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Turbulence: mechanics and structure of anomalous scaling
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Abstract. As the finite correlation time of a force driving
turbulence is taken into account, a new, dimensionless pa-
rameter occurs in the theory of turbulence. This new param-
eter is responsible for two different mechanisms of formation
of anomalous spectra. The first mechanism is related to the
change of a governing parameter, which defines the spec-
trum of turbulent fluctuation. The second mechanism is as-
sociated with spontaneous formation of characteristic scales
that differ parametrically from the scale of the external force.
The last mechanism can explain the intermittent structure of
turbulent flows. The appropriate discrete set of the possi-
ble characteristic scales and anomalous spectra has been cal-
culated. The results give a new insight into the concept of
universality: there is a set of universal power laws, although
occurrence in the spectrum segments described by one or an-
other power law from this set depends on the dimensionless
parameter mentioned above. It is noted that for the broad
class of geophysical flows, the new dimensionless parameter
is connected with the so-called degree of turbulence, which
guarantees that the smallness of this parameter, as the de-
gree of turbulence is usually small enough. That explains the
important role of the Kolmogorov spectrum in geophysical
applications.

1 Introduction

The transition of fluids or plasmas to a turbulent state is of
fundamental importance for understanding the physics of a
number of processes (including transport phenomena) taking
place in these media. Yet, the best known example of strong
turbulence is the turbulence in flows of incompressible flu-
ids at high Reynolds numbers. The Kolmogorov spectrum
and the concepts of universality, constant energy fluxes over
spectrum, and the inertial range associated with it, are the
basis of the modern understanding of the nature of homoge-
neous turbulence in incompressible fluids.
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The main result of hydrodynamic turbulence is the Kol-
mogorov spectrum. It was derived more than fifty years ago
and since then has been verified experimentally many times,
but has never been obtained theoretically in an entirely sat-
isfactory way. In other words, three main Kolmogorov as-
sumptions have not been proven until now. As they are an
important point of further consideration, we recall them: 1)
the energy flow over the spectrum, which coincides with the
dissipation rate, is the only important dimensional parame-
ter describing turbulent fluctuations over the inertial interval,
2) the scale of a force driving turbulence is the only impor-
tant scale of the theory and this scale determines the upper
boundary of the inertial interval, 3) the dissipation rate is fi-
nite for vanishing viscosity. Let us look carefully at these
three points.

First, the Kolmogorov spectrum,E(k) ∼ 1/k5/3, is not
the only spectrum of turbulent fluctuations that has been ob-
tained experimentally in turbulent incompressible fluids. For
instance, the spectrumE(k) ∼ 1/k7/3 associated with the
helicity flux is well known (Moiseev and Chkhetiani, 1996).
It is, therefore, necessary A) to determine the conditions un-
der which the rate of energy dissipation is a dimensional
constant that determines the turbulent fluctuation spectrum
and B) examine the question of how and under which con-
ditions it is replaced by a dimensional parameter of a dif-
ferent character. It is interesting to recognize that the ques-
tions A) and B) have never been considered in the framework
of the contemporary theory of turbulence. The current the-
ory places its emphasis on a particular case, for which tur-
bulence is driven by a force with the vanishing correlation
time. Such a choice can be easily comprehended because
it is the only case when the so-called Hopf or characteristic
functional can be found in the closed form (Monin and Ya-
glom, 1967). Therefore, this case is especially convenient
for theoretical investigation. Unfortunately the requirement
of the theoretical convenience ignores a fact of physical im-
portance. As one considers the case of theδ-correlated force,
the problem under consideration has only two dimensional
parameters: the scale of the force driving turbulence and the
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parameter that has the dimension coinciding with the dimen-
sion of the dissipation rate of kinetic energy. In other words,
in the contemporary microscopic theory of turbulence one
has not considered the question why the complicated non-
linear dynamics of the Navier-Stokes equation forms a gov-
erning parameter with the dimension of the dissipation rate,
but “forces” the inclusion of such a parameter in the state-
ment of the problem. This approach refuses to consider the
task concerning the dynamical roots of the dimensional pa-
rameter mentioned above, and reduces the problem of va-
lidity of the Kolmogorov theory to only the question about
correlator dependence from the scale of a force driving tur-
bulence. It is clear that this approach has limited applicabil-
ity, and the finite correlation time of the force has to be taken
into account.

Second, relations between the Kolmogorov spectrum and
the so-called phenomenon of intermittency are not clear at
the moment. It is generally accepted that intermittency
means the occurrence of corrections to the Kolmogorov ex-
ponent, which equals 5/3, and the main goal of a theory is
to calculate these corrections. From this point of view, there
are no differences between intermittency and the formation
of different governing parameters under different types of
the force driving incompressible flow. But this is not the
case. The question is emphasized by the notion of a gov-
erning parameter, which can be considered for the model of
homogeneous and uniform turbulence. At the same time,
the most explicit experimental proof of intermittency comes
from observations of the extremely inhomogeneous spatial
and temporal distributions of small-scale turbulence, which
vividly confirm the existence of the alternating structure of
turbulent flows. This structure is exhibited as a tendency of
small-scale turbulence and is concentrated in “bunches” sur-
rounded by the area of the flow with a respectively low level
of small-scale turbulent fluctuations (Monin and Yaglom,
1967). This experimental picture demonstrates that various
structures which have different characteristic scales can oc-
cur in turbulent flows, and this is the experimental manifesta-
tion of intermittency. For this reason, the first question occur-
ring in relation to the experimental picture described above
is why new scales , which are parametrically distinguished
from the scale of the external force driving an incompress-
ible fluid, can arise, and what is the dimensionless parameter
responsible for these new scales (“parametrically” is the key
word in the sentence). Apparently, the origin of new scales
means a radical modification of turbulent flows and results in
the changing of the turbulent spectra.

From this point of view, the primary feature of intermit-
tence is the origin of new, non-trivial scales in turbulent flows,
rather than the “corrections” to the Kolmogorov spectrum,
which represent only one of the consequences of the aris-
ing new scales. In other words, in a region of a turbulent
flow, where a structure with the non-trivial scale exists, the
turbulent spectrum evidently does not coincide with the Kol-
mogorov spectrum. The origin of a new scale is the key point
for understanding of this phenomenon (to clarify this state-
ment, notice that even the range of the vector numbers in

which small-scale turbulence can be treated as homogeneous
depends on the dimension of the “bunch”, i.e. the character-
istic scale of the given “bunch”). Therefore, the second Kol-
mogorov assumption should be revised. This point of view
is consistent with experimental observations and allows us
to distinguish clearly the essential difference between inter-
mittency and the phenomenon of the changing of governing
parameters, and has a simple physical meaning, namely that
intermittency is connected with a spontaneous generation of
structures in turbulent flows.

Third, one of the Kolmogorov assumptions is that the dis-
sipation rate of kinetic energy does not depend on viscosity
if viscosity goes to zero. For this reason, it is possible to
ask what is the limit for the solutions of the Navier-Stokes
equation that have the fixed dissipation rate when viscosity
is vanishing? What is the equation describing the finite dissi-
pation in the limit of vanishing viscosity? It was recognized
long ago that the limit of the finite dissipation rate with van-
ishing viscosity corresponds to such solutions of the Euler
equation, which do not have enough derivatives to allow in-
tegration by parts when one tries to prove energy conserva-
tion. The simplest way for rigorous mathematical treatment
of such solutions is the “translation” of the problem into the
language of Lagrangian particles. The special form of the
Euler equation that can be regarded as the kinetic equation
for Lagrangian particles and allows the mathematically rig-
orous studies of the finite dissipation with vanishing viscos-
ity was obtained in Gordienko and Moiseev (1999). Such a
formalism gives the opportunity to describe dynamics of an
incompressible fluid by the equation, treating correctly and
self-consistently the finite dissipation in the limit of the van-
ishing viscosity. The opportunity of such a treatment is quite
obvious from physical reasonings, as it simply means that the
small-scale dynamics near the viscous interval are guided by
the large-scale motion and are determined by it. In this sit-
uation, any details of the “small-scale” dynamics are unim-
portant for large-scale behaviour of an incompressible fluid,
and closed dissipative treatment of the large-scale dynam-
ics is possible. It means that a closed description of finite
dissipation for vanishing viscosity exists. The point of im-
portance is that the kinetic equation mentioned above has the
group of the scaling transformations which coincides with
the group of the scaling transformations for the Euler equa-
tion. Namely, restoring the group of the scaling transforma-
tions corresponding to the Euler equation, together with the
finite dissipation rate, is a point that determines most of the
characteristics of turbulent flows.

The preceeding comments have clarified the purpose of
the present work. We aim at taking into account the finite
correlation time of a force driving turbulence. This consid-
eration will give the opportunity to find out the domain of
validity of the Kolmogorov theory if the dimensionless pa-
rameter,γ (see below) is regarded properly. The only case
of 3D-turbulence will be considered.
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2 Types of governing parameters

To describe turbulent flows driven by the external force
f (r, t), the Euler equation (Re = +∞) can be used (see
the explanations above):

∂v

∂t
+ (v, ∇)v = −∇p + f (r, t), 〈f (r, t)〉 = 0. (1)〈

fα(r1, t1)fβ(r2, t2)
〉
= δαβf 2

0 K

(
t1 − t2

τ0
,
r1 − r2

r0

)
. (2)

It is pointed out once again that use of the Euler equation
in such a problem means that its solutions of “low” smooth-
ness are allowed. The mathematically correct treatment can
be founded in Gordienko and Moiseev (1999). The physical
meaning of these solutions is explained above. It is impor-
tant to note that the group of the scaling transformation of the
Euler equation, which is the basis for all results obtained be-
low, gives the opportunity to derive them via a rigorous way,
without any phenomenological assumptions (Gordienko and
Moiseev, 1999). In this treatment of turbulence (it is some-
times called the Euler equation with the energy sink), the
finite value of viscosity is only important if we are interested
in the details of the dynamics near the viscous interval, but
otherwise, it is completely unimportant for any other ques-
tions.

The functionK describes correlational properties of the
force f driving turbulence and according to the definition
of f 2

0∫
K

(
t

τ0
,

r

r0

)
dtdr = r3

0τ0 , (3)

wherer0 andτ0 are the correlational scale and time of the
force. We are allowed to consider the forcef as a solenoidal
one because we are able to include its potential part in the
gradient of pressure. There are two dimensionless parame-
tersγ = f0τ

2
0/r0, 0 = γ 4/3Re and three dimensional pa-

rameters,r0, τ0, f0 in this problem.
At first, let us consider a change in the spectrum associated

with the changing of a governing parameter, as the values
of γ and0 are increased. We mainly follow the results of
Gordienko and Moiseev (1998) and Gordienko and Moiseev
(1999), where additional details of mathematical character
can be found.

If γ � 1, 0 � 1, the velocity correlator is〈
(v(r, t) − v(0, t))2

〉
= C1(f

2
0 τ0r)

2/3 (4)

for λv � r � r0, whereλv is the viscous length. Therefore,
the Kolmogorov spectrumE(k) ∼ 1/k5/3 is actually formed
in the inertial interval.

Notice that the larger the force amplitude or the correlation
time of the force, the larger the parametersγ and0 are. The
consequence of these parameters increasing is the change in
the turbulent spectra. Forγ � 1, 0 � 1, the new spectrum
E(k) ∼ 1/k2 arises near the viscous scale. This new spec-
trum cuts the Kolmogorov spectrum from the viscous range.

The velocity–velocity correlator is〈
(v(r, t) − v(0, t))2

〉
= C2(f0r) (5)

for λv � r � γ r0 = f0τ
2
0 and〈

(v(r, t) − v(0, t))2
〉
= C1(f

2
0 τ0r)

2/3 (6)

for γ r0 = f0τ
2
0 � r � r0.

When the parametersγ and0 reach the valuesγ � 1,
0 � 1, the whole inertial interval is occupied by this new
spectrumE(k) ∼ 1/k2.

A qualitatively new phenomenon occurs in long-scale do-
mains, as the Kolmogorov spectrum is completely expelled
from the inertial interval: the generation of large-scale struc-
tures with the characteristic scales reaching up toγ 2/5r0 be-
gins. It is reflected by an extremely slow decay of the velo-
city–velocity correlator beyond the inertial interval; actually

〈v(r, t)v(0, t)〉 = C3

(
f 2

0 r3
0

r

)1/2

(7)

for r0 � r � γ 2/5r0.
Note that for the described way of the excitation of tur-

bulence, the Loitsyansky’s integral diverges for the arbitrary
values of the parametersγ and0. The long-scale part of the
spectrumk � max(1/r0, γ

2/5/r0) is universal and the spec-
trum isE(k) ∼ k1/3 in this realm of the wave-numbers. The
last spectrum implies a slow decay of the velocity correlator:

〈v(r, t)v(0, t)〉 = C4

(
f 2

0 τ0r
3
0

r2

)2/3

(8)

for r � max(r0, γ
2/5r0). This unexpected theoretical result

is consistent with the experimental dates (Eidelman et al.,
2000).

The dissipation rateε of kinetic energy can be estimated
as the viscous losses in the scales of the order of magnitude
of viscous length. It yieldsε ∼ f 2

0 τ0 for the case0 � 1, i.e.
the dissipation rate does not depend on viscosity. It is exactly
the case of the Kolmogorov theory.

Let us make the similar estimation forγ � 1, 0 �

1. For this case, the scalef0τ
2
0 exceeds the viscous length,

i.e. the Kolmogorov spectrum is separated from the viscous
range by the spectrumE(k) ∼ 1/k2. The dissipation rate
is ε ∼ ν1/3f

4/3
0 . It is approximatelyRe

1/3
∗ times less than

the energy flux over the Kolmogorov segment of the spec-
trum, whereRe∗ is the Reynolds number for the short wave-
length end of the Kolmogorov spectrum andν is the viscos-
ity, respectively. Physical interpretation of this result was
given in Gordienko and Moiseev (1998, 1999): the turbu-
lent fluctuations that have the wave-numberk ∼ 1/r0 are
in the so-called ”spatial” resonance with an external force,
and they are efficiently excited by the force. Then the en-
ergy moves over the Kolmogorov segment of the spectrum
to the modes, that have a typical frequency 1/τ0 and are in
”‘temporal”’ resonance with the external force. These modes
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oscillate in the counter-phase for the external force and the
external force quenches their oscillations. In other words,
the external force “takes” the energy back from the modes
with k ∼ 1/f0τ

2
0 . Therefore, an external force acts simulta-

neously as the source of energy and as the sink for the energy.
This phenomenon of the collective sink of the energy is new
physics associated with the finite correlation time of an ex-
ternal force.

3 Intermittency in turbulent flows

In the preceeding text, we have considered the mechanism
of formation of anomalous spectra, which is related to the
changing of the governing parameter for different values of
γ and0. It means that the dissipation rate of kinetic energy
is not able to play the role of the governing parameter for
the arbitrary correlation time of the external force. As it was
pointed out in the beginning of the article, such a mechanism
is not the only one. Other mechanisms of anomalous spec-
trum formation are connected with the violation of other Kol-
mogorov assumptions that allege that the characteristic scale
of the turbulent flow is the scale of the external force. As
we have a non-trivial dimensionless parameterγ , it is pos-
sible that the non-linear dynamics described by the Navier-
Stokes equation (or, the so-called the Euler equation with the
energy “sink”) can spontaneously produce the characteristic
scale which parametrically differs from the naive scale of the
external force. We shall give a short review of results in this
direction (see more details in Gordienko and Moiseev, 2001).

There is only a discrete set of possible characteristic scales
that parametrically differ from the scale of the external force
and the discrete set of the spectra corresponds to these scales.
The appropriate velocity-velocity correlators are〈
(v(r, t) − v(0, t))2

〉
∼ r−21(n), (9)

λv � r � R(n) = r0/γ
1/(n+1)

whereR(n) are new characteristic scales that differ paramet-
rically from the scaler0 of the external force,n = 1, 2, 3 . . .,
1(n) = −(n+1)/(n+2). The spectrum of turbulent fluctua-
tions corresponding to correlators (9) isEn(k) ∼ k−1+21(n),
n = 1, 2, 3 . . ..

For the caseγ � 1 r0 � R(n), the largest characteristic
scale corresponds ton = 1. On the basis of dimensional
arguments, the spectrumE1(k) ∼ 1/k7/3 can be interpreted
as a spectrum formed by the finite helicity flux (Frish, 1973;
Moffat, 1978; Moiseev and Chkhetiani, 1996).

The spontaneous generation of a new characteristic scale
is interpreted as intermittency at the beginning of the arti-
cle. These spectra exist only at those points of a turbulent

flow where spontaneous formation of a non-trivial character-
istic scale takes place. From this follows that intermittency
reveals itself at the special regions of turbulent flows where
spontaneous generation of a non-trivial scale has occurred.
It is consistent with the observed picture of intermittency
(Monin and Yaglom, 1967) and previous theoretical attempts
to connect intermittency with spontaneous generation of in-
trinsically unstable long-range structures (Kuznetsov et. al,
1991).

The parameterγ is not very convenient for geophysical
applications. For this reason, it is necessary to emphasize
that this parameter is very often connected with the so-called
degree of turbulence. Degree of turbulence is defined as the
ratio of the average square of the fluctuating component of
the velocity to the square of the average velocity. There is
no universal relationship betweenγ and the degree of tur-
bulence, although contemplation of particular cases corre-
sponding to real geophysical flows proves that the less the
degree of the turbulence is, the less the parameterγ is. More-
over, the smallness of degree of turbulence causes the small-
ness ofγ . Since the degree of turbulence is usually small, it
clarifies the importance of the Kolmogorov theory for appli-
cations.
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