non-oceanographic)
two-dimensional incompressible inviscid vorticity conserva-
tion equation, obtained by simply taking the curl of the Eu-
ler momentum equation (Chorin and Marsden, 1993). There
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would be additional terms which result from the geophysi-
cal considerations, but these would be linear and of lower
order. Given the fact that existence and uniqueness of such
planar Euler flows for all time are well-known (Yudovich,
1961, 1962), it is reasonable to anticipate similar results for
the PV conservation equation (1), for barotropic models. In
fact, usingq = ∇

2ψ + βy, it is shown in Proposition 3 of
Balasuriya (1997) via a priori estimates that solutions, if they
exist, remain smooth for arbitrarily large times.

If the surface-quasigeostrophic model (in whichq repre-
sents a potential temperature) is used instead, certain results
concerning the solution of (1) are available (Constantin and
Wu, 1999; Constantin et al., 1999, 1994). Existence issues
of genuine (strong) solutions for this case are only known
for finite times (Constantin et al., 1994; Constantin and Wu,
1999). However, it is shown in Constantin and Wu (1999)
that, should a strong solution exist, it remains smooth for fi-
nite time. Numerical results of Constantin et al. (1999) also
indicate that finite time singularities probably do not occur.
The contours steepen in their numerics, gradually approach-
ing the formation of a front, a curve across which the PV
abruptly changes value. Though approaching a front-like
structure, the contours never actually achieve such discon-
tinuity. Now, should a front form in finite time,λ would
possess a singularity along the front, and hence, frontogene-
sis is associated with the blow-up in finite time of solutions
to (1). The numerical results are suggestive that nonsingu-
lar solutions probably exist for all time. These arguments
provide evidence that the PV conservation equation (1) pos-
sesses genuine solutions for all time, should the initial PV
distribution be smooth.

Statements 1–6 in this paper are all dependent on the con-
servation equation (1) being satisfied (either for infinite times,
or for suitable times). In any genuine PV conserving flow,
this should happen by definition. Hence, the results are all
valid for genuine PV conserving flows. Should blow-up of
solutions occur (in spite of the evidence to the contrary that
has been presented), PV conservation is violated, and none
of these results hold.

5 Nonconservation of PV

This section returns to the more general flow, as given in (2),
in which the PV-conservation is broken through the presence
of the functiong. However, particle trajectories still satisfy
(3). First, the modification of the PV gradient evolution state-
ment is presented.
Statement 7 (PV gradient evolution under nonconserva-
tion): As long asq(x, y, t) satisfies (2), its gradientλ obeys

λ̇ = −S∗ λ + ∇ g. (8)

Here,λ andS∗ have the same meanings as in Sect. 2, and
λ’s evolution is along a trajectory. The proof of this statement
is simple: one follows the argument in Sect. 2 used to prove

Statement 1, and notes that an additional term∇g appears on
the right-hand side.

A crucial property distinguishing (8) from (7) is that ifλ
is zero at some point on a trajectory, there is no necessity for
it to be zero everywhere on that trajectory. Thus, the quali-
tative equivalence between Eulerian and Lagrangian entities
presented in Statement 3 is destroyed when PV conserva-
tion breaks. Shouldg, the conservation breaking function,
be “small,” one may expect some approximation to hold.

Such an approximation suggests a “quick and dirty” exper-
iment for estimating the conservation-breaking mechanism’s
magnitude for a real flow. Supposeg = O(a). Imagine that
at time zero, a float is placed precisely at a critical point in
the ocean (though either an eddy or a saddle may be chosen
as this critical point; an eddy would be experimentally better,
since the saddle is most likely associated with an unstable di-
rection of flow, rendering the precise positioning of the float
at the saddle problematic). Now, think of the PV gradient,
measured at the float, as a function of time. Thus,λ(0) is
zero, and by monitoring the float’s position as time proceeds,
and the associated PV values at the float, one may obtain the
functionλ(t). Sinceλ(0) = 0, (8) gives that, for smallt ,

λ̇(t) ≈ ∇g (x(t), y(t), t) = ∇g (0, 0, 0)+O(t),

and thereby

λ(t) ≈ t ∇g(0, 0, 0)+O(t2) = O(at)+O(t2).

If |λ(t)| were plotted as a function oft , a linear relationship
(for small t) is to be expected. Thus, the slope of the graph
provides an experimental assessment of the magnitude,a, of
the PV conservation-breaking mechanism. The linear rela-
tionship is not absolutely accurate, of course, since the quan-
tity ∇g would not remain constant; neither is the argument
valid should the float be far from the initial critical point.

The strong eddy/saddle conservation results of Sect. 3 no
longer apply to the case where the PV is not conserved. How-
ever, a partial result can still be stated, and appears below.
Weaknesses in this Statement 8 include (i) identification of
eddies/saddles through the sign of the HessianH = qxxqyy−(
qxy

)2 (critical points whereH = 0 cannot be handled), and
(ii) the result is only valid for short times.
Statement 8 (Critical point persistence): Assume a flow
satisfying (2) for short times, and that the potential vorticity
q remains smooth. Moreover, assume that at time zero, there
aree critical points whereH > 0, ands critical points where
H < 0. Then, for at least a short time beyond zero, there will
bee eddies ands saddles in the flow. Moreover, a bifurcation
of a critical point is only possible ifH = 0.

The proof of this is presented in Appendix A. No informa-
tion from the dynamical equation (1) was necessary; the only
requirement is thatq be sufficiently smooth. However, criti-
cal points do not travel with the flow; the assertion is merely
that eddies/saddles persist as Eulerian objects for short times.
Moreover, eddies/saddles are only defined through the sign
of H , which provides an incomplete classification of criti-
cal points (for example, ifq = x4

+ y4, the local minimum
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at (0, 0) is not captured through this test). Eddy-to-saddle
flips may occur since the value ofH , which is positive to be-
gin with, could approach zero at some finite time, and then
become negative. Such a bifurcation cannot happen in PV
conserving flows (see Statement 4). For related (and more
extensive) bifurcation results (though stated with respect to
the streamfunction rather than the PV), see Theorem 2.1 in
Haller and Poje (1997).

The changes which occur in the other results are now ad-
dressed. To do so, different forms of physically applicableg

shall be considered as examples.

5.1 Bottom friction

If a flat-bottomed ocean with friction at the ocean bed is hy-
pothesised, the PV would dissipate accordingly. This can be
modelled through (2), with the functiong chosen to be

g(x, y, t) = −a q(x, y, t),

wherea is a positive constant (Pedlosky, 1987; Jayne and
Hogg, 1999). The PV gradient, through substitution in (8), is
governed by

λ̇ = −
(
S∗

+ aI
)
λ, (9)

whereI is the identity matrix. Equation (9) shares an impor-
tant property with equation (7): ifλ is zero at some point
on a trajectory, it shall be zero at all points on that trajec-
tory. Analogous versions of Statements 2, 3, 4 and 5 would,
therefore, all hold, even when the PV is dissipated through
bottom friction! It is somewhat nonintuitive that, in flows in
which PV dissipates through bottom friction, floats placed at
saddles remain at saddles. Even integrability (Statement 6)
can be proven, since this form of dissipation can be absorbed
using the standard integrating factor approach. If (2) (with
g = −aq) is multiplied through byeat and rearranged, one
obtains
∂

∂t

(
eatq

)
+ J

(
ψ, eatq

)
= 0.

Thus, the functionQ(x, y, t) = eatq(x, y, t) is conserved by
the flow, and can be used to play the role ofq in Statement 6.
Motion in the (conceptual) three-dimensional(x, y, t) phase-
space is confined to the surfacesQ(x, y, t) = eatq(x, y, t) =

constant; i.e. the surfacesq(x, y, t) = Ce−at , whereC is
a constant. Qualitatively, an exponential spreading of con-
tours ofq is, therefore, to be expected (in comparison with
a PV conserving flow), thereby [comparatively] reducing the
PV gradients exponentially with time. The PV fieldq ap-
proaches a uniform zero value as time goes to infinity; how-
ever, if nondegenerate to begin with, it does not become zero
at any finite time. It is in this sense that PV dissipation occurs
in the presence of bottom friction; however, the parcel tra-
jectories still remain integrable via Statement 6. A bottom-
frictional PV jet flow was analysed by Jayne and Hogg (1999)
numerically, who then noted that the observed phenomena
were well described through a quasi-analytical model they
developed. This is consistent with the observation on inte-
grability presented here.

5.2 Forcing

The dynamical equation (2) could also model the breaking
of PV conservation through the inclusion of wind-forcing.
Then, (8) behaves like a linear nonautonomous inhomoge-
neous equation forλ.

For the extremely restrictive class of spatially-independent
forcing, immediate results are available. Ifg = g(t) alone,
this would mean that∇g = 0. Then, (8) simplifies to (7), the
equation whose properties provided Statements 2–5. Thus,
if g = g(t), the analogous versions of Statements 2–5 hold
even for the equation (2). Potential vorticity breaking through
spatially independent forcing provides effectively the same
behaviour as PV-conserving flows, at least as far as the as-
pects addressed in the present work. Integrability can also be
shown by defining a functionh(t), such thath′(t) = g(t),
and rewriting (2) in the form

∂

∂t
[q(x, y, t)− h(t)]

+J (ψ(x, y, t), q(x, y, t)− h(t)) = 0.

Thus, the new functionQ(x, y, t) = q(x, y, t) − h(t) pro-
vides a conserved quantity.

Qualitative statements in the spirit of the other results in
this paper can no longer be made for a more general forcing
functiong(x, y, t). Nevertheless, an equation governing the
PV gradient vector (the crucial vector which describes the
Eulerian objects of critical points and PV patches) has been
derived.

5.3 Diffusion

Models, in which eddy diffusivity plays the dissipative role,
are commonly used. In such cases, the standard procedure is
to set

g = D∇
2q

in (2), whereD is the diffusive parameter (or equivalently,
the reciprocal Ṕeclet number), which is assumed small but
positive (Rogerson et al., 1999; Miller et al., 1997; Babiano
et al., 1994). This is a frequently used procedure to model
the effect of small scale turbulence in the ocean; the averaged
effect of such turbulence may reflect itself in the dynamical
equations through a diffusive term of this nature. This results
in a PV dissipating flow governed by

∂q

∂t
+ J (ψ, q) = D∇

2q. (10)

Even in some numerical models whose intention is to model
PV conserving flows, diffusivity is sometimes included in the
numerics merely to promote numerical stability (Dewar and
Gailliard, 1994; Flierl et al., 1987). Substituting the eddy
diffusive version ofg in the PV gradient equation (8),

λ̇ = −S∗ λ +D∇
2λ.

This is a reaction-diffusion equation describing the evolution
of the PV gradient along a trajectory. The first term on the
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right is nonlinear, in general, since the PV is an active scalar,
and thus,Swould depend onλ in some nontrivial fashion. It
is clear that none of the Statements 1–6 are automatically ap-
plicable for this diffusive case; whenλ is zero at a point on a
trajectory, there are not any nice implications. A fluid parcel
placed at a critical point would distance itself from it with
time t , such that|λ(t)| approximately goes asDt for small
times. Thus, the magnitude of (horizontal) eddy diffusivity
may be roughly approximated by simply releasing a float at a
(centre of an) eddy, and observing how its PV gradient devi-
ates from zero, with time. The slope of this graph near time
zero would estimate the eddy diffusivity. The usage of this
idea for the particular example of a (diffusive) Rossby wave
is presented in Sect. 6.

Occasionally, higher-order diffusivities, such asg =

−D∇
4q, are also used (Flierl et al., 1987). For such super-

diffusivity, the PV gradient would evolve according to

λ̇ = −S∗ λ −D∇
4λ.

Diffusive models are not expected to satisfy the topology
preservation properties outlined in Sect. 3. In fact, it is often
seen, both numerically and experimentally, that 2-D dissipa-
tive flows tend to self-organise, creating larger eddies (vor-
tices) from smaller ones. Such results were shown by van
Heijst and Clercx (1998) experimentally in Figs. 1 and 2,
and numerically in Figs. 3 and 4 (using dynamics of the form
(10) with the modelq = ∇

2ψ in their numerics). Pierrehum-
bert’s calculation (1991), which includes numerical diffusion
in an attempt to solve PV-conserving flows, also displays this
phenomenon (see his Fig. 14). Topology change is also ob-
servable in the diffusive calculations of Flierl et al. (1987)
(their Figs. 2, 3, 10, 11, 12, 13, for example), in which the
number of critical points is seen to change with time. Other
aspects of topology change occur during eddy detachment,
when a saddle point must disassociate from the jet, or in its
preparatory stage when two saddle points merge to form an
eddy from a cats-eye (see Fig. 2). Since these phenomena
destroy the topology, in a generic sense, PV conservation is
violated. Diffusivity could be directly responsible for such
events.

6 Rossby wave example

This section develops an analytical example illustrating the
use of the theoretical ideas in this paper. The focus is on
the barotropicβ-plane model, in whichq andψ are linked
through

q(x, y, t) = ∇
2ψ(x, y, t)+ βy, (11)

whereβ is the Coriolis parameter. Nondimensional variables
will be used for convenience. One of the only known nontriv-
ial solutions to the conservative equation (1) with this model
is a Rossby wave given by the streamfunction

ψ0(x, y, t) = sin[k (x − ct)] sin(ly) ,

whereβ = −c
(
k2

+ l2
)

(Pierrehumbert, 1991; Pedlosky,
1987). (Many authors use either linearised or approximate
solutions to (1), given the difficulty in finding exact solu-
tions.) An explicit expression for the PV can be written us-
ing (11), and hence, this example is automatically integrable.
Moreover, topology conservation is also obvious, since the
q0 field merely shifts at speedc in the eastward direction.
Therefore, this example is still somewhat too trivial for il-
lustrating the qualitative statements of Sects. 3 and 4. On
the other hand, it is possible to construct a diffusive solution
based on this example, as is shown below.

The streamfunction

ψ(x, y, t) = exp

(
Dβt
c

)
ψ0(x, y, t) (12)

is a solution to the PV diffusing equation (10), while satis-
fying the model (11). A (more general) derivation of this
appears in Balasuriya et al. (1998); for the current work, this
may be verified by straightforward substitution. For short
times, the conservative streamfunctionψ0 and the diffusive
streamfunctionψ remain close, since by Taylor expanding
the exponential in (12),

ψ(x, y, t)− ψ0(x, y, t) = O (Dt) ,

whereβ andc shall be assumed fixed. The corresponding
velocity fields, derived from the gradients of the streamfunc-
tions, are, therefore,O (Dt)-close. The distance between
particles which began at the same point at time zero under
these two velocity fields would then increase asO

(
Dt2

)
for

smallt (since the position is calculated by integrating the ve-
locity field with respect tot).

The PV fieldsq andq0, corresponding to the diffusive and
conservative Rossby wave solutions, respectively, are related
through

q(x, y, t) = exp

(
Dβt
c

)
q0(x, y, t)

+ βy

[
1 − exp

(
Dβt
c

)]
.

This is derivable by applying the Laplacian to (12), and then
addingβy. By now taking the gradient of the above, the
corresponding PV gradient vectors are seen to obey

λ(x, y, t) = exp

(
Dβt
c

)
λ0(x, y, t)

+ β

[
1 − exp

(
Dβt
c

)]
ŷ, (13)

whereλ = ∇q andλ0 = ∇q0.
Suppose a critical point is identified in the diffusive flow

at time zero, by using the PV gradient fieldλ. Since
λ(x, y, 0) = λ0(x, y, 0) from the above expression, this
would be a critical point of identical structure with respect
to the conservative PV field. Now, suppose a float is placed
at this critical point, at time zero, and is permitted to travel
according to the diffusive streamfunctionψ . Let this float’s
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trajectory be given by(x(t), y(t)), along which the evolution
of the PV gradient is to be analysed.

Now, the float trajectory(x0(t), y0(t)) associated with
the conservative streamfunctionψ0, would remain within
O

(
Dt2

)
of (x(t), y(t)). Hence,

λ0 (x(t), y(t), t) = λ0 (x0(t), y0(t), t)+O
(
Dt2

)
,

by Taylor expansions. However, Statement 3 tells us that
(x0(t), y0(t)) remains a critical point for allt , and hence,
λ0 (x0(t), y0(t), t) is zero. Thus,λ0 (x(t), y(t), t) is of the
order of

(
Dt2

)
. Substituting in (13),

λ (x(t), y(t), t) = exp

(
Dβt
c

)
O

(
Dt2

)
+ β

[
1 − exp

(
Dβt
c

)]
ŷ

= [1 +O (Dt)]O
(
Dt2

)
+ β

[
−
Dβt
c

+O (Dt)2
]
ŷ

= −
β2Dt
c

ŷ +O
(
Dt2

)
+O (Dt)2 .

Therefore, for small times, the PV gradient’s magnitude be-
haves like

|λ (x(t), y(t), t)| ≈

∣∣∣∣∣β2Dt
c

∣∣∣∣∣ =

∣∣∣β (
k2

+ l2
)
Dt

∣∣∣ .
This quantifies the argument presented in Sect. 5, which de-
scribed how the PV gradient’s evolution could estimate the
horizontal eddy diffusivity in the ocean. For the specific
Rossby wave model that has been examined here, and for a
float placed at a critical point (for example, at the centre of an
eddy) at time zero, the following has been established: The
PV gradient, measured at the float as it is transported with the
diffusive flow, increases in size linearly with time, with the
proportionality factorβ2D/|c|. If data were gathered from
the float and|λ| plotted versust , the initial slope of the graph
could be experimentally calculated, and then multiplied by
|c|/β2 to give an immediate estimate of the effective hori-
zontal eddy diffusivity parameter. Knowledge of the relevant
wavespeedc (or equivalently, the wavenumbersk andl) and
the local Coriolis parameterβ are necessary in this estimate;
the process works if a dominant wavespeed can be identified.

7 Conclusions

The PV gradient vector’s evolution along fluid trajectories in
two-dimensional incompressible flows has been established
in this paper. Both PV conserving and nonconserving flows
were considered.

It was shown that, in the presence of PV conserving flows,
in which q remains a smooth function, its topological struc-
ture must be preserved; more precisely: (i) PV patches can-
not be generated, (ii) eddies and saddles will travel exactly

with the flow, and (iii) the numbers of eddies (resp. saddles)
remains constant. The equivalence established between Eu-
lerian entities (eddies/saddles, defined through fixed-time PV
contours) and their Lagrangian counterparts (float trajecto-
ries) is an important observation. Moreover, an integrability
result was also presented: flows with no PV patches at time
zero, and which conserve PV for all times, have integrable
trajectories. This improves an available result, and an attempt
was also made to shed additional light on the oceanographic
consequences of such integrability, and the closely related
issue of the existence of infinite time solutions.

The PV gradient’s evolution in the presence of eddy dif-
fusivity, bottom friction, or wind-forcing was also obtained.
Some of the qualitative results of PV-conserving flows ex-
tended to special cases of such flows. In general, however,
such statements would be true only in some approximate
sense. This could be taken advantage of, in constructing a
simple experiment which could be used to estimate horizon-
tal eddy diffusivity. Through the use of a particular analytical
example (of a dissipative Rossby wave), a quantification of
such an experiment was presented.
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Appendix A: Proofs of statements

Proof of Statement 2 (PV patch prohibition):

It is necessary to show that, ifλ(x, y, 0) = 0 at most, at
(finitely many) isolated points, and if the PVq(x, y, t) is
genuinely conserved by the flow for all time, then at each
fixed t , λ(x, y, t) = 0 at most, at isolated points. This is
proven simply by considering its contrapositive statement,
i.e. it shall be shown that if for somet , λ(x, y, t) = 0 at
more than at isolated points, then the conditions of the state-
ment are violated.

Pick T such thatGT is nonempty, contains more than just
isolated points, and is defined by

GT = {(X, Y ) : λ(X, Y, T ) = 0} .

It is necessary to prove the existence of a subset of{(x, y) :

λ(x, y, 0) = 0} which is nonempty and not a collection of
finitely many isolated points. This is constructed by defining
G0, which is obtained by letting the setGT flow for a time
−T with respect to the flow (3). Note from (7) that ifλ = 0
at some point on a trajectory, thenλ = 0 at all points on the
trajectory. Therefore, for all(x, y) ∈ G0, λ(x, y, 0) = 0.
It remains to be shown thatG0 is not a collection of iso-
lated points. SinceGT is not such a collection, there exists
a sequence(Xi, Yi) contained inGT , converging to a point
(X̄, Ȳ ) ∈ GT , such that(Xi, Yi) 6= (Xj , Yj ) if i 6= j . Now
construct(xi, yi) by flowing (Xi, Yi) for time −T by (3),
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for eachi. By the continuity of the flow operation,(xi, yi)
must converge to(x̄, ȳ), which is itself obtainable by flowing
(X̄, Ȳ ) by time−T . Hence,(x̄, ȳ) is inG0. Now consider the
set of points{(x̄, ȳ), (x1, y1), (x2, y2), (x3, y3), ...} which is
contained inG0. If it consists of only finitely many isolated
points, the sequence(xi, yi) must eventually be identically
(x̄, ȳ). But this implies that if(x̄, ȳ) follows the flow for time
T , it is mapped to infinitely many points, which contradicts
the uniqueness of solutions to smooth ordinary differential
equations. Hence,G0 is nonempty, and not a collection of
finitely many isolated points. Thus, the contrapositive state-
ment has been proven.

Proof of Statement 4 (Eddy/Saddle flip)

Suppose an eddy suddenly becomes a saddle (this does not
violate the critical point persistence of Statement 3, since
both the eddy and the saddle are critical points). More specif-
ically, suppose the picture given in Fig. 1a existed at time
t − δ, and that of Fig. 1b occurs by timet + δ, whereδ is as-
sumed to be small. The eddy atA (at timet − δ) has become
a saddle atB (at timet + δ); this models the flipping of an
eddy to a saddle at timet . The quantityδ is assumed to be as
small as required, and the contour structures in Fig. 1 should
be assumed to be local. Now, since critical points travel with
the flow by Statement 3, the fluid parcel atA at time t − δ

has travelled toB by time t + δ. Suppose the PV value atA
is q0. Since the PV is conserved by the flow, the PV value at
B must also beq0. This implies that any pointP chosen on
the contours passing through the saddleB, must also have a
PV value ofq0. Now, consider the fluid parcel which is atP
at timet + δ. At time t − δ, this parcel must have been at a
point at which the PV value isq0, since the PV is assumed
conserved by the flow. However, the only point in the local
picture at timet−δ of Fig. 1a at whichq = q0 is the pointA,
sinceA is a local maximum/minimum which is enclosed by
closed contours. Thus, the parcel atP must have originated
atA. This is a contradiction, since it is known that the parcel
which originated atA is now atB, and not atP . Therefore,
a eddy cannot transform to a saddle at some instance in time.
It is clear that the reverse process is also impossible.

Proof of Statement 8 (Critical point persistence):

It is assumed thate Eulerian eddies exit in the flow at
time zero, defined through the sign ofH being positive.
Pick one such point, say(x0, y0). Thus, it is known that
λ(x0, y0, 0) = ∇q(x0, y0,0) = 0 and H(x0, y0, 0) =

J
(
qx, qy

)
(x0, y0,0) > 0. Now, it is required to prove the

existence of functionsx(t) andy(t) for short times, such that
λ (x(t), y(t), t) = 0 andJ

(
qx, qy

)
(x(t), y(t), t) > 0. Here,

(x(t), y(t)) would be the location of the eddy at timet ; prov-
ing these conditions would show that the eddy exists by def-
inition. Now, recall that the implicit function theorem from
calculus asserts that the set of equations

qx (x(t), y(t), t) = 0 ; qy (x(t), y(t), t) = 0

can be solved for(x(t), y(t)) near(x0, y0) if (i) (x0, y0) sat-
isfy the equations att = 0, and (ii)H = J

(
qx, qy

)
6= 0 at

(x0, y0, 0). These conditions are satisfied since an eddy (a
critical point whereH 6= 0) exists att = 0. Hence, a so-
lution (x(t), y(t)), which is a critical point, exists for small
enought . However, by continuity of the derivatives ofq, for
small enought , J

(
qx, qy

)
must be positive at(x(t), y(t), t)

as well, and hence, this critical point will continue to be an
eddy. This argument can be made for each and every one
of thee eddies which exist at time zero, and hence, each of
these will persist as eddies for short times. An analogous ar-
gument serves to show that each of thes saddles (defined by
H < 0) also persist for short times, since this satisfies the
H 6= 0 requirement to apply the implicit function theorem.
The only instance when the implicit function theorem does
not apply is whenH = 0, and, therefore, it is only ifH = 0
that a critical point may change its nature.

First improvement to Brown-Samelson integrability:

Brown and Samelson (1994) showed integrability by trans-
forming the nonautonomous one degree of freedom system
(3) to an autonomous two degrees of freedom Hamiltonian
system, through defining the Hamiltonian function

H(x, y, t, r) = ψ(x, y, t)+ r,

wherer is the (artificially introduced) variable conjugate to
t . If it could be shown thatH andq were independent in the
(x, y, t, r) space, two integrals of motion for the two degree
of freedom Hamiltonian system exist, and thus, (3) would
be integrable by quadratures (Brown and Samelson, 1994).
Independence involves showing that

a gradH(x, y, t, r)+ b gradq(x, y, t) = 0

has only the solutionsa = b = 0 for constantsa andb. Here,
“grad” is the gradient inIR4, and thus, the vector equation of
interest is

a
(
ψx, ψy, ψt , 1

)
+ b

(
qx, qy, qt , 0

)
= 0.

Brown and Samelson (1994) argue thata = 0 is necessary
by considering the final component above, and thatb = 0
if ‖λ(x, y, t)‖ > 0 for all (x, y, t) ∈ IR3. However, notice
that for b to equal zero, it is, in fact, sufficient thatq not
be degenerate. In other words, as long as

∣∣(qx, qy, qt , 0)∣∣ is
not zero in connected (nonzero measure) areas ofIR4, b = 0
emerges as the only possibility. (Compare this argument with
the functionsx2 andx3 onIR, which are clearly independent
functions, but each has a zero gradient atx = 0, an isolated
point.) Hence, for independence, it is sufficient that, for each
t , |λ(x, y, t)| have only an isolated number of zeros.
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