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Abstract. The diffusive effect on barotropic models of meso- active area of research. In this paper, we address a particular
scale eddies is addressed, using the Melnikov method fronaspect of stability of such eddies, which reflects the effect of
dynamical systems. Simple geometric criteria are obtainedsmall diffusivity on the eddy boundary.

which identify whether a given eddy grows or drains out, un-  Though characterised by swirling fluid motions, eddies
der a diffusive (and forcing) perturbation on a potential vor- are often identified experimentally througlulerian contour

ticity conserving flow. Qualitatively, the following are shown plots of temperature, height, salinity, or potential vorticity
to be features conducive to eddy growth (and, thereby, stafields, usually obtained from two-dimensional satellite imag-
bility in a specific sense): (i) large radius of curvature of the ing data (for a review and pictures of contours, see Richard-
eddy boundary, (i) potential vorticity contours more tightly son, 1983), or from numerical schemes. Since fluid motion
packed within the eddy than outside, (iii) acute eddy pinch-in the upper ocean tends to remain on surfaces of constant
angle, (iv) small potential vorticity gradient across the eddy temperature (resp. salinity, potential vorticity, etc), rotational
boundary, and (v) meridional wind forcing, which increases motion results around maxima/minima points of the appro-
in the northward direction. The Melnikov approach also sug-priate scalar field, thereby forming a ‘ring’ (or vortical mo-
gests how tendrils (filaments) could be formed through thetion) in the expected sense. Ofteéendrils (or filament3 are
breaking of the eddy boundary, as a diffusion-driven advec-seen to emanate from these eddies, which appear to wrap
tive process. around the eddy (see Fig. 4 in the experimental paper by
Voropayev et al., 1999, for example).

The dynamics governing the behaviour of such eddies
is assumed to be close to a two-dimensional incompress-
ible flow in which potential vorticity is conserved (Pedlosky,
&987). Undestrict conservation with the dynamics steady in
which contribute considerably to fluid transport in the ocean.2 Moving framg, no substantial Qeformgt|on§ of edd!es are to
In particular, mesoscale (of the order of 100 km) rings be e.xpect'ed, since the Lagrangian trajectories are integrable
formed near the Gulf Stream sometimes survive as coher]for finite times (Br_c_;wn and Samelson, 1994). Ir_1 many of
ent structures for periods of up to one year (Richardson,the standard s_tab|I|ty analyses, such a system IS pertqrbed
1983). Submesoscale (of the order of 10 km ) eddies ma hro.ugh an arbitrary mod_e, Who.s‘? growth ratells determmed

y linearising the potential vorticity conservation equation.

also be long-lived, and we address both mesoscale and su hi d d i h which
mesoscale eddies in the present work. The observational pe}[‘ this study, we adopt a different approach, which spec-

sistence of such eddies has led to theoretical (Flierl, 1988!fles the physical reason for IMposing a perturbat_lon, and
Helfrich and Send, 1988: Dewar and Gailliard, 1994: De- also does not rely on a linearisation of the dynamics. Our
war and Killworth, 1995; Paldor, 1999), numerical (Helfrich perturbation shall be the result of small scale turbulence in
and Send, 1988: Dewar and Gailliard, 1994: Dewar and KiII_the ocean, which is frequently modelled by a diffusive term
worth, 1995: Dewar et al., 1999: Paldor, 1999: McWilliams in the governing differential equgtion (see Haidvogel et al.,
etal., 1986) and experimental (Voropayev et al., 1999) analy—1983’ for example). The dynamics are then governed by an

ses of stability. Since many results indicate that eddies Would;\dvecnon-dlffus_lon _equanon_for_ f[he scalar potential \_/ort|c-
tend to beunstable explaining their persistence remains an ity. Sucheddy diffusivibhas significant consequences in the
advection of passive scalars, in general, fluids, and has been

Correspondence tdS. Balasuriya addressed in statistical (Poje et al., 1999), numerical (Miller
(sanjeeva.balasuriya@oberlin.edu) et al.,, 1997; Poje et al., 1999) and theoretical (Fannjiang

1 Eddies and their stability

Rings (or eddies) are significant oceanographic feature




242 S. Balasuriya and C. K. R. T. Jones: Diffusive draining and growth of eddies

and Papanicolaou, 1994) senses. Bounds on the eddy dithan in the oceans, display such filaments (see Voropayev

fusivity (Fannjiang and Papanicolaou, 1994; Biferale et al.,et al., 1999, for example), whose presence is certainly linked

1995; Mez€ et al., 1996), and descriptions of chaotic motion to eddy diffusivity (Robinson, 1983). Nevertheless, a geo-

(Rom-Kedar and Poje, 1999; Klapper, 1992; Jones, 1994)metric description of the process is lacking. Our analysis of

are several features of interest. Even wimerh modelling  the advection-diffusion process, from a dynamical systems

flows with diffusivity, numerical methods often introduce a viewpoint, affords an immediate and simple reasoning for

diffusivity in the interest of numerical stability, and, there- the appearance of a tendril in a certain type of eddy, as ex-

fore, such numerical models could also be thought of as inplained in Sect. 6. In this case, too, it is necessary to address

cluding eddy diffusivity effects (Rogerson et al., 1999). Un- the deformation of the eddy boundary, which links the two

like in regular advection-diffusion equations, the scalar quan-aspects of this paper.

tity here is aractive(as opposed to passive) scalar, since the

potential vorticity possesses a relationship to the fluid veloc-

ity field (Pedlosky, 1987). In this study, we shall investigate 2 Dynamics

how the dynamic process of eddy diffusivity affects the ge-

ometry of eddies, using a new approach, which uses elementd this section, we state the mathematical equations which

from dynamical systems theory (Balasuriya et al., 1998), andieed to be satisfied, and also characterise the eddy bound-

simple geometric arguments. ary whose deformation is of interest. Consider a two-
Our first focus in this paper is to obtain a relationship be- dimensional incompressible flow whichis steady in a moving

tween the growth (or decay) of such eddies, and the charadrame. This hypothesis is in keeping with many Gulf Steam

teristics of the scalar potential vorticity field. Would it be Models (Pierrehumbert, 1991; del Castillo-Negrete and Mor-

possible, for example, to view the field, identify a particu- rison, 1993; Pratt et al., 1995; Balasuriya et al., 1998; Weiss

lar eddy, and predict its chances of survival based on simplénd Knobloch, 1989), since the Gulf Steam is steady in a

geometric properties of the scalar field? In response to thisgross sense in an eastward moving frame. Gety) be

we are able to develop a collection of (diffusivity-driven) ge- the eastward and northward coordinates, @k, y, 1) the

ometric conditions for eddy growth, outlined in Sect. 5. It Streamfunction of the flow. Suppose that there exists a quan-

would be instructive to test our criteria upon available datality (Which we shall call the potential vorticityjo(x. y. 7)

sets with sufficient resolution. Moreover, in Sect. 7, we alsoWhich is conserved following the flow. Such is afforded in

obtain a qualitative condition on (small) wind forcing, which barotropic models, for example, by the quan&yo + By,

also contributes to eddy growth. ‘Growth, as specified in Whereg is the Coriolis parameter (Pedlosky, 1987). Depend-

both these cases, will be defined through the enlargement df'g on the particular outlook adopted, many alternative def-

the eddy boundary; a shrinking boundary will correspond toinitions of potential vorticity exist (Pedlosky, 1987), but for

a ‘draining’ eddy. Growing eddies have the potential of be-Our purposes it suffices to think gj(x, y, 1) asanyquantity

ing more visible, and, therefore, are expected to be the longewhich is preserved by the flow, and thereby

lasting eddies in the ocean. Draining (shrinking) eddies, on

the other hand, will eventually lose their constituent water 240 - 9q0 _ 9Y09q90 | 90 dq0 =0 (1)

to the ambient flow, and disappear. Therefore, in a sense,D? ot dy dox  dx 9y

our eddy growth criteria reflect a form of eddy stability in

the presence of (small) eddy diffusivity and wind forcing. It

must be re-emphasised that this ‘stability’ is not in the tra-

Particle trajectories are found by solving the ordinary differ-
ential equations

ditional sense of linear stability, in which the growth rate of 3o _ o

various modes of imposed perturbations is analysed, as iA = —W Y=o (2)
Flierl (1988); Helfrich and Send (1988); Paldor (1999); De-

war and Killworth (1995); Dewar et al. (1999). If go is nondegenerate and smooth for all time, the flow (2)

The analysis we follow in this study is generic, and shouldis integrable (Brown and Samelson, 1994), and complicated
be applicable to any system satisfying a similar advection-motion is barred. Now suppose that, in this formulation, an
diffusion partial differential equation in two dimensions (for eddy exists, which shall be characterised as follows. At a
example, in tracer mixing in hydrodynamics, or in atmo- fixed timezg, the contours of theg(x, y, tp) field has a lo-
spheric flows). In other words, we are not using a specificcal maximum/minimum, around which closed contours exist
model for the flows; rather, we are simply assuming that the(sinceqg is preserved by the flow, one expects the flow to re-
flow satisfies the appropriate dynamical equation, and posmain on these contours, thereby generating the swirling mo-
sesses the necessary kinematical properties of an eddy. Thegen of an eddy). This is aontinuousmodel for the potential
statements are made precise in Sect. 2. Section 3 then ouerticity go, and is, therefore, somewhat different from the
lines the Melnikov approach from dynamical systems theory,often used piecewise constant models (Flierl, 1988; Helfrich
which leads to the eddy growth criteria in Sects. 5and 7.  and Send, 1988; Paldor, 1999). Now, this entire structure

A secondary goal of this paper is to give a possible expla-would move at a constant velocity, since the flow is assumed
nation for the tendrils which emanate from eddies. Numer-steady in a moving frame. In other words, the contours repre-
ical and experimental studies, even in the laboratory rathesent streamlines, but not necessarily pathlines, and, therefore,
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text, the dynamics (3) models the presence of eddy diffu-
sivity (averaged effect of small scale turbulence), and wind
forcing, but assumes that these are both small effects in com-
parison to the conservation of potential vorticity (i.e.is
small). Equation (3) is an advection-diffusion equation; the
potential vorticity changes with time due to advection (flow
of particles which have a signature potential vorticity) and
also diffusion (the slow decay of potential vorticity, indepen-
dent of attachment to particles). This cannot be thought of as
a linear equation since the potential vorticity is linked with
the streamfunction. Assuming the barotropiplane model
(whereg = V2y+By), itis possible to show that the stream-

Eddy functionyr is ordere close toyg (Balasuriya, 1997). Crucial
boundary to this proof is the absence of boundaries (or being far re-
moved from boundaries); if not, this closeness may worsen to
A O(J€), as suggested by recent results from fluid mechanics

(Caflisch and Sammartino, 1998). The governing equations

/\ of particle trajectories
oy oy

= - ) — ) 4
3 y=a0 (4)

_ _ . has a velocity field which is, thereforesclose to that of (2).
Fig. 1. Potential vorticity contoursgo(x, y, o) = constant). It should be noted that the ‘steady in a moving frame’ prop-
erty has been destroyed in the perturbed flow (4); it is gen-
- . . uinely unsteady. The eddy boundary now perturbs: it may
our definition of an eddy is in an Eulerian rather than a La'enlarge (a growing eddy), decrease (a shrinking eddy), or de-

grangian sense, similar to the development in Haller and Poj(?/elop kinks (leading to tendrils). This geometric deformation

§1997), who, in contrgsl,'t, paﬁe thellr d'efmlt'oc;‘.sbon. S:crleam'shall be analysed using a technigue from dynamical systems
unction contours, and limit the analysis to adiabatic OWS. theory called the Melnikov method.

We intend to discuss the possibility of the growth of the eddy,

when a suitable diffusive perturbation to the dynamics of (1)

is added. To do so, we must first identify the boundary of the3 Melnikov function

eddy. This shall be a contour gf(x, y, to) beyond which

the contour structure changes from simple closed curves tdo use the so-called Melnikov approach, it is first necessary

something else. It is not difficult to see that, in order for to identify a fixed point and an associated homoclinic trajec-

this to happen topologically for a continuous functiginthe  tory of the unperturbed fluid trajectory equation (2). Such

boundary of the eddy must contain at least one saddle poingxist if we consider the motion not in tlie, y) space, butin

of go(x, y, t0). In this paper, we shall only consider exactly the moving coordinate frame in which the motion is steady.

one saddle poin#i, in which case, the eddy has the struc- To be concrete, let us define new varialfes: x — ¢1r and

ture shown in Fig. 1 (see Fig. 1 of Weiss, 1994, for a similarn = y — c2t, such that the flow of (2) is steady in tiig, n)

picture generated through a kinematic isolated eddy model)frame (note, that in many standard oceanographic applica-

The saddle poind is a specialised point on the eddy bound- tions,c2 = 0; yet we are able to address this more general

ary, and shall also be referred to as piech-off point Under  case in which eddies may propagate in an arbitrary direction,

our present assumptions, this eddy structure would rigidlyincorporating, for example, thg eddies described in Dewar

translate; no growth or shrinking can occur. and Galilliard, 1994). Then, singe= x —c1 and) = y — ¢,
Potential vorticity conservation is, in reality, only approxi- we have

mately satisfied for oceanic flows (Pedlosky, 1987). We shall

consider the case where the flow satisfies not the dynamic§ = - [Wo(&, ) + c1n — 28]

of (1), but the ‘nearby’ dynamics given by 7

Dqg  9q 8w8q+3w3q
Dt 3t 9y dx  9x dy

n= ai [Wo(&, n) + c1n — c28] . ©)
=e[V2q+ f@.3.0)].@3) :

Notice that, since the flow must be steady in this fradg,
Here,q(x, y, t) is a perturbed potential vorticity, and the cor- has no explicit-dependence, and, therefore, can be repre-
responding streamfunction i&(x, y, t). The small positive  sented purely in terms dak, n). We are adopting the con-
quantitye governs the size of both the diffusive temtg vention that a capital letter denotes the variable with respect
and the additional forcingf (x, y, ), and may be thought to the(¢, ) coordinates. We see thét (&, n) + c1n — c2&
of as a reciprocal &let number. In an oceanographic con- serves as an effective streamfunction in the moving frame. It
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is not difficult to show using (1) expressed in tt§e ) coor-
dinates thaDo (&, n) is functionally related to this effective
streamfunction; the flow is confined to the cun@gé, n) =

constant (or equivalently, curves where the effective stream:

function is constant). An incidental observation, which shall
become important later, is that the spatial derivatiVe§?,
etc, remain invariant under the transformation fromy) to
&, m.

Now in the (¢, n) frame, the eddy illustrated in Fig. 1 ex-
ists as asteadyobject, and, therefore, the special paints,
in fact, a fixed point of the flow (5). Additionally, it is a sad-
dle point of theQg scalar field, and henc¥®,Qg is zero atA.
With no loss of generality, we shall choose the orign0)
of the (¢, ) system to be precisely at the poitit Note the
presence of a specialised trajectory of (5), which approache
the origin in forward and backwards time. This if1i@amo-
clinic trajectory; (a branch of) the unstable manifold of the
fixed point coinciding with (a branch of) its stable manifold.
The stable manifold (denotéd*) is the set of points which
asymptotically approaches the fixed point in forward time,
while the unstable manifold (denotéd") does so in back-
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VQo /e @, 7w
N(t)

12

ward time. The homoclinic precisely defines the eddy bound-
ary, and, therefore, the growth of the eddy is affected by howFig. 2. The unperturbed eddy in th€, n) moving frame.

this homoclinic trajectory perturbs. Now the homoclinic tra-
jectory can be represented I()&(t), ﬁ(t)), parametrised by
time#, as shown in Fig. 2. Ateach poif(r) = (£(1), (1)),
one can draw a norma () to the eddy boundary, whose di-
rection is given by the vectd¥ Qg (£ (1), 7(1)), which points
either into or out of the eddy (this direction remains con-

sistent on the homoclinic). This vector decays to zero agd

t — +oo; i.e. as the origin is approached. We now ad-
dress how the homoclinic trajectory, which forms the eddy

intersected the three-dimensional phase-space with a plane
{r = constant. If unperturbed (iffe = 0), one obtains ex-
actly the picture of Fig. 2 in each and everglice. When

€ # 0, on the other hand, a generic picture of the form of
ig. 3 is formed. The perturbed manifold®® and W* la-
belled in Fig. 3 are, in reality, the intersections of the two-
dimensional manifolds with the= constant time-slice. The

boundary, perturbs under the dissipative perturbation giver]€lnikov approach provides a method of measuring the dis-

by (3).
Suppose the solution to (3) is given in terms of the moving
frame coordinates by (¢, n, t). An explicit z-dependence

exists in this perturbed streamfunction, since the flow is no

longer steady in the moving frame. Howevérand ¥ dif-
fer only by O(¢). The relevant particle trajectories in the
moving frame are obtained through solving

£ =

a
_8_ [\I/(E’ 1, t) + cn — CZS]
n

(6)

In contrast with the unperturbed moving frame equation (5),
equation (6) has explicitdependence. Its phase space, then,
is three-dimensional, and given by the varialiles;, ¢). The
fixed point at the origin perturbs to a trajectory in this three-
dimensional phase space, which remaihg) close to the

0y
n= g[ (E»’?J)‘i‘cl’)—CZE]-

tance between the perturbed manifolds in this time slice of
the phase-space. Consider any padtit) = (é(t), ﬁ(t)) on

the unperturbed homoclinic (sketched as a dashed curve in
Fig. 3), and think of measuring the distanbe) between the
perturbed manifoldalong the normalvN(¢) drawn atP(z).
This d(¢) shall be asigneddistance, whose sign is allocated
as follows. If the vector drawn from the perturbed stable
manifold W+ to the perturbed unstable manifdlid is in the
direction of V Qg (P (2)), then a positive value is assigned; if
in the opposite direction, a negative value is given. Notice
that if d(r) = 0, there is an intersection between these mani-
folds atP (), which may result in complicated mixing across
the eddy boundary nedt(¢) due tohomoclinic tangling It
turns out thati(¢) can be expressed as

M)

e ) 2,
‘Woopay T

d(t) = (7

line (¢, n) = (0, 0). The associated stable and unstable man-where M (¢) is the Melnikov function(for more details, see

ifolds of this trajectory, two-dimensional in this three-dimen- the standard reference Guckenheimer and Holmes (1983)).
sional phase-space, also persist. The proofs of these twn an intuitive sense, one may think of (7) as being a Taylor
claims follow from theoretical results from dynamical sys- expansion of the distance with respect to the small parameter
tems (Hirsch et al., 1977; Fenichel, 1971). The key point,¢, whose leading order term involves the Melnikov function.
however, is that there is no reason for the stable and unstarhus, for smalk, M(t)'s behaviour essentially governs the
ble manifolds to coincide any more. Imagine that we havesplitting betweenW* and W* at P(¢) (the denominator of
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N(t)

Fig. 3. The perturbed eddy in thé&, n) moving frame. Fig. 4. A warm eddy withM (¢) > 0.

the O(e) term is nonzero for ali, though it approaches zero these expressions is that no knowledge of the perturbed ve-

ast — 100). locity field is required; the Melnikov function can be repre-
We now write an expression fav/(t) which results di-  sented only in terms of quantities related to the unperturbed

rectly from using the dynamical equations (5) and (6), andflow and the wind forcing. We will now use these results to

which was developed in a slightly different context by Bal- derive conditions which specify whether a given eddy grows

asuriya et al. (1998). Their analysis pertains to cats-eye®r shrinks under the diffusive perturbation.

regions adjacent to oceanic jets, and the possibility of fluid

from the jet core escaping to retrograde regions. Neverthe-

less, a similar approach works for the Eulerian eddies of this4  Warm and cold eddies

paper, with only slight modifications necessary to the origi-

nal proof in Balasuriya et al. (1998). In the present setting, It is necessary to first identify two types of eddies which are

we simply state that the Melnikov functiovf (z) can be ex-  seen in the ocean: warm-core and cold-core eddies. With re-

pressed as spect to the Gulf Stream, eddies which split off from the Gulf
Stream and meander onto the colder northern sidevarm-
M) = Mg+ My (1), (8)  core eddiessince they contain waters from the warmer south-

ern oceans (Richardson, 1983). On the other hand, cold-core

eddies split off towards the southern side of the Gulf Stream.
00 B Temperature, being a measure of energy, is related to poten-

Mg = / [VZQO (E(x), 7i(7)) — VZQ0(O, 0)] dr,  (9) tial vorticity, and hence, we shalefinea warm eddy to be an

where the diffusive contributioM,; is given by

- eddy in which the potential vorticity in the interior takes on a
and the forcing contributioM /(¢) by higher value than that of the exterior; a cold eddy is defined
analogously.
M(t) = /Oo [F (g(t)’ TORE" t) Th_e pri_ncipal difference betwe_en a cold and warm eddy is
o0 the direction of the vectov Qg on its boundary. For a warm
— F(0,0,7+1)]dr. (10)  eddy, Qo increases towards the eddy’s interior, and hence,

the vectorV Qg (P(¢)) will point inwards at every point on
Here, F(&,n,t) = f(x,y,t), following our standard nota- the eddy boundary. Now, consider the case whei@) is
tion of using a capital variable to denote quantities in the positive at some value of Then, by (7)4(¢) > 0 for suffi-
moving coordinates. For details of the derivation of these re-ciently smalle. This implies that the vector froi* to W*
sults, the interested reader should follow the original proofalongh (¢) lies in exactly the same direction ¥Q¢ (P (¢));
(Balasuriya et al., 1998), making appropriate corrections fori.e. it points inwards. Thugy* will lie insideW* nearP (z).
the differing geometry provided by eddies. The power of This is illustrated in Fig. 4, with the splitting (in reality of
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O(e)) exaggerated for clarity. Looking at the direction of must have opposite signs, since the origin is a saddle. Thus,
flow alongW* andW¥, itis clear that the flow in the channel to leading order, we can expre@g near the origin by

between them shall also be inwards. This causes fluid from

the outside to flow into the eddy. The flow remains incom- Qo(§. n) =k (EZ - aznz) ,

pressible, and, therefore, the eddy compensates by growi

n
in size with time. Thus, i#() > 0 for a warm eddy, it wil \%herek anda are some constants. The logad contours are

o : Clearly hyperbolic. The line§ = +an constitute the level
grow under the diffusive perturbation. On the other hand, If‘curve’ 0o = 0. Thus, the actual eddy boundary (itself, part

M () < 0, W* will lie inside W*, and water would drain out of the set0q = 0) locally can be represented by portions of
of the eddy, causing it to shrink. For a cold eddy, these con—these tonIi%e_s n other}'/words thepedd boundyaFr) isltan on-
ditions are exactly reversed. Growing eddies are inclined to ' ' y y 9

e ; ! S _tial to & = +an at the origin, (see Fig. 5). We shall define
be stable under a diffusive perturbation, while shrinking ed the pinch angle , of the eddy to be the angle subtended at

dies can be thought of as unstable, since they will drain outthe pinch-off point (the origin) by the eddy boundary. Ele-

all their constituent water and thereby disappear. N
: o . mentary calculus gives tadf/2) = a, and, therefore, near
Now, suppose we can determine conditions under Wthf}he origin

M(t) > 0 for a warm eddy. Since this will lead to a grow-
ing eQdy, it makes sense to thmk of thesestdbility c_ntena,l 0o, ) = k (gz —tar? (6/2) 712) ‘
causing the eddy to be more visible for a long period of time.
It must be emphasised that this is not stability in the conven-By taking the Laplacian derivative,
tional sense, but in the sense of leading to eddy prominence
in the presence of small diffusion and forcing. We note that, V2Qo(&. n) = 2k (1 — tarf (9/2)>
by our argumentspositiveterms in the Melnikov function
contribute towards eddy growth (stability) fomarm eddy. = 2kcosy sec (0/2). (1)
Alternatively, negativeterms are associated wittold eddy ~ The Laplacian at the origin can, thus, be quantified in terms
growth (stability). We shall now look for terms in the dif- of the pinch angle and the strength @ (measured by).
fusive and forcing contributions of the Melnikov function, Notice also that for this choice @y,
which provide the appropriate sign for eddy growth. Our
goal is to determine criteria which are universally valid for 220 _ _optar? ©/2)n.
both warm and cold eddies. on
For a warm eddyQo must increase as one proceeds from the
origin in the positivep direction, and, thereforé, < O corre-
5 Diffusive criteria sponds to a warm eddy (similarly,> 0 is a cold eddy). For
the moment, imagine that the eddy is warm. Now, the pinch
With no loss of generality, we shall, in this section, assumeangle satisfies 0< 6 < 180, and by inspection of the
that 0o(0, 0) = 0. If not, we can simply add the necessary trigonometric function in (11), we can see thatQ(0, 0)
constant toQo to make it so; the dynamical equations re- is negative ifo < 90°. Since a negative sign appears in
main satisfied since they only depend on derivative®@gf  front of V2Qgq in the expression (9) fobf,, this means that
The unperturbed eddy boundary is then a portion of the levelf 6 < 90°, a positive contribution to the Melnikov function
curve Qg = 0. From (9), we see that the diffusive contribu- results. Since, for awarm eddy, a positive Melnikov function
tion to the Melnikov functionMy, is a constant. This value was argued to be stabilising in Sectp#hch angles less than
is, therefore, independent of the locatiBitir) on the homo-  90° contribute towards eddy growtfT his statement is actu-
clinic at which the splitting distance is to be measured. Weally independent of whether a warm or cold eddy is chosen,
note that the integrand of (9) contains two terms which re-as a similar analysis of a cold eddy would confirm. Acute
late to the Laplacian og at an arbitrary poinP () onthe  pinch angled eddies are better equipped to survive than ob-
homoclinic, and at the origin. tuse pinch angled ones.

Let us first focus on the value &f2Q0(0, 0). Since the The Laplacian at an arbitrary poiit also appears in (9).
origin is a saddle point 00¢, a local expansion ofg near  In order to determine the sign of this quantity, we adopt a
the origin does not contain terms lineandn n). The leading  moving coordinate system. At each poiAton the eddy
order terms are quadratic, and moreover, we can choose odroundary, letO be the centre of curvature of the homoclinic.
axes such that no mixed quadratic term appears. It may bé&lote that locally, the homoclinic is a circular arc nefy
necessary to rotate thg, n) coordinate system rigidly to do whose centre is aP, and radius is the radius of curvatuke
so, which can be done with impunity, since the Laplacian(see Fig. 6). We shall make the simplifying assumption that
is invariant under a rotation of coordinates. Effectively, we the eddy isconvex O will always lie towards the interior of
are choosing coordinates in such a fashion thatrtfaxis  the eddy from the perspective 8f We choose polar coordi-
points directly into the eddy (locally at the origin), such that nates(r, ¢) attached taD, where¢ is measured with respect
it bisects the angle formed by the tangentsé and w* to the lineOP. Thus, P has coordinate$, ¢) = (R, 0),
(theglobal picture of the eddy neeabt have symmetry with and we will think of Q¢ as also expressed in these coordi-
respect to thej-axis). Now, the coefficients of? and 52 nates. The Laplacian operator is independent of the choice
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Fig. 5. CaIcuIatingV2Q0 near the origin. Fig. 6. CalculatingV2Q0 at a point on the homoclinic.

of coordinates, and hence, we can use its polar coordinatg shrink This statement is also true if one considers a cold

representation eddy.
15 90 1 52 In some senses, larger eddies will automatically have
2 0 Oo o . . ) .
VeQo=-—|r — . larger radii (if one is comparing eddies which have the same
ror ar r2 3¢

shape, but differ only in scale). Thukgrger eddies leak
When evaluating aP = (R, 0), since the homoclinic is lo- less than smaller onesill other factors being equal. This
cally a circular arc neaP which is representable b9y = 0, statement appears to be at odds with linear stability analysis,
we see that the derivative does not contribut@g does not  which suggests that larger eddies are more unstable (Flierl,
change wheg is varied). Thus, 1988; Helfrich and Send, 1988). There are two reasons why

our results donot contradict these papers. Firstly, we are
VeQo(P) = ——

- addressing a specific form of perturbation that involves a dif-

ror or fusive term in the dynamical equations (in contrast with a
5 linear stability analysis on a non-diffusive equation). Sec-
— M(R, 0) + 1@(& 0) ondly, our model is barotropic, while baroclinic instabilities

ar? R or are the dominating features in the cited studies. In fact, in
Ther partial derivative is the derivative in the normally out- a sequence of papers, Dewar makes a strong case for Gulf
ward direction from the eddy. With an abuse of notation, we Stream eddies to be ‘barotropically dominated’, meaning that
shall represent the above quantity@§ + Qp/R, with the  the flow in lower layers of the ocean so strongly follows the
understanding that the dash is the partial derivative with re-surface flow, thus making baroclinic instability the ‘wrong’

(R,0)

spect tar, and that everything is evaluated(at¢) = (R, 0). mechanism to examine (Dewar and Gailliard, 1994; Dewar
We caution thatP, O, R, r and¢ are themselves dependent and Killworth, 1995; Dewar et al., 1999). Comments that
ont, the parametrisation along the homoclinic. strongly pro-rotating lower flowmayimprove stability also

Once again, consider a warm eddy. Recalling that posi-appear in Flierl (1988); Helfrich and Send (1988). Finally,
tive terms of the Melnikov function contribute towards eddy we note thabbservationallythe Gulf Stream has many large
growth, and noticing from (9) tha¥?2Qq(P) appears as a eddies which are long-lived, lending credence to our claim
positive term, we would like to list geometric conditions that larger eddies are more stable (to diffusivity).
which provide positive contributions fro@g + Qy/R. For It remains to address the ter@;. Suppose the function
a warm eddy,Q; < 0, and hence, the second term, con- Qo(r, 0) is plotted versus.. The graph cuts the-axis at
tributes the wrong signLarge potential vorticity gradients r = R, and its slope is negative here for a warm eddy. The
in the cross-eddy direction are detrimental to eddy stability concavity of this graph at this point represents the sign of
Observe, however, that this effect is mitigatedriis large. Qg If concave up, we hav@ > 0: the correct contribution
Eddies which have larger radii of curvature are less inclined towards eddy growth. This means that potential vorticity gra-
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dients are larger just inside the eddy than outsifi@oten-
tial vorticity contours are more tightly packed just inside the n
eddy (in comparison to just outside), this contributes towards| pyenia vorticity
eddy growth In effect, stronger potential vorticity gradients contour
just inside the eddy (in comparison to just outside), provide
a protection to the eddy waters. By addressing a cold eddy
and arguing analogously, it can be shown that this qualitative
requirement also holds for a cold eddy.

To summarise, we have shown that the following geomet-
ric features are conducive to (wawncold) eddy growth un-
der small diffusivity:

— Pinch angley < 90°

=

— Large radius of curvatur®

— Small potential vorticity gradien®; across eddy bound-
ary

— Potential vorticity contours more tightly packed inside
than outside the eddy

The opposite of each of these statements can be considered
contributory factors towards depletion of eddies. It must,
however, be noted that, in reality, the Melnikov function of
(8) and (9) includes suitablintegratedfunctions, whereas

we have only addressed the sign of the integrand. Itis quit§,ran around an essentially convex eddy structure (the exper-
conceivable that the integrand take positive and negative vali antal paper by Voropayev et al. (1999) shows some tendril

ues, while the integral is positive (say) for a warm eddy, and.q4,ctures). The presence of a tendril can be explained as
therefore, it will grow. In other words, the conditions we 5 girect consequence of the fact that the diffusive contribu-

have stated must be taken@salitative based simply upon  ion, 1o the Melnikov functionM,, is constant. If the forcing
the contributions towards the Melnikov function taking the ontripution is momentarily ignored, the Melnikov function

appropriate sign, rather than wholly describing the Melnikov, g itself be constant, meaning that it is independent of the

function. Additionally, it must be cautioned that the eventual . qice of the point? () at which the measurement between
behaviour of the eddy is governed by ttembinedeffect of Ww* and W* is made. Now, since this constant is nonzero

the conditions; ajl_Jdgment may be impossible based on Onlygenerically, this implies that’* andW* do not intersect for
forexample, the pinch angle. Furthermore, as the eddy growgy chojce ofP(r): i.e. near any point on the homoclinic.
or shrinks, its geometry will change dynamically, resulting in \y/hetheras is positive or negative, the consequence of con-

Changed behaviour. i . . o stancy is a thin channel which opens up along the boundary
An important consideration in using these qualitative con- ¢ {ha eddy, as shown in Fig. 7. Fluid flows along this, in the

ditions comes from the fact that, when using ocean data, whah5sic direction of the flow on the manifolds, which causes the
we have is th@erturbedpicture corresponding to the dynam- o4y 1o either grow or drain. In either case, however, trans-
ics (3), rather than the unperturbed (1). In other words, the,qr occurs between the interior and exterior waters, which
picture we see will not be that of Fig. 2, but a perturbation 5.4 4,,51ly homogenises the potential vorticity. Thus, interior
of this. The potential vorticity field that we observe would \yaters would have potential vorticity values close to the val-
be perturbed rather than unperturbed. Hence, in applying thges ajong this channel. If viewing potential vorticity con-
conditions, we are forced to rely B contours as opposed 4, this should be visible as a tendril, exactly as observed
to Qo contours. Since) is a small perturbation 0o, we  physically. Fig. 7 shows how an Eulerian potential vorticity

would expect some closeness in the contours, validating thigonour might appear in the presence of fluid transport of this
approach. nature.

The distance expansion (7) shows that a tendril's width
6 Tendril formation would be ofO(¢). The eddy entrains (resp. drains out) water
along the tendril, which forms the ‘feeding’ (resp. ‘excret-
In addition to giving criteria on eddy growth, the Melnikov ing’) organ of the eddy. The fluid velocities in the tendril are
function enables us to qualitatively explain the presence oot small (they areé(1) rather thanO(e)), and hence, the
a tendril emanating from an eddy with one saddle point ontendril stretches at a more rapid rate than the diffusive decay
its boundary. Tendrils often appear in the potential vortic- of the eddy on the whole. Therefore, tendrils should be eas-
ity (or relevant scalar field) contours, as thin lobes whichily visible in the potential vorticity contours, as is borne out

Fig. 7. A tendril of an eddy.
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by observations (Voropayev et al., 1999). situation, and need modification for the fact that heteroclinic
We naotice from equation (3) that the two processes whichtrajectories (rather than homoclinic) form the separatrices of
govern thepotential vorticitytransport are advection and dif- interest. A constant value fa#, is not obtained generically
fusion (we are ignoring the forcing for the moment). In for this heteroclinic case, and the quick argument for tendril
the purelydiffusive processthe potential vorticity diffuses formation outlined above cannot be made. Therefore, it is
throughout the domain in the direction efvVQ, indepen-  not clear whether this explanation generalises to more com-
dent of the flow. In addition, iadvects potential vorticity  plicated eddy boundaries.
is carried by fluid particles following the flow. Note that
what we have discussed so far is an advective effect, which } o
causes fluid to flow into (the case of a growing eddy) or out? Forcing contribution
s aome e e Wl i Gonside o h oring oo e
splitting of the eddy boundary; diffusion and advection com- f?"‘OV function (10) can be ana_lysed via geomeiric condi-
bine to create these tendrils. If one imagines (3) as expressetbDnS on the ed_dy poundary: S'.an(t) _|s.dependen.t on
in nondimensional coordinates, it is easy to see that the puré (unlike th? dlffu5|ve c_ont.nbutloer), it is more difi-
cult to obtain simple criteria for eddy growth. Therefore,
we will only inspect the geometry under several restric-

diffusive effect isO(¢) (occurs on a time-scale of sizgé),

whereas the advection velocity (1) (not small). How- . . .

ever, since the advective channel (the tendril) has Gi@e, E(_)nf'l' which srﬁ nevertrlm_eleis OI re:jeva(ljnce '(;] tlhe_ GuI:]_S:]e{ahm.

the advectivdlux of potential vorticity has siz&(¢) as well: ﬂ|rs y, We sha s;ielma |tse do standar tmode snw |fc €

it alsooccurs on a time-scale ofd. Thus, the advective and agvivs Iioﬁrgfgi;m;:uyng?;i/elr?eﬂuerﬁlsev:?rl ggnlc?vég? C;asrtri]lfc’)

diffusive fluxes of potential vorticity have the same magni- : ' X )
P y g é\legrete and Morrison, 1993; Pratt et al., 1995). Then, we

can setc; = 0 (i.e.,n = y). Secondly, we shall as-

tude. It is, therefore, unreasonable to ignore the advectiv
effect in comparison with the purely diffusive effect when sume that the additional forcing is steady and meridional, i.e.
f(x,y,t) = f(y) alone: a hypothesis which has been used

computing the potential vorticity balance for eddies.

A loose and intuitive understanding of tendrils could be : th hic t ¢ | in which the iet
that they result from the exterior portions of the eddy not !N Other oceanographic transport analyses in whic €Je

being able to cope with the speed of rotation of the inte_flow is mainly eastward (Poje and Haller, 1999). Thirdly, we

rior, with diffusivity providing retardation. However, our shall suppose that the most southerly point of a warm eddy

interpretation enables a more geometric explanation for tengOr alternatively, the most northern point of a cold eddy) is its
inch-off point. This is a feasible assumption if addressing

drils. Diffusivity destroys the eddy boundary and creates gPinen-of L
thin channel, along which an advective flux of potential vor- eddies in the process of pinching off from the Gulf Stream.

ticity occurs. This is not something which has been stated Under these conditions, the forcing contribution of the Mel-

in the literature before; it is not an effect which can be ig- hikov function of (10) becomes

nored in comparison to pure diffusion of potential vorticity, 00 _

with regard to eddy decay. This argument, in fact, works for Ms = [f G() = f(O)] dr,

any two-dimensional flow (not necessarily oceanographic) in -

which the relevant scalar quantity (not necessarily the potenwhere (&, ¥) is the parametrisation of the eddy boundary,

tial vorticity) is subject to an advection-diffusion equation is identified precisely withy. We have replaced the moving

with small diffusivity. The physical cause of such diffusion frame forcingF with f, which additionally simplifies, since

may be the effects of small scale turbulence, viscosity, etcit has neithere nor + dependence. Under these simplifying

Therefore, our Melnikov approach provides a pleasing pos-assumptions, the forcing contribution is a constant and easy

sible explanation for eddy tendrils, as resulting from diffu- to analyse.

sivity breaking potential vorticity conservation. Consider the case, as usual, of a warm eddy. We have
Though the Melnikov approach provides information on y(t) > 0 for all z, since the pinch-off point has-coordinate

how the manifolds perturb, it should be noted that the Mel-0, and is assumed to be the most southerly point on the eddy

nikov function cannot describe how these manifolds behaveboundary. Then, iff’(y) > 0, My > 0 and the contribution

after they wrap once around the homoclinic; the developmenshall be a growing one. On the other hand, if we take a cold

is only valid for the first circuit of the manifolds around the eddy, we have () < O forallt, andif f'(y) > 0, we would

homoclinic. Beyond this, the manifolds may wrap around obtainM; < 0: again the correct sign towards eddy growth.

and intersect in some complicated fashion, but any such efThus, for both warm and cold eddigs,f’(y) > 0 over the

fects would be at distanc&3(1) away from the unperturbed region of the eddy, then the eddy would be inclined to grow

eddy boundary. under the influence of the forcing perturbation. Qualitatively
Should the eddy be defined by several saddle points orspeakingmeridional forcing, which increases in the north-

its boundary (rather than just one, as we have assumed iward variable, contributes to eddy growtBven if f'(y) < 0

this paper), Melnikov functions would need to be calculatedon some length of the eddy boundary, and if the length over

for each piece of the boundary which connects saddle pointswhich f/(y) > 0 is sufficiently large, we shall obtain the

However, the equations (9) and (10) cannot be applied in thisappropriate sign for eddy growth. As in our analysis of the
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previous section, we note that even if our qualitative con- An added bonus from our arguments is that they give a
dition(s) should not be satisfied exactly, the eddy may stillpossible explanation for tendrils which are often observed
grow if those qualities contribute sufficiently. We addition- emanating from eddy structures. Diffusivity provides the
ally stress that, in reality, it is the combined effectatifthe ~ mechanism for the breaking of the eddy boundary into a thin
contributions (diffusive and forcing) which give the eddy its channel along the eddy boundary, where potential vorticity
growth instructions. Since the geometry changes dynamiis advected The potential vorticity contours develop a ten-
cally, it is possible that the eddy grows at some times, anddril along this channel as a result of the advection. Since
shrink at others. the advection velocities are not small, these tendrils should
be easily visible if diffusivity is present in the system. This
is a generic effect for eddies with exactly one saddle point
8 Conclusions on their boundaries, and is to be expected whenever the con-
servation of a scalar field is broken through the inclusion of
This paper has analysed the qualitative structure of an eddgmall diffusivity.
(Eulerian definition) which contributes towards its growth,
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