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Abstract. The methods of nenlinear dynamics are used to
reveal the origin of complicated dynamic behavior (CDB)
of a dynamic model of the mesospheric photochemical
system (PCS) perturbed by diurnal variations in photolysis
rates. We found that CDB appearance during the multi-day
evolution is unambiguously determined by two
peculiarities in the model behavior during its 24-hours
evolution. These peculiarities are the presence of a stage of
abrupt changes in reagent concentrations and the
“humped” dependence of the end-night atomic hydrogen
concentrations on those at the beginning of the night.
Using a successive analysis we found that these two
peculiarities ate, in turn, conditioned by the specific
features of the chemical processes involved in the model,
namely, by the catalytic cycle whose net rate is
independent of the concentration of the destroyed species
(here, it is atomic oxygen). We believe that similar
peculiarities inherent in other atmospheric PCSs indicate
that under appropriate conditions they may also
demonstrate CDB. We identified the mechanism of the
CDB appearance and described it in two ways. The first
one reveals a sequence of the processes causing the
exponential (on the average) growth of a perturbation of
the solution with time. In particular, we found that the
behavior of small perturbations of an arbitrary solution of
model equations is identical to the behavior of a linear
oscillator excited parametrically. The second way shows
the mechanism of CDB appearance by means of I-
dimensional mapping, which is, basically, the same as the
well-known Feigenbaum mappings.

1 Introduction

One of the key issues in investigations concerned with the
physics and chemistry of the atmosphere is related to
human- influenced and natural changes in chemical
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composition of the atmosphere. This is due, primarily, to a
deeper understanding of numerous links between chemical
properties of the atmosphere and the enviromment
characteristics (see, e.g., WMO, 1995, and the cited
literature),

The composition of the atmosphere and its changes are,
to a great extent, determined by a number of chemical
reactions, including reactions of photolysis. Sets of these
reactions determining the composition of air in various
definite regions of the atmosphere constitute atmospheric
photochemical systems (PCSs). The dynamics of
atmospheric photochemical systems, that is, changes of the
chemical composition in time due to photochemical
processes, is known to be described by sets of a great
number of nonlinear differential or integrodifferential
equations (balance equations) for concentrations of minor
constituents of the atmosphere (see, e.g., Brasseur and
Solomon, 1984). It can be expected that nonlinearity of
these systems may manifest itself through the presence of
distinctive features in their behavior, such as self-
oscillations, multistability, or chaotic oscillations, which
are inherent in various nonlinear dynamic systems
independent of their nature. However, the long-standing
experience of elaboration and verification of the models
describing the atmospheric chemical composition bears
evidence that such manifestations are very rare; so the
possibility of the manifestations of the nonlinear nature of
atmospheric photochemical systems is implicitly neglected
in most studies of atmospheric chemical composition.
Rareness of the nonlinear effects in atmospheric PCSs is,
no doubt, a consequence of the fact that such systems are
strongly dissipative in their nature. The processes involved
in the atmospheric PCSs generally tend to diminish any
arbitrary perturbation of reagent concentrations, and
monotonously lead the system to a single equilibrium
regime. Nevertheless, special modeling studies provide
arguments that various atmospheric PCSs under definite
conditions may indeed possess multiple equilibrium states
(Prather et al., 1979; Fox et al., 1982; White and Dietz,
1984; Kasting and Ackerman, 1985; Stewart, 1993, Yang
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and Brasseur, 1994; Konovalov et al., 1998), self-
oscillations (Madronich and Hess, 1994; Krol, 1995;
Stewart, 1995; Feigin and Konovalov, 1995, 1996, Poppe
and Lustfeld, 1996; Hess and Madronich, 1997; Krol and
Poppe, 1998), and subharmonic and chaotic regimes forced
by diurnal variations of photolysis rates (Fichtelmann and
Sonnemann, 1992; Sonnemann and Fichtelmann, 1997).
The dynamic behavior corresponding to such sitnations is
referred to below as the complicated dynamic behavior
(CDB).

The noted possibilities of CDB may be a reason for
abrupt changes in wvariable values of PCSs, that is,
concentrations of chemical species caused by insignificant
changes of parameter values. Feigin and Konovalov (1996)
and Konovalov et al. (1998) were the first to demonstrate
such an opportunity on an example of real natural pheno-
menon. They presented arguments that the CDB of the
high-latitude lower stratospheric photochemical system,
associaied with the presence of self-oscillations and
muitiple equilibrium states, is a deep reason for both the
steepness of the development of the ozone depletion in the
Antarctic region in mid 1980s and the abnormally low
ozone concentrations observed in spring Antarctic strato-
sphere during the ozone hole phenomenon. Kleinman
{1991, 1994) considered the presence of two qualitatively
different regimes in the tropospheric photochemistry,
whose realization depends strongly on the values of some
parameters, and argued that these regimes can be observed
indeed. He did not establish direct links between the
existence of the different chemical regimes and possibili-
ties of CDB of the tropospheric PCS, so additional investi-
gations are needed to identify manifestations of CDB of the
tropospheric PCS in observations. Nevertheless, we consi-
der his results to be an evidence that such manifestations
are quite plausible. It is necessaty to predict possible abrupt
changes in chemical composition of the atmosphere that,
in our opinion, proves an importance of the investigations
aimed at revealing the situations and conditions under
which CDB of the atmospheric PCSg can take place.

When CDB is revealed in some models of atmospheric
PCSs (see the references given above), there arises a prob-
lem concerning, its origin, We believe that a deeper under-
standing of the origin of CDB in the models of atmos-
pheric PCSs may promote such investigations signi-
ficantly. By the “origin” we mean here (1) various peculia-
rities of the system which can provoke its CDB, and (2) the
mechanisms of the birth of CDB, that is sequences of basic
processes (both chemical and “dynamic” in nature)
causing, the appearance of CDB. We believe that an under-
standing of the origin of CDB (1) will confirm that the
CDB revealed in some model is not merely a consequence
of some approximation used in the model, but is a real
property of a modeled system, and (2) may provide some
indicators whicl can be used for revealing CDB both in the
nature and in models of various atmospheric PCSs.

Some aspects of the problem of interest were considered
for the first time by Fox et al. (1981) in connection with
multistability of their model of the stratospheric PCS. In
particular, they noted that their reaction scheme provided

an autocatalytic production of some species. Stewart (1995)
underlined a significant role of autocatalysis for the self-
oscillating regime in the model of the tropospheric PCS.
Feigin and Konovalov (1995, 1996), and Konovalov et al.,
(1999) demonstrated the responsibility of autocatalytic
processes for CDB of the high-latitude lower stratospheric
PCS.

The objective of this paper is to reveal the origin of the
CDB that was found by Fichtelmann and Sonnemann
(1987, 1992) in their model of the mesospheric PCS.
Various types of CDB (subharmonic oscillations, cascade
of period doubling, and chaotic oscillations) arise in this
model only owing to the periodic parametric modulation
associated with diurnal variations of the photolysis rates.
In other words, in the absence of periodic modulation the
modeled system behaves as quite an ordinary “stable” PCS.
The validity of the last remark is supported by the analysis
presented in this paper and, partly, in the recent paper by
Feigin et al. (1998), Note that we failed to find analogous
cases not only in atmospheric chemistry but in
“laboratory” chemistry too, although there are a lot of
studies of chemical instabilities (see, e.g., Field and
Burger, 1985). The noted peculiarity of CDB of the
mesospheric PCS gives us grounds to suppose that the
mechanisms of CDB of the mesospheric PCS essentially
differ from those of both the atmospheric PCSs and the
laboratory chemical systems demonstrating CDB under
constant parameter values.

As far as we know, direct observations of CDB of the
mesospheric PCS have not been made yet. The main
difficulty consists in the need to obtain rows of
observational data with both high temporal (less than one
hour) and vertical space (less than one-two kilometers)
resolutions. However, it is conceivable that the possibility
of CDB of the mesospheric PCS could be indirectly
confirmed after special investigations. For exampie,
Fichtelman and Sonnemann (1992) suggested a hypothesis
that two-day wvariations of a heating rate of the air,
determined by the thermal energy released in chemical
reactions in the process of two-day oscillations of the
minor constituents in the mesopause region, are the trigger
for excitation of the well-known quasi-two-day waves (see,
e.g., Thayaparan et al., 1997, Ward et al., 1997). Some
additional facts supporting the hypothesis have been
provided in the recent studies by Sonnemann and Feigin
(1999a, b). They have studied the dynamic behavior of a
model which includes a process of eddy diffusion together
with the photochemical processes and found that the model
can retain the two-day oscillations even with real values of
an eddy diffusion coefficient. From our viewpoint, a
corroboration of the above hypothesis after special
medeling studies would provide a strong support of the
possibility of CDB of the real mesospheric PCS. Naturally,
such studies require employing much more complex
models than the original model by Fichtelman and
Sonnemann (1992). In our opinion, before applying
complex models it would be extremely useful to understand
and estimate the effects caused by various factors not
involved in the model by Fichtelman and Sonnemann
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(1992) but available in the real atmosphere. Such an
understanding and estimations would increase a degree of
reliability of the model’s results and might point to the
physical and chemical factors that are the most important
for CDB. We believe that the first step to be made is to
reveal the origin of CDB of the mesospheric PCS.

So analysis of the origin of CDB of the mesospheric PCS
appears to be important for the following reasons. (1) We
believe that an understanding of the origin of CDB of the
model of the mesospheric PCS will promote the
investigations aimed at revealing CDB of the real
mesospheric PCS. (2) Nearly all photochemical systems
are subject to periodic, or quasi-periodic parametric
modulations of different nature (e.g., dinrnal and seasonal
variations of photolysis rates and temperature, and wave
motions). Thus, by stdying the mesospheric PCS we are
looking for indicators of the potentiality of CDB, which
can be used for studying the effects of parametric
modulations in other atmospheric PCSs. (3) We hope that
clarification of the origin of CDB of the mesospheric PCS
may give an impetus 1o a successful search of similar
effects in nonatmospheric applications of chemistry.

The initial step of our study was development of the
mesospheric PCS model (hereinafter referred to as the
original model), which is very similar to the one used by
Fichtelmann and Sennemann (1992) in both the involved
photochemical processes and the dynamic properties. The
next principal step was a significant simplification of this
model. These steps were realized in the framework of our
previous study of the mesospheric photochemistry (Feigin
et al., 1998) (referred to below as FKM). As a result of the
simplification of the original model in accordance with the
procedure developed in FKM, we have elaborated a model
referred to as an essential dynamic model of the
mesospheric PCS. This model possesses the principal
qualitative dynamic properties (the possibility of
subharmonic and chaotic oscillations and the presence of
specific sequences of bifurcations of transition between
different dynamic regimes) of the original model. At the
same time, the essential dynamic model provides a much
simpler description of the dynamics. It is the use of the
essential dynamic model that allows us to solve the
problem specified in this research. A brief description of
both the original and essential dynamic models and their
dynamic properties is presented in Sect. 2 of this paper. In
Sect. 3 we apply the traditional approaches of qualitative
analysis of nonlinear dynamic systems to studying the
essential dynamic model with the purpose to reveal both
the peculiarities of the mesospheric PCS behavior in the
course of one-day variations, which are responsible for the
CDB manifested on the longer time scales, and the
mechanism of the appearance of CDB. In Sect.4 the
knowledge of the behavior of the system is used for
identification of the peculiarities of the chemical processes
involved in the model, that is, reactions and reaction
chains which are an integral part of the mechanism of
CDB origination. Possible applications of this study along
with brief formulation of the main results are presented in
Sect. 5 devoled to concluding remarks. In Appendix we

Table 1. Reactions and their rate coefficiems taken into account in the original
model

Reaction Reaction rates
(RD H+HO—+H,0+0 2.40 x10™
(R2) H+HO;—+Hy+0, 5.6x1012
(R3) OH+HO;—H,0+0; 1.80x107°
(R4) OH+O—-H+0, 4.15x10!
(R3) HO,+0—0OH+0, 2.64x10™""
(R6) H+0;+M—HO2+M 3.83x10™
(R7) H.0+hv—H+OH 8.50x10%
(R®) O+ hv—=20 2.43x10°
(R9) O+0+M=»03+M 5.90x10°¢
(R10Y 0+0; =20, 1.48x101¢
(R11) O+O+M—0ptM 2.00x107
RID) H+O;»0OH+0, 1.16x101"
R13) OH+03—>HO:+0; 1.11x10%
(R14) H+HO,—20H 7.20x10"
(R15) OH+0OE—H,0+0 1.18x10°"
(R16) Oy thy— 0,40 1.00x10?

The rate coefficients of bimolecular reactions are given in units of cm’s”. The

rate coefficients of termolecular reactions are calculated for conditions typical

of the mesopause (concentration of air molecules {(M)=1.7x10" cm?,

temperature t=189 K); the rate coefficients of (R6) and (R9) are given in
units of 5™, the rate coefficient of reaction (R11) is given in units of em’s™.
The photolysis rate coefficients (R7) and (R8) are given in units of cm™s™,
and that of (R16) in units of 5™

apply the knowledge gained in this study to derivation of
analytical expressions determining the region of the
parameter values in which the system possesses NDB.

2 The original and essential dynamic models of the
mesospheric PCS: Description and basic dynamic
properties

2.1 The original medel of the mesospheric PCS

The detailed description of the model and its dynamic
properties and characteristics can be found in FKM. Here
we present a brief description of its essential features and a
review of its dynamic properties and characteristics
investigated in FKM.

A list of the photochemical reactions involved in the
model, as well as their rates are given in Table 1. The
reaction rates were calculated according to Atkinson et al.
(1989) for the mesopause conditions, the altitude of
approximately 82 km. The dynamics of the reagents
involved in the model is described by a set of five ordinary
differential equations (ODEs) for concentrations of the
following reagents: O, H, Os;, OH, and HO,. The model
takes into account the dinrnal variations of photolysis rates
parameterized in the simplest form. Namely, we assume
that the photolysis rates are constant during the daytime,
jump to zero at sunset, and again jump to the daytime
constant value at sunrise. Some remarks concerning
validity of this assumption are given in FKM. Note that
such an approximation of the diurnal variations of the
photolysis rates allows us to reduce analysis of the behavior
of a nonautonomous (time-dependent) system to analysis of
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Fig. 1. Bifurcation diagrams for (a) the original and (b) esseatial dynamic
models.

that of two autonomous (time-independent) subsystems
corresponding to daytime and nighitime conditions.
Throughout this study, it is assumed for definiteness that
duration of the day is equal to duration of the night The
original model possesses a rich assortment of possibilities
of CDB (FKM). These possibilities are presented in the
bifurcation diagram cbtained in FKM and reproduced here
in Fig. 1a. The diagram is formed by the atomic oxygen
values (x;) taken in the consecutive moments
cotresponding to the end of the night and separated by a
24-hours interval, that is, by a period of the parametric
modulation. To obtain the diagram we made the sequence
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Fig. 2. Diumal vanations of the atomic oxygen (x;) (s0lid line) and atomic
hydrogen (x;) (dashed line) in the ene-day period regime with =1 ppmv for
(a) the original and (b} essential dynamic models. The asterisks and circles
along the x-coordinate mark the momenls corresponding to the sunrise and
sunset, respectively.

of calculations with both increasing and decreasing values
of the water vapor mixing ratio denoted by r. Note that the
latter is used as the control parameter throughout this
study. As the initial values for the dynamic process with
given r we use the night-end variable values found in the
dynamic process with the previous value of r. The
calculations are performed using a fifth-order Runge-Kutta
method with a relative precision of 107 s. The diagram
reflects, in particular, the presence of a donble-periodic
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Fig. 3. The same as m Fig 2, but for two-day period regime for r =4.3
pprav.

regime, that is the regime with the minimal period of
oscillations equal to two periods of parametric modulation
(the bifurcation diagram is two-valued in the regions
corresponding to this regime), triple-periodic, other
multi-periodic, and chaotic regimes. The chaotic regimes
correspond to the regions in the bifurcation diagram
where, apparently, an infinite number of variable values
are depicted for the same value of the control parameter,
The region of CDB is bounded by the regions
corresponding to the trivial one-periodic regimes. Figures
2a and 3a show examples of the diurnal variations of the

atomic oxygen (solid line} and the atomic hydrogen
(dashed line) in the one-periodic and double-periodic
regimes, respectively. Note that the bifurcation diagram
reflects the so-called hysteresis effect, when two different
dynamic regimes are observed under the same value of the
control parameter, depending on whether the control
parameter value increases or decreases. We have also
studied (see FKM) such dynamic characteristics as
correlation and minimum embedding dimension of the
chaotic attractor.

Investigations of the equilibrium state characteristics
have shown (FKM) that the subsystem for the daytime
evolution possesses a unique equilibrium state of the stable
node-focus type, and the one for the nighttime evolution
possesses that of the degenerate stable node type.

The knowledge of the mentioned characteristics was
used in FKM for verification of the essential dynamic
mode] described in Sect. 2.2.

2.2 The essential dynamic model of the mesospheric PCS

Following the special procedure of simplification proposed
in FKM we obtained the essential dynamic model (EDM).
The distinctive features of EDM are the following. It (1)
involves only the “essence” of the chemical processes
involved in the original dynamic model; (2) provides the
simplest description of the dynamics of the chemical
species; and (3) conserves the main qualitative dynamic
properties and characteristics of the original dynamic
model. The dynamics of EDM is described only by a set of
two ODEs for concentrations of the atomic oxygen and the
atomic hydrogen, which are denoted below by x; and x»,
respectively. Note that EDM actually involves only 9
chemical reactions from 16 in the original model. The
EDM equations are the following;

d

7’51 = - ae - (I-s(t)) e +E5(0), (1)

d

%=-ﬁc£/xf-oxf/x1+;s(t)r, @)
where  o=2as, tFay,  Fa;,  f2aasNasa),

o=2as(a,ta;)/as, }=2a,, and a;-a, stand for reaction rate
values of (R1)-(R9), respectively (see Table 1), r is a
mixing ratio of the H,D, s(f) is a stepwise function
modeling the diurnal variations of the photolysis rate
values, that is determined as follows:
s(ty=1, te[Tn; Tnt+T/2], and s(t)=0,
te[Tn+T/2:T(n+1)], n=1,2... )
Concentrations of OH and HO, involved in the original
model are determined as functions of x; and x, as follows:

(OH)=agxa/(asx,), 4
(HO,)=agxa/(asxy), (5)
{Os)=agx,/a)¢ at daytime.

Concentration of O; at nighttime cannot be determined
in the frameworks of the essential model, but its behavior
is of no importance for evolution of dynamic variables of
the essential model.
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Figure ib reproduces the bifurcation diagram for the
EDM originally calculated in FKM. One can see, in
particular, that as the value of the control parameter 1
decreases, both the original and essential models exhibit a
cascade of period doublings leading to a chaotic regime,
then there occurs a transition from the chaotic regime to
the period-3 regime, and, further, to another chaotic
regime through a cascade of period doublings. Note that
the last cascade of period doubling is not resolved in
Fig. 1b and an interested reader is referred to FKM where
the first bifurcation in that cascade can be seen in the
enlarged picture of the bifurcation diagram. However, as r
decreases further, qualitative differences in the behavior of
the original and essential models take place (see the region
r<r<r; in Fig. la and the region r,'<r<r;’ in Fig. 1b).
These differences that occur in rather narrow regions of the
control parameter values are discussed in FKM. The causes
of these differences are also discussed in detail in FKM. To
put it briefly, any essential dynamic model, our
mesospheric model included, that has been elaborated in
accordance with the procedure described in FKM can be
adequate to a source original model within but a limited
region of the parameter values, and the changes of the
essential model may be needed to make it adequate within
other regions of parameter values. For the increasing
values of r, both the original model (see the region 1,<r<r,)
and the essential model (see the region r'<r<r,’) initially
demonstrate a cascade of period doublings that lead to
chaotic regimes. In this case, the only difference between
the models is that the essential model possesses “a
window” of the period-4 regime that divides the region of
the chaotic behavior of the original model into two parts.
Note that the regions of chaos and high-order
subharmonics are much more narrow in the essential
model than in the original one. However, we regard this
difference between the models to be a quantitative one.

Figures 2b and 3b present examples of the diurnal
variations of x; (solid line) and x, (dashed line) calculated
in EDM in one-pericdic and double-periodic regimes
correspondingly (cf. Figs. 2a and 3a). The calculations of
the correlation and minimum embedding dimensions of the
chaotic attractor described by the EDM equations, as well
as comparison of characteristice of the equilibrium state
(see FKM), and evident qualitative similarity of the
Poincare mappings of the original and essential models
(see Sect. 3.2 and Figs. 9a and 9b in this paper) provide
additional evidences of the qualitative similarity of the
original and essential dynamic models.

We would like to emphasize that our study is focused on
such “coarse” qualitative features of the original model as
the presence of subharmonic and chaotic regimes and
sequences of bifurcations causing transitions between
them. Consequently, the simplified model is adequate to
our task since it possesses essentially the same qualitative
features as the original model. Any quantitative and the
above-menticned minor qualitative differences between the
models are of no importance in the context of our task.

We believe that the comparison of the essential and
original dynamic models indicates that the same factors

are responsible for the origin of CDB in both the original
model and the EDM. Thus, we have grounds to employ the
EDM as a tool for revealing the origin of CDB of the
original model. The corresponding analysis is described in
the sections to follow.

3 Peculiarities of the one-day evolution of the system
responsible for CDB during multi-day evolation.
Mechanisms of originating CDB

As follows from the preceding consideration, CDB of the
mesospheric PCS can be manifested in a dynamic process
lasting for several days at least. However, it seems
reasonable to assume that the existence of CDB in such a
dynamic process is predetermined by some peculiarities of
the one-day evolution. In this section we reveal and
analyze both these peculiarities and the mechanisms
conditioning their essential role. Toward this end, we use
independently two approaches to qualitative analysis of a
dynamic system, traditional in nonlinear dynamics, that
are described in Sects. 3.1 and 3.2, respectively. Each of
the approaches provides unique information about the
processes determining EDM behavior and allows us to
create a physically illustrative image for CDB
mechanisms.

3.1 Analysis of the factors responsible for the dynamics of
infinitesimal perturbaticns of a solution of the set of

Eqgs. (1)-(3)

The principal nonlinear effects demonstrated by the
mesospheric PCS are (Sonnemann and Fichtelmann, 1997,
Feigin et al., 1998) (1) the bifurcations associated with
stepwise changes of a minimum period of the solution, and
(2) the chaotic regimes. A bifurcation associated with a
sudden appearance of period-n solution instead of period-m
gsolution is a result of an instability of period-m solution
corresponding to an exponential growth with time of any
infinitesimal perturbations of the unstable solution, If there
are no stable solutions, we have a chaotic solution. Thus,
the exponential (on the average) growth with time of an
arbitrary infinitesimal perturbation of an arbitrary solution
of the system is a property and both the sufficient and
necessary conditions of the chaotic regime. To put it
differently, a positiveness of the Lyapunov indexes is both
the property and the criterion of the chaotic solution (see,
for example, Moon, 1987). For these reasons, to fulfill our
task we analyze, first of all, the factors determining
dynamics of the infinitesimal perturbations of the chaotic
solution of the gsystem and the mechanisms of the growth
of these perturbations. In doing so we assume that the same
factors determine the growth of the unstable subharmonic
solutions. We analyze such factors in two independent
ways. First, we consider the equations describing dynamics
of infinitesimal perturbations and their solutions (see Sect.
3.1.1), and then we analyze the behavior of a pair of close
phase trajectories in the phase space of the subsystems
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corresponding to daytime and nighttime conditions (sec
Sect. 3.1.2).

3.1.1 Analysis of the equations for infinitesimal perturba-
tions of solution

Let us consider two different solutions (x;(t), x>(t)) and
&), xSy of the set (1)-(3), such that
IX1.2'™-X1 2<< | %12 | . Linearizing Egs. (1)-(2) we obtain the
following set for infinitesimal perturbations &, ;=X ,'-X 2
of the solutions.

%=—af -(-s(Hué 6)

df 2 l-

d&

7:=A§1—B§2, N

2
where A4 =E[E+c] , B =ﬁ[£+c] ;
xF \x x1 \x

Replacing ) in Eqgs. (6)-(7) by

&8, exp(_[ (s() - l)udt)) and making evident

rearrangements we obtain the following equation:
g o dE .

RN~ i (D, =0, 8
T3 TR0 rei 04, ®)
where Wty=(B+(s(t)-1))/2, @5 (H—cdA.

The structure of this equation is identical to that of the
equation describing a linear oscillator with time-dependent
friction (v) and eigen-frequency (@p). The chaotic and
multi-periodic regimes are associated with the increase of

£, and thus, 51 with time. Note that the “frequency” @, is

always positive as in the case of a real physical oscillator.
The “friction” v can be either positive or negative; it may
be negative exclusively due to 0. However, it is clearly
seen from (6) that the only role of the term proportional to
4 consists in damping perturbation &, during the nighttime
evolution. Indeed, our numerical experiments have shown
that, while £#=0, the system, in spite of the changes that
make its behavior even more complicated, retains all the
types of CDB of EDM. We would like to emphasize that
negative dissipation does not actually exist in the set (6),
(7), and negativeness of friction in (8) is just a
consequence of the replacement of variables. Thus, we can
conclude that possible negativeness of v is not a factor
responsible for the growth of £,. It is also easy to prove
rigorously that an arbitrary modulation of the friction
which holds it positive (this is always fulfilled in our
model in the case 4=0) cannot cause the growth of &;.
Hence, the above consideration shows that we deal with
parametric e¢xcitation of the oscillator (8) due to time-
dependence of its eigen-frequency @y. Consequently, the
peculiarities of the process of parametric excitation are
determined by the peculiarities of time dependence .
This dependence calculated for the chaotic regime
(r=2.442 ppmv) is presented in Fig. 4a.

a3

0 400 800 1200
time (hours)

Fig. 4. Time dependences of (a) the frequency (ws) of the linear oscillator
(8), (b) concentrations of atomic oxygen, x; (solid line), and atomic
hydrogen, xa (dashed line), and () logarithm of the magnitude (solid line)
and sign (dashed line) of the perturbation &;. The dependences have been
calculated in the essential dynamic model for r=2.442 ppmv.

An apparent feature of this dependence is a sequence of
extremely strong pulses (note that the scale of the ordinate
is logarithmic). Figure 4b illustrates the corresponding
chaotic oscillations of x; and x,. Comparison of Figs. 4a
and 4b shows that the pulses of @, are associaled with
abrupt and deep “drops™ of the variables at the end of the
nighttime evolution, Figure 4c¢ presents the corresponding
oscillations of &;. The logarithm of the absolute value of £;
is shown by a solid line, and the sign of & (reflected as
either plus or minus umity) is shown by a dashed line.
Several segments of the exponential growth of the
amplitude of £, can be scen in Fig. 4c. According to
Fig. 4a, the dependence of w, on time in these segments
can be roughly approximated as a periodic sequence of &~
pulses, that is

wa=ard(t—nT)y, n=12..., (9)
n

where T is a time period between d-pulses. Note that Eq.
(8), when v=0 and ex” is an arbitrary periodic function, is
known as the Hill equation. This equation is known to
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possess exponentially growing solutions. Analytical
handling of the Hill equation with ax” defined according to
(9) shows that the solution grows with time, whenever
aT>4. A minimum period of the unstable oscillations
therewith equals 27, as in the cases reflected in Fig. 4. An
increment of the oscillations described by such an equation
increases with an increase of pulse amplitude a. Note that
when the discussed Hill equation contains an additional
term describing friction and proportional to 10, the puise
amplitude needed for excitation of unstable oscillations is
much greater than in the “ideal” case +=0. This explains
the necessity of very strong pulses of @, in the case of Eq.
(8) because of strong dissipation inherent in the set (6),
(7), and in EDM itself.

The facts pointed above bear witness to the essential role
of Fwise pulses of wy in the processes of excitation of
exponentially {on the average) growing oscillations of the
small perturbations &; » described by (8), and thus in the
processes causing CDB. Since the pulses of o, are
associated with deep night drops of variables, the results
obtained demonstrate the essential role of these drops.
Numerical experiments show that the presence of the
strong pulses of ®, associated with night drops is
characteristic for all types of CDB of EDM. However,
excepting chaotic solutions, &; » are everywhere damping,
Note that £; ; would be growing also in the case of unstable
solutions but we could not obtain unstable solutions by
means of numerical integration of the evolutionary
equations.

Note also that one of the results of the above analysis is
demonstration of a physically illustrative mechanism of
originating CDB: CDB appears as a result of specific
patametric instability of small perturbations of the solution
of the EDM equations.

3.1.2 Analysis of phase space

An imaginary space whose coordinates are the system
variables is referred to as the phase space of the gystem, An
analysis of the phase space is a traditional and very useful
tool for investigations of qualitative dynamic properties of
a dynamic system. Any solution of the system is reflected
in the phase space by means of a phase trajectory. The
point of the phase space corresponding to the
instantaneous state of the system and tracing out a certain
phase trajectory during the evolution of the system is
referred to below as an imaging point (IP). Of special
interest for us is mutual behavior of a pair of initially
closely-spaced phase trajectories. Obviously, an increase or
a decrease of the distance between the IPs belonging to
these trajectories corresponds unambiguously to the growth
or damping of small perturbations of the solution,
respectively. In this section, we analyze dynamics of the
distance between such [Ps.

Let us mention two ways for presentation of the phase
space of the system described by Eqgs. (1)-(3).

1. Note that cur nonautonomous (time dependent) system
can be transformed into the autonomous cne owing to
periodic dependence of its parameters on time. For this an
additional differential equation for cyclic variable should
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Fig. 5. Several phase trajectonies in the phase space of the sat (1)-(2) (for
12.442 ppmv) for the daytime (&) and nighttime (b) conditions. The dashed
lines correspond 1o the arbitrary chosen trajectories exhibiting the
charadenstic qualitative features of the phase spaces structure. The solid
lines with asterisks depiat some pieces of phase trajectories observed m the
chaotic regime, corresponding to either daytime or the nighttime evolution,
and those with circles show pieces of neighboring trajectories.

be written (see, for example, Moon, 1987). The phase space
of the obtained autonomous system appears as three-
dimensional space “rolled up” along the cyclic coordinate.
2. The other way is based on the fact that, due to the
stepwise dependence of the photolysis rates on time, the
dynamic process described by Egs. (1)-(3) can be
represented as a sequence of dynamic processes described
by the autonomous systems corresponding to the daytime
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and nighttime situations, Hence, to analyze the evolution
of the nonautonomous system, we should consider two
phase spaces reflecting daytime and nighttime situations.
An P spends a fixed time inside one phase space, and,
after that, passes into another. Note that the phase
trajectory is not disrupted as it passes “the boundary”
between the daytime and nighttime phase spaces.

In this study we use the second way. Characteristic
features of the structure of the phase spaces corresponding
to the daytime and nighttime conditions are shown in
Figs. 5a and 5b, respectively, by some phase trajectories
depicted by the dashed line. The “velocity” of IP motion in
the phase space can be judged by stroboscopic marks on
the trajectories. The mentioned trajectories illustrate,
primarily, the fact that the structure of each of the phase
spaces is determined by a single attractor (see also FKM).
Indeed, all the phase trajectories in the daytime phase
space come to the equilibrium state of the stable focus type,
and those in the nighttime phase space converge to the
singular equilibrium state at the origin of the phase space
coordinates.

The solid lines with asterisks represent some arbitrary
chosen trajectories observed in the chaotic regime and
corresponding to either daytime or nighttime evolution,
and those marked by circles show arbitrary neighboring,
trajectories: duration of motion along these pieces of phase
trajectories is also equal to duration either of day or night.
Note that the closely spaced trajectories do not diverge, in
geometrical sense, in either of the considered phase spaces
of our system, unlike the case of phase spaces of many
chaotic subsystems (e.g., the Rossler equations (Rossler,
1976)). However, as can be seen from Figs. 5a and 5b, the
distance between the IPs on the neighboring trajectories
can increase both in daytime and nighttime phase spaces
despite the absence of divergence. From the figures we
notice that the increase of the distance between the initially
close IPs is possible owing to two following conditions. (1)
The closely-spaced trajectories do not converge
significantly during considered stages of the evolution, and
(2) the velocities of the IP motion are different along
different trajectories. The first condition determines the
obvious restriction on the duration of the considered stages
of evolution under chaotic behavior of the system: the
imaging point must not have time enough to reach the
equilibrium during the evolution. Factors responsible for
the fulfillment of the condition (2) are analyzed in Sect. 4.
Note that divergence, in geometrical sense, of phase
trajectories is also absent in the phase of the well-known
Lorenz equations (Lorenz, 1983). However, the mechanism
of CDB appearance in the Lorenz's system (see, e.g.,
Williams, 1977) differs from those discussed below.

Note that the distance between the neighboring IPs
grows in different ways during different stages of the
evolution, During the daytime evolution, the difference
between the values of x» coordinates of two IPs leads to an
increased difference in x; but the difference in x, does not
increase. The nighttime evolution can be divided into two
distinctive successive stages agsociated with different ways
of increasing distance between neighboring IPs. The
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domains of these stages are roughly reflected in Fig. 5b.
The process of the growth of the distance during the first
stage is the same as during the daytime evolution. The
second stage is characterized by an abrupt increase of the
velocity of the IP motion, and, namely this stage is
associated with the nighttime drops of the variable values,
noted in the previous section. Beginning at different
moments for different phase trajectories, this stage causes a
significant increase of the distance between the
neighboring IPs along the xp-coordinate. Note also that
this stage is associated with “turning over” of the length
connecting two neighboring IPs. As a result of this turning
over, trajectories with initially greater x, have smaller x, at
the end of the stage, and vice versa. The turning over
reflects the oscillating character of the behavior of small
perturbations, which has been revealed in the previous
section. The second stage is followed by an abrupt decrease
of the velocity of IP motion and, consequently, by a
decrease of the distance between the neighboring IPs.

To conclude this section, let us summarize the
description of the revealed mechanism responsible for an
increase of the distance between the neighboring IPs.
During the daytime, and the first stage of the nighttime
evolution, the difference in the x,-coordinate of IPs causes
the difference in x;. During the second stage of the
nighttime evolution, the difference in x, transforms again
to the difference in x; which is larger than the initial one.
The fact that the initial difference in the x,-coordinate of
[Ps transforms back into the larger difference in x» during
the consequent daytime and nighttime evolution reflects
the possibility of exponential growth of the distance
between IPs during the multi-day evolution. We see that
the growth of the distance along x, takes place only during
the second stage of the nighttime evolution, so this is an
evidence of the major importance of that stage in the
processes responsible for the appearance of NDB. This
conclusion is in complete accordance with the results of the
previous section. At the same time, we can assume that the
increase of the distance between IPs along x; during the
daytinie evolution is not necessary for CDB because this
process is duplicated during the first stage of the nighttime
evolution. The validity of this assumption is corroborated
by results of Sect. 3.2.

3.2 Analysis of the Poincaré mapping

One of the most effective methods for studying, periodically
repeated processes is the method of Poincaré mappings. It
consists in reducing the analysis of the evolutionary
differential equations to the analysis of the mapping
connecting the variable values separated by a characteristic
time interval. In this way, the evolution of our system can
be represented by means of the 2d mapping of the
following form:

A+l _ Ho_n n o_n noon
X1,2 _fl,z(xl =x2)+g1,2(f1,2 (xl ’x2)=f1,2(xl ’xz))>
(10)
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Fig. 6. Nighttime evolution mapping (NEM), that is, the dependence of the
atomic hydrogen concentrations al the end of the night on the ones at the
beginning of the night.

where x{, are variable values at the instant the night

n+l

stage begins, and xj; are variable values after the period

of external modulation. Functions f;, give variable values
after the nighttime evolution, and functions g;, describe
changes of variable values after the daytime evolution.
These functions are uniquely determined by Eqs. (1)-(3)
but cannot be described analytically. The geometric image
of the mapping (10) is a surface in the 4-dimensional space

whose coordinates are xijz , xf’gl. Thus, the mapping (10)

is not yet a convenient object for qualitative analysis.

Below we demonstrate that the essential features of the
dynamic behavior of the system (1)-(3), such as the
presence of subharmonic and chaotic oscillations, and the
specific sequence of the bifurcations described in Sect. 2,
can be represented by means of a significantly simpler 1d
mapping. For this we use the results of Sects. 3.1.1 and
3.1.2 which show that the mechanisms of CDB origination
are associated mainly with the nighttime evolution,
especially, with the behavior of x; during this stage. Thus,
before proceeding further, we consider separately the
dependence of function £, on x,. In other words, we
consider the dependence of the x; value at the end of the
nighttime evolution on that at the beginning. Hereinafter
we refer to this dependence as to the nighttime evolution
mapping (NEM). Figure 6 presents the NEM calculated for
initial concentration x,=10'° cm™.

The shape of the NEM obtained reflects the presence of
different stages of the nighttime evolution defined in
Sect. 3.1. Specifically, the growing portion of the NEM
appears because the nighttime evolution with relatively
small initial values of X, corresponds to the first stage only.
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Fig. 7. The 1-d mappings (thick sclid line) calculated accerding to equation
{13} for the parameter values corresponding to (a) the period-2 (r=4.5
ppmv), and (b) the chaotic regimes (r=2.86 ppmv). The structures of the
corresponding solutions are shown by the thin sclid line,

In other words, NEM increases when the duration of the
first stage (1) is pgreater than the duration of the night
itself. It is shown in Appendix (see (A4)) that 74 is inverse-
ly proportional to the initial x, value. Hence, with an inc-
rease of the latter, 4 can become equal to the duration of
the night. A further increase of the initial value of x, would
be associated with an abrupt decrease of the final x; value
during the second stage of the nighttime evolution. This
fact is reflected in NEM as a strong bend. The following
slowly decreasing portion of NEM corresponds to the stage
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of slow adjustment of the systetn to the nighttime
equilibrium state.

Although NEM is just part of the mapping reflecting the
total evolution of the system, it is useful to note that it
possesses a “one-hump” structure characteristic of the
family of mappings considered by Feigenbaum (1978),
and, specifically, for the famous logistic map. He
demonstrated that such mappings can possess a period
doubling cascade. Note also that the most general feature
of these mappings is that they are irreversible: one final
value can correspond to two initial values. The noted
qualitative resemblance of NEM to Feigenbaum mappings
and comparatively smooth daytime evolution of the system
(see Sects. 3.1.2 and Fig. 5a) allow us to assume that
possibility of CDB in our system is connected, above all
else, with the specific form of the obtained NEM. To prove
this assumption we make the simplest approximation of the
daytime evolution. Based on results of our numerical
investigation of the set (1)-(3) we suppose (1) that x,
increases by a fixed constant value proportional to r during,
the daytime evolution, and (2) that the x; value final for
the daytime evolution is a fixed constant independent of
initial conditions of the daytime evolution. That is, we
assume the functions g, and g, to be of the form

8=C,~ f1(x1.x3). an
&, =Car=const, (12)

where C; and C, are constants.
Substituting (11) and (12) into (10) we obtain the
following 1d mapping:
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=1, (x'z’, C1)+Czr (13)

which is much simpler. This mapping calculated for
C=10" em?, C,;=6.7x10" cm™ and r=4.5 ppmv is depicted
in Fig. 7a by a thick solid line. Note that similarly to the
Feigenbaum mappings, the mapping (13) has a one-hump
structure and, consequently, can describe, depending on
parameter values, a number of multi-periodic regimes. For
example, Fig. 7a shows the structure of the period-2
solution of the mapping (13). Figure 7b presents the
mapping corresponding to the chaotic regime. It has been
calculated for the above noted values of C, and C, but for
=2.89 ppmv. A piece of the chaotic solution is also shown.
The last mapping allows us to illustrate the growth of the
perturbations of an arbitrary solution. Indeed, let us
suppose that the initial values of %, correspond to the
region of the strong bend of the mapping. Then, it is easy
to perceive that an arbitrary small perturbation of this
initial value of x, increases significantly after iteration,
Reiterations would result in exponential (on the average)
growth of the perturbations, that is, in chaotic behavior.

Figure 8 presents a bifurcation diagram for the mapping
(13). For ease of comparison with the bifurcation diagrams
of the original and essential models calculated earlier (see
Figs. 1a and 1b), we give in the diagram the night-end
values of x;, but not of x>, as would be in accordance with
{13). The night-end values of x, are obtained immediately
in the same calculations using Eqs. (1), (2), as x..
Comparison of the noted bifurcation diagrams bears
witness that the mapping (13) retains such essential
features of the behavior of both the original and essential
models as the presence of the period doubling cascade
completed by the chaotic regime, and the presence of the
wide region of the period-3 solution at the other side of the
chaotic band. Moreover, even certain quantitative corres-
pondence of the diagrams presented both in Figs. 1a, b and
Fig. 8 occurs. The major qualitative difference is observed
under relatively small values of the control parameter r: it
is seen that the mapping (13) can describe more complex
behavior than both the essential and original model. This
difference means that our assumptions used for the
derivation of (13) are not valid for this region of r values.
Note that the behavior of the essential model also differs
from that of the original model under small values of r (see
Sect. 2, or extended discugsion in FKM).

For completeness, it is wuseful to understand the
relationships between the simplified 1d mapping (13), 2d
mapping (10} for the essential model, and the analogous
5d mapping for the original model. For this purpose, let us
consider the images of the chaotic attractors in the space of
the above noted mappings. Since the 1d mapping (13) is
formulated in terms of the x; values, it is natural, in the
case of the essential and original models, to consider
projections of the atiractor images onto the (%", X2 )
plane  too. Figures 9a - 9c¢c present such images
corresponding to the rightmost chaotic bands in the
bifurcation diagrams (see Figs. 8, 1b, and la, respectively).
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Each image shown consists of at least 1000 points and does
not reflect transient processes (100 first points have been
excluded). Obviously, a chaotic attractor covers a limited
region on a mapping surface. Thus, a form of the attractor
image allows us to judge about those features of the
mappings that are giving rise to the chaotic behavior. No
doubt, the same features provide appearance of
subharmonic regimes, since the chaotic behavior
criginating from a period-doubling cascade can be viewed
as “wandering” of the system between an infinite number
of unstable periodic regimes.

It is seen that the images calculated in the essential and
original models are qualitatively identical. This fact can be
considered as an additional evidence of an adequacy of the
essential model. The only qualitative difference between
the images calculated in the models and that given by (13)
is the presence of a distinctive, almost vertical branch in
the right-hand parts of Figs. 9b and 9c. The presence of
this branch bears evidence that the mappings of the
essential and original models are not really 1-dimensional,
and that the structures of the chaotic and periodic solutions
described, on the one hand, by the 1d mapping, and, on the
other hand, by the essential or original model are
somewhat different. However, comparison of the
bifurcation diagrams {(see above) allows us to argue that,
when the existence of the main regimes of CDB (period-2,
period-3, and chaotic regimes) in the mesospheric
photochemical system is of primary interest, the noted
difference is of minor significance, and that the
mechanism of CDB origination in this system, when 1d
mapping, adequately reproduces qualitative features of the
behavier of the models, is essentially the same as that
described by Feigenbaum.

To conclude section 3 let us summarize the main
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Fig. 9. The images of a chaotic attractor at the map (x"x;""), where x" is
concentration of atomic hydrogen at the end of the daytime of the n-th day of
evolution calculated by means of (a) 1d mapping (13), (b) the essential
dynamic model (r=3.475 ppmv), and (c) the original dynamic model (=2.86
ppmv).

peculiarities in the behavior of the system during one
period of parametric modulation, which give rise to the
CDB. These are the following:

(i) the stage of abrupt changes of variable values during
nighttime evolution, and

(ii) the “humped” structure of the nighttime evolution
mapping for x.
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4 Peculiarities of the modeled chemical processes

The main objective of this section is determination of the
peculiarities of the modeled chemical processes which
condition the appearance of CDB. To achieve this goal we
first analyse the dynamic equations and determine the
terms responsible for the characteristic features of the
behavior of the system during various stages of the diurnal
evolution (Sect. 4.1), and, second, we determine the
peculiarities of chemical processes described by these
terms {Sect. 4.2).

4.1 Analysis of the dynamic equation structure

4.1.1. The daytime and first stage of the nighttime
evolution. Both these stages (see Sect. 3.1.2 for definitions
and description of the stages of the diurnal evolution) are
characterized by significant relative changes of x; and
much smaller ones of x,. Thus, while considering the
peculiarities of the system evolution during a single period
of modulation, it seems to be quite valid to neglect changes
of ;. In other words, the changes of the variable values
during these stages can be described approximately only by
Eq. (1) under the supposition xy=const. (Note that such an
assumption is invalid while analyzing regularities of the
multi-period evolution, as in the previous section.)
Keeping in mind this approximation it is easy to see the
reasons for increasing the distance between the IPs of two
closely-spaced trajectories along the x;-coordinate. Indeed,
let us consider two closely-spaced phase trajectories which
initially have equal values of x, but different values of x,
(see Fig. 5a, the solid lines with circles and asterisks).
Then, due to the term “-ax,” of (1), the x; value at the end
of the daytime evolution will be greater for the trajectory
with gsmaller initial value of x, and vice versa. Although
Eq. (1) for the nighttime differs from that for the daytime,
the changes of the distance between the [Ps during the first
stage of the nighttime evolution are again determined by
the term “-ax;”, Obviously, the role of the term “-ux;” is
opposite to the role of the term “-oxg”™

4.1.2, The second stage of the nighttime evolution. The
peculiarities of the system behavior during the second
stage of the nighttime evolution characterized by the
abrupt changes of variable values can be explained as
follows. First note that this stage begins after the
significant decrease of x; during the previous stage of the
nighttime evolution For this reason we can neglect the
term “-ux;” in the following consideration, As long as a
relative rate of changes of x, (that is, xy |dx2/dt|) is
negligible compared with that of x;, the absclute rate of a
decrease of x; remains approximately constant with time,
and the relative rate grows almost hyperbolically.
However, such a decrease of x; (that is, concentration of
atomic oxygen) cannot last infinitely because the
concentration of a chemical reagent is always a
nonnegative number. Slowing down of dropping of x; is
possible and indeed takes place due to a decrease of the x;
value. This decrease takes place due to the terms

“ Py e, and “-ox,%%,” of (2). As follows from results of
Sect. 3.1.2 (see Fig. 5b), the decrease of x, leads eventually
to a drop of both the absolute and relative rates of changes
of x,.

Let us show first that significant slowing down of the
relative rate of changes of x; occurs as a result of
significant acceleration of the relative rate of changes of
X2. Indeed, the instant of cessation of further growing of
the x; relative rate, in other words, its maximum is,
obviously, determined by the condition

i(iﬂ);() (14)
dt\ xp dt

Substituting Eq. (1) (for p=0) into (14), we find that (14)
is equivalent to the condition that the relative rates of
changes of x; and x; are equal:

Lldx|_ 1 dx,
dr | dt |

Clearly, for initially significantly unequal rates of
variable changes to become equal, the more rapid growth
of the rate of changes of x; is needed as compared to that
of x,.

Let us demonstrate now that this more rapid growth is
possible due to the presence of the term “Px,°/x,” in
Eq. (2), or, to be more specific, due to the fact that thig
term is inversely proportional to x,°. Indeed, assuming
$3=0, we see that

1 |dx1|_ “Xx2 _ |dx2|

—_— = = . (16)

aid| xi oxar|

That is, we see that, if Eq. (2) did not contain the term
“.Bx,2x, 2", the relative rates of changes of x, and x, would
be proportional during the whole nighttime evolution, and
could not become equal. As a result, the relative rate of
changes of x; would never reach its maximum (see (14)
and (15)) and approach infinity when x; tends to zero. This
means that, eventually, x; would inevitably become
negative. It is needless to say that because of such a
behavior the model with =0 is inadequate. So, we may
indeed conclude that the term “-Bx,*/x,”” is of particular
importance for the nighttime evolution of x,. Note that the
exact solution of the system (1), (2) with B=p=s=0 can be
easily obtained analytically, but it will not be discussed
here. Naturally, the exact solution corroborates the above
qualitative conclusions.

Note that the condition (14) is fulfilled when X1=K1ors
where

(13)

xlcr=iz£z 18x107 em™, (an

{a+0c) «

We see that the most rapid changes of both x; and x, are
indeed associated with the moments of their nighttime
drops as is noted in Sect. 3.1. The characteristic time of the
most rapid changes of both x, and x, is of order 107 s, that
is, it is two orders of magnitude less than that durmg the
other stages of evolution,

The effective increase of the distance between the 1Ps
belonging to closely spaced phase trajectories during the
second stage of the nighttime evolution (see Sect. 3.1.2) is
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conditioned not only by rapid changes of variable values
but also by the discrepancy between the moments of the
most rapid changes in different trajectories. As
demonstrated in Appendix, to determine these moments, it
is sufficient to consider Eq. (1) with the only term “-ax;”
in the right-hand side (that is, neglecting the term “-ux;™).

According to the discussion of Sect. 3.2, the presence of
the strong bend is believed to be one of the basic features of
NEM, conditioning, the possibility of CDB. As pointed out
in Sect. 3.2, such a peculiarity is determined by the second
stage of the nighttime evolution, and, hence, by the terms
of the dynamic equations analyzed above.

Thus, the above analysis leads to the conclusion that the
mechanism of CDB origination is based on the processes
determined by the terms “-ax,” of (1) and “-Pxy>/x,*” of
(2). The first one provides self-acceleration of the relative
changes of x;, which, in turn, provides the conditions for
the abrupt changes of x,. The second term is directly
responsible for abrupt changes of x,, which are the most
essential part of the mechanism of originating of CDB.
Note that our control runs of the essential model with
o—=p~0 have demonstrated the same regimes of CDB as
those possessed by the “proper” essential model.

Note also that the comprehension of the role of different
terms of Eqs. (1) and (2) appears to be especially important
for prediction of results of possible modifications of the
system due to involvement of additional chemical
processes, or, with changes in the parameters values. The
values of new terms and their roles should be compared
with those of the basic terms defined above.

4.2 Analysis of the modeled chemical processes

As follows from the above analysis, the possibility of the
CDB is conditioned by the processes of an almost finear
(with time) decrease of x; during the first stage of the
nighttime evolution and the consequent abrupt drop of the
x; value during the second stage. These processes are
shown to be due to the presence of the terms “-ax,” in (1)
and the term “-Bx,*/x/"” in (2). Below we analyze the
chemical processes responsible for these terms.

Evidently, the term “-ax;” cannot be connected with a
single ordinary chemical reaction, for a rate of such a
reaction is always proportional to the concentration of the
destroyed species. For example, the continuity equation for
reagent X reacting with reagent Y in the bimolecular
reaction of the type

X + ¥— products
must be written as follows:
d(x)
dt
where k is a reaction rate constant, We notice that in this
case the rate of relative changes of reagent X does not
depend on X and, thus cannot increase with time as in the
case of (1), unless the concentration of reagent ¥ increases.

However, Eq. (1) is not an ordinary continuity equation,

but a specific approximate equation describing the “slow”

=-k(XXY),

changes of atomic oxygen (see Sect. 2, and FKM). The
origin of this term is cansed by joint processing of the

reactions (R4), (R5), and (R6).
HO+O— OH+0, (R5)
OH+O—H+O, (Rg)
H+Oy+M—s HO,+M (R6)
2050,

These three reactions form the known catalytic cycle
destroying atomic oxygen (see, eg., Brasseur and
Solomon, 1984). The main distinctive feature of this cycle
under the mesospheric conditions is that the rate of its
processing does not depend on concentrations of the
destroyed species, and depends only on concentration of
the catalyst (atomic hydrogen). (OH and HO, can be
considered as intermediate forms of the catalyst, their
concentrations are defined as functions of concentration of
H according to (4) and (5).) In other words, the peculiarity
of the cycle is that it is “autonomous”™ relative to destroyed
species. This peculiarity is conditioned by the fact that the
rate limiting reaction of the ¢ycle (reaction (R6)) does not
involve atomic oxygen. Mathematically, independence of
the rate of the atomic oxygen destruction on its
concentration reflects the fact that concentrations of the
“fast™ variables (OH) and (HO,) are inversely proportional
to the concentration of O (see (4) and (5)).

If Eq. (1} involved the term a'x;x; corresponding to the
hypothetical single bimolecular reaction instead of the
term “-ax,”, it is rather obvious that evolution of the
system would be much smoother, and, thus, an essential
part of the mechanism of originating of CDB, connected
with the presence of the stage of abrupt changes of
variables, would vanish. Indeed, control calculations with
Eq. (i) changed in such manner have demonstrated only
the presence of the period-1 solutions in a wide range of
the parameter values. The magnitude of o’ in these
calculations has been chosen such that the daytime
equilibrium variable values in the changed system should
be equal to those in the “proper” system.

The term “-szzlxlz” in Eq. {2) appears due to the
bimolecular reaction (R3) between OH and HO,. It is
important to note that the concentrations of both OH and
HQ, are determined by joint processing of the reactions
(R4)-(R6) forming the catalytic cycle mentioned above,
while the reaction (R3) provides irreversible destruction of
the catalyst. Note also that the reaction (R3) does not
involve the catalyst in its major form (atomic hydrogen)
but only short lived intermediate forms OH and HO, which
react with the species destroyed in the catalytic cycle
(atomic oxygen). The noted facts condition the inverse
proportionality of the net rate of the atomic hydrogen
destruction to the square of the atomic oxygen
concentration.

Hence, we can conclude that this is a catalytic cycle,
characterized by independence of its processing rate on
concentration of the destroyed species, that can be
considered as the major chemical peculiarity facilitating
appearance of CDB of the mesospheric PCS. The revealed
role of this peculiarity gives us grounds to refer to it as to
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the chemical mechanism responsible for the mesospheric
PBCS instability under periodic parametric modulation. By
the instability we mean both the behavior of the system in
the chaotic regime and the loss of stability of the periodic
solutions. In this sense, the role of the discussed peculiarity
in our system with periodically modulated parameters is
similar to the role of autocatalytic processes for chemical
systemms  with  time-independent parameters. The
autocatalysis is inherent almost in all chemical systems
demonstrating chemical instabilities (see, for example,
Field and Burger, 1985). The autocatalysis seems to be
responsible also for the known examples of the chemical
instabilities of the atmospheric PCSs. In particular,
Heicklen et al. (1971) revealed an avtocatalytic process in
tropospheric PCS; Feigin and Konovalov, (1995, 1996)
demonstrated that auntocatalytic processes are responsible
for the instability of the Antarctic PCS. An evident role of
autocatalysis is that it provides possibility for an
exponential increase of small perturbations of the
equilibrium concentration of reagent. The catalytic cycle
{R4)-(R6) alone does not provide the possibility of an
exponential increase of perturbation of stable periodic
variations but it is an essential part of the mechanism
providing, this possibility. An exponential (on the average)
increase of perturbations of any periodic solution can
convert this solution to the chaotic one. So, the revealed
role of the cycle (R4)-(R6) and the discussed analogies
suggest that the presence of similar “autonomons™ cycles
in other atmospheric PCSs may indicate that these systems
too can possess CDB under appropriate conditions.

We can conclude that from the viewpoint of chemistry
the dominant role in the processes respongible for the
appearance of CDB in the mesospheric PCS belongs to the
catalytic cycle (R4)-(R6) characterized by independence of
the rate of its processing on conceniration of the destroyed
species, and to the reaction (R3) causing destruction of the
catalyst and involving only short lived species of the
catalyti¢ cycle immediately reacting with the species
destroyed in the cycle.

5 Concluding remarks

The goal of this paper was to reveal the origin of
complicated dynamic behavior (CDB) of the mesospheric
photochemical system (PCS) model by Fichtelmann and
Sonnemann (1992) forced by diurnal variations of the
photolysis rates. By the “origin” we mean here the
peculiarities of the evolution of the system within a single
period of parametric modulation and those of the chemical
processes involved in the model, that are significant for
CDB appearance, as well as the mechanisms determining
the significance of the pointed peculiarities for the CDB
appearance.

For this purpose we have employed the essential
dynamic model of the mesospheric PCS elaborated by
Feigin et al, (1998), which demonstrates the same
possibilities of the dynamic behavior as the significantly
more complicated original madel.
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We have shown that the essential peculiarities of the
system evolution within a unit period of modulation which
are responsible for CDB are (1) the presence of the stage of
abrupt  changes of wariables during the nighttime
evolution, and (2) the humped structure of the night
evolution mapping for atomic hydrogen, which is the
dependence of the atomic hydrogen concentration at the
end of the night on that at the beginning of the night.

The catalytic cycle characterized by independence of the
atomic oxygen destruction rate on its concentration has
been found to be the principal chemical peculiarity of the
system provoking the CDB appearance.

We have studied the mechanisms of CDB appearance
using two different approaches that complement each
other. From the viewpoint of the first approach the
mechanism of CDB appearance can be presented as the
consequence of the processes causing the exponential (on
the average) growth of perturbation of the solution with
time. The essential part of the mechanism is connected
with the stage of abrupt changes of component concen-
trations during the nighttime evolution. In the context of
the other approach, the mechanism of CDB appearance can
be described by means of Poincaré mapping. We have
shown that the main dynamic properties of both the origi-
nal and essential dynamic models are reproduced by a
mere one-dimensional mapping, and we argue that the me-
chanism of originating of CDB in the mesospheric PCS is
essentially similar to that described by Feigenbaum (1978).

On the basis of results of qualitative analysis we have
derived an analytical expression (see Appendix) for
estimation of the parameter values under which CDB
OCCUIS,

We believe that results of this sdy will promote further
investigations into the nonlinear nature of the atmospheric
PCSs. In particular, they may significantly simplify the
investigations aimed at revealing CDB of the real mesos-
pheric PCS, as the results obtained allow one to estimate
the action of wvarious factors existing in the real
mesosphere, which are not taken into account in the photo-
chemical models, on the mesospheric PCS behavior. The
important role of the catalytic cycle characterized by
independence of the net rate of the species destruction on
its concentration points the direction for searching other
atmospheric PC8s possessing CDB under periodic para-
metric modulation, We suppose that the presence of a
similar cycle in other PCSs indicates that these systems
may possess CDB under appropriate conditions. Besides,
as follows from Sect. 3.2, the presence of such a cycles can
indicate an extreme sensitivity of a certain dynamic
process in the system to the initial conditions of this
process or the system parameters. Although identification
of such cycles is above the scope of this paper, we can
point as an example to the cycle suggested by Molina et al.
{1987) for the conditions of the polar lower stratosphere:

2x(CIH 03— CIO+0,)
CIO+CIOHM—CLOy+M
CL:Oy+hwv—CI0O0HCI
ClIOO+M—-CI+0,
20,530,
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The rate limiting reaction here is a reaction of ClO-dimer
formation (Anderson et al., 1989) which does not involve
an ozone destroyed in the cycle. The other possible cycle is
the one that plays a significant role in the lower middle-
latitude stratosphere (Brasseur and Solomon, 1934):

CIO+HO,—HOCIHO,
CHO;=CIOF0O,
HOCI+Av—CIHOH
OH+0,—>HO-+0,
20;—30,.

The rate limiting reaction of this cycle is the upper
reaction. The presence of such cycles indicates that the
lower stratospheric PCS may possess CDB. The necessary
parametric medulation may be connected with seasonal
variations of the photolysis rates and the rates of
heterogeneous reactions.

Using the mesospheric PCS as an example we have
shown that computation of the mapping connecting the
initial and final values of any dynamic process observed in
the atmospheric FCS can provide valuable information
about the nonlinear nature of this PCS, as well as
indications which types of CDB and under what conditions
can be expected for these PCS. We emphasize that the
humped structure of the mapping, especially accompanied
by its strong bend, can bear evidence that such a system
may be strongly sensitive to deviations of its parameter
values. The above suggestions are especially valuable while
predicting the changes in the atmospheric PCSs caused by
the trends of the atmospheric parameters.

Appendix
The criterion of CDB of the mesospheric PCS

Below we derive approximate analytic expressions defining
the region of the parameter values under which the CDB
occurs. In other words, below we obtain an approximate
criterion of CDB of the mesospheric PCS. Derivation of the
criterion advances the comprehension of the origin of
CDB. Besides, the criterion can be used to estimate where
and when CDB of the real mesospheric PCS is possible.
Below we briefly describe the focal points of the procedure
of the criterion derivation.

As the basis for the derivation we use the following facts
established in the previous sections:

1. The possibility of CDB is conditioneéd by the presence
of deep nighttime drops of variable values.
2. When CDB takes place, the time interval (14) from the
beginning of the nighttime evolution till the moment of the
nighttime drop is approximately equal to the duration of
the nighttime stage of the evolution (T,). To put this
another way, the boundaries of the interval of the control
parameter  (fou<t<tn,), corresponding to CDB, is
determined by the following condition:

T4~ T, (AD)

3. The duration of the daytime evolution (T,) when CDB
occurs is smaller than the characteristic time (t,) of

T,-10° (5)

20.0

0-0 3 I T I T I T
1.6 8.0 8.4 88 9.2
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Fig. Al. The dependences of duration of the nighttime evelution (t4) nntil
abrupt drops of variables on the values of x; mitial for the nighttime
evolution, calculated numerically (solid Iines) and estimated (dashed lines).
Different curves correspond to different values of the initial values of x;.

damping of pertutbations from the daytime equilibrium
state. An expression determining this characteristic time
was found in FKM:

Tezi- ( A2)
ay

Using (A2) the condition (3) can be formulated as
follows:

T2, (A3)
oy

The characteristic value of T, can be estimated under the
assumptions that the x, value does not change until the
moment of the nighttime drop, and the nighttime drop
itself takes place at the moment when the x, value under
such an assumption becomes zero. These assumptions
appear to be reasonable since, as is noted in Sect. 4.1, the
relative changes of x; before the moment of the nighttime
drop are small in comparison with those of x,, and the
moment of the nighttime drop is indeed associated with
extremely small value of x,,, (see (15)). According to these
assumptions and using Eq. (1} we find:

rqm =L, (Ad)

a xg’in
where xy;, and X, are the variable values initial for the
nighttime evolution. The wvalidity of the obtained
estimation is corroborated by Fig. Al which shows
numerically calculated dependences of 1 on xy, for
different values of x,;, (solid curves) in comparison with the
estimation (A4) (dashed curves).
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Fig. A2. The dependences of the parameter r values bounding the region of
nonlinear dynamic behavior on the value of air concentration (M). The
values found by memns of numerical calenlations are shown by the crosses
and the ones estimated according to equations (A5)-(A7) are shown by the
Imes with circles (for ry,) and squares (for rng).

To determine the dependences of x;;, and X, on r and
thus to determine, using (Al), (A3) and (A4), the boundary
values Iy, and fn,, we consider the period-1 solution
outside the region of CDB, that is for r<rg, and r>r,.. To
determine r,;, we derive, first, the analytical solution of the
set (1)-(3), which is strictly valid when r<<ry,, and the
dynamic process is manifested as small (linear) oscillations
about a certain mean equilibtium state (}1’2 ). Then, we

make an assumption that the obtained expressions are
approximately valid when r~t;.. As a result, we find

Uy = CTyx)+ ST,

Pmin ® (AS)
o ar TaTn
_ To
where x1=T—x2, and
d»
2
- __ ety [ayr) . T3 8
x2 20uT, 2ou TT,ou

The value of rpe equals the smallest of 2. and 7., ,
which are defined by the conditions (A3) and (Al),
respectively. From (A3) we immediately obtain:

i _ 0

r = .

The rough consideration of the period-1 solution under
the condition r>r,, and the assumption that (A3) is valid

(A6)

gives the following expression for p,,.. which is similar

to (A4):

P =——. (A7)

ay Ty

So the e value is restricted by the stage (the daytime,
or nighttime) of the evolution with the largest duration.

The dependences of 1y, and 1y, on the concentration of
the air molecules (M), which is another parameter of the
system, calculated in accordance with (AS) and (A6), are
shown in Fig. A2 by the lines with circles and squares,
respectively. (Note that since we assume Tg&=T,, the
expressions (A6) and (A7) are -equivalent) The
corresponding values of 1y, and . calculated
numerically using the essential dynamic model are shown
by crosses. Recall that we use M=1,7x10" ¢m™ throughout
this paper. Modest changes of this parameter can be
interpreted as the changes of the height of the location of
the modeled PCS. We can conclude that the analytic
estimations (A5)-(A7) yield the boundaries of the CDB
which are in satisfactory agreement with the ones
calculated rigorously.
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