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Abstract. The interaction between sea waves and a
deformable sea-bed is studied with a simple two-layer
model in which the upper-layer fluid is inviscid and
the lower-layer fluid is bi-viscous to account for non-
Newtonian behavior of sand and sediments. The nonlin-
ear response of the system to periodic forcing by an ex-
ternal surface pressure is determined. It is shown that a
simple bi-viscous rheology allows small wavelength mor-
phology in the lower layer to be generated from large
wavelength surface waves in the upper inviscid layer,
although the morphology is not permanent. For a bi-
viscous rheology with a pressure-dependent yield stress
(which accounts for the fact that sand yields less read-
ily under loading than unloading), however, small wave-
length and permanent features are formed in the sea-
bed.

1 Introduction

Understanding the morphological response of the near-
shore to ocean waves is a long-standing coastal prob-
lem. The interaction of flow that is often turbulent
with a granular medium leads to a highly complex gys-
tem and no consensus has yet been reached about how
best to model the resulting dynamics (Schoonees and
Theron, 1995; Komar, 1998). Still, observations reveal
that beaches often exhibit regular morphologic features
such as sand ripples and longshore bars and troughs
and a variety of modeling efforts have been conducted
to gain insight into the formation of these features (c.f
Blondeaux, 1990; Vittori and Blondeaux, 1990; Carter
et al., 1973; Lau and Travis, 1973; Boczar-Karakiewica
and Davidson-Arnott, 1987).

Here, we examine fundamental processes leading to
pattern formation in the nearshore by considering a sim-
plified, nonlinear model. As pointed out by Holman
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(1995}, a promising way to gain new insight into the
evolution of beach morphology is to consider simplified
models that capture the essential nonlinear dynamics of
the coupled ocean-sea-bed system. This follows from
the hypothesis that the details of the turbulent wavy
boundary layer are less important than the dynamics
that govern the coupled wave-seabed system in the for-
mation of some types of beach morphologies. We note
that in many models of beach morphology, the mass-
trangport velocity due to the wave forcing provides a
template for the underlying sea bed (c.f. Carter et al.,
1973; Holman and Bowen, 1982). Nonlinear, coupled
models can accomodate beach morphologies with scales
that differ significantly from the wave forcing.

Our dynamical modeling effort is based upon the hy-
pothesis that sand may be modeled as a continuum with
a non-Newtonian rheology. With a non-Newtonian rhe-
ology, it is possible to approximate critical bed shear
stress, the most important feature of sand motion (i.e.
the sand bed will deform given a sufficiently large stress,
but will retain a solid structure otherwise). Recently,
non-Newtonian rheologies have been used to model mud
flows (Liu and Mei, 1989; Ng and Mei, 1994), the in-
teraction of sea waves with a muddy sea bed {Liu and
Mei, 1993a,b) and underwater landslides that generate
tsunamis (Jiang and LeBlond, 1993).

Studies of the interaction of sea waves with a muddy
seabed are most closely related to the present work. Liu
and Mei (1993a,b) consider the interaction of long waves
with an underlying muddy bed, modeled as a Bing-
ham plastic. They determine the coupled response of
a two-layer system to forcing by a localized initial free-
surface displacement. The transient waves that radiate
from this initial disturbance interact with and leave be-
hind permanent imprints in the Bingham plastic layer.
Their study, however, does not address whether persis-
tent forcing by periodic surface waves would excite reg-
ular features in the mud that maintain their structure
over many periods of the forcing.
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Fig. 1. The two layer model. Both the upper and lower layer
fluids are incompressible with constant densities p1 and pz. The
upper layer is inviscid while the lower layer fluid is bi-viscous (gee

)}

Thus, our study differs from that of Liu and Mei
(1993a,b) in two important ways. First, we consider the
model response to periodic forcing rather than an ini-
tial localized disturbance to determine how the length
and time scales of the lower-layer response are related
to the length and time scales of the forcing. Second, as
we are interested in the interaction of sea-waves with
sand rather than mud, we consider different rheoclogies
for the deformable lower layer in an effort to obtain a
better rheological model for sand. In particular, the
simple Bingham rheology is not always appropriate for
sand; for example, for flow down an incline, motion will
initiate from the top for sand, but from the bottom for
a Bingham plastic (Jaeger and Nagel, 1992). Such be-
havior suggests that for sand motion, the yield stress is
pressure dependent (i.e. sand yields less readily when
under a load).

We start with a bi-viscous rheology (the Bingham rhe-
ology is a limiting form of the bi-viscous rheology as the
first viscosity becomes infinite) for the lower layer. We
choose this rheology because it represents simply the
two flow states of sand: sand resists motion for small
applied stresses but flows readily for stresses above a
critical value. We find that the nonlinearity inherent in
this rheology generates small-scale spatial features in the
lower layer, but that these spatial features oscillate with
the foreing frequency. As a result, permanent features
are not excited in a bi-viscous lower layer. By allowing
for a pressure-dependent yield stress so that the rheol-
ogy depends upon the history of the loading, however,
we find that permanent small-scale spatial features are
excited in the deformable lower layer.

2 Dynamics

We consider here two superposed shallow homogeneous
layers of fluid (Fig. 1). '

The upper layer fluid is inviscid and incompressible
with constant density p; and is bounded above by a

free surface located at z = {1(z,t) and below by an in-
terface located at z = (2(z,t) — H, where Hy is the
equilibrium depth of the upper layer. The lower layer
fluid is non-Newtonian and incompressible with con-
stant density ps and is bounded above by the interface
at z = (2(=,t) — H, and below by a rigid bottom located
at z = —(H; + Hs) where H; is the equilibrium depth
of the lower layer. To drive the wave motion, we impose
an external pressure Py(x,t) = Acos(kz) cos(wt) of am-
plitude A, wavenumber & and frequency w on the free
surface.

The forced long-wave equations in the absence of in-
ertia governing this two-layer system are
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where u;(z,t) (j = 1,2) is the horizontal upper/lower
layer velocity, g is the gravitational acceleration and 7
is the bottom stress. We remark that inertia is neglected
in (1)-(4) to focus on the effects of the nonlinear rheology
{(see (5) below).

To close this system, we specify the rheology of the
lower layer. As mentioned in the introduction, a sim-
ple model of the two flow states of sand is a bi-viscous
rheology for which the bottom stress 7 is related to the
strain rate, here approximated as %"; according to:
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In (5), 7 is the yield stress, and p and g’ are the dy-
namic viscosities. We remark that in the limit g — o',
(5) describes a Newtonian fluid, whereas in the limit
u — oo, (5) describes a Bingham plastic.

We next nondimensionalize (1)-(5) according to
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where L is a representative horizontal lengthscale, I =
H, + Hy and ¢ = +/gH is the long wave speed. In
addition, for spatially periodic forcing, we choose the
nondimensional wavenumber of the forcing as kL = mr
where m is an integer.

Then, the dimensionless governing equations become
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In (6)-(10), the controlling parameters include the den-
H H . —_— P " __ Hy .
sity and layer depth ratios: s = }‘j—z and HY = =2 (j =
1,2), and the nondimensional viscosity parameters, yield
stress and forcing frequency: (I,IV) = Eﬁfﬁ(ﬂ,y’ Y,

Ty = AkH 27 and Q = 4¢. We note that H} + H; =

3 Numerical Solutions

We solve (6)-(10) starting from rest and subject to pe-
riodic boundary conditions on 0 < 2 < 2. We use a
pseudospectral method and de-alias the nonlinear terms
following Canuto et al. (1988), pages 83-85. We deter-
mine the time-dependent Fourier amplitudes by replac-
ing time derivatives in (6)-(10) by a centered-difference
scheme and time-stepping the resulting equations in
wavenumber space until a steady state is achieved.

In the numerical solutions that follow, we use a spa-
tial resclution of 128 grid points which is sufficient for
all cases examined. In addition, we fix the density and
layer depth ratios and the first viscosity parameter as:
s= 5, Hf = %, T =50, and fix the forcing wavenum-
ber and frequency according to £« = mnm = 37 and
Q= 311\/1?1* so that the forcing frequency obeys the dis-
persion relationship for standing long waves on a layer
of fluid of depth H} (i.e. the lower layer appears rigid
to the upper layer fluid in this approximation).

3.1 Newtonian Rheology

We first consider the solution of (6)-(10) in the Newto-
nian Hmit for which I -+ I' = 50. In the Newtonian
limit, the dynamics are linear and it is straight-forward
to write down an analytic solution in this approxima-
tion. QOur aim, however, is to compare this solution
with those for which the lower layer rheology is nonlin-
ear; hence, we present this solution in a form to facilitate
this comparison.

Fig. 2. Newtcnian lower layer. Snapshots of the interface dis-
placement and the free-surface displacement at four times sepa-
rated by approximately At = J& = 0.29. The time increases from
top to bottem. The controlling parameters for this solution are
(s, H},T,T"} = (7%, §.50,50) and {m, 1) = (3, V/3x).

In the Newtonian limit, only the directly-forced mode
with a wavelength of A\g = % (with nondimensional
wavenumber & = 3w) is excited. Fig. 2 presents snap-
shots of the interface and free-surface displacements at
four times separated by approximately one-fourth of the
period of the forcing (A¢ = &) The dissipation in the
lower layer has caused a temporal phase shift between
the free-surface and interface displacements and the re-
lationship between the amplitudes of the free-surface
and interface displacements is consistent with the ex-
citation of a damped internal wave mode.

3.2  Bi-viscous rheology

We next consider the solution of (6)-(10) but with a
bi-viscous rheology for the lower layer (i.e. T' # I').
Fixing the second viscosity and yield stress as ' = 1
and T = 1.5, numerical solutions reveal that energy is
exchanged among the directly-forced mode with Ay = %
and modes with smaller wavelengths that are related to
this fundamental wavelength by odd integers:

A
An = f (n=3,5,7..) (11)
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Fig. 3. Bi-viscous lower layer. Same as Figure 2, but for the
controlting parameters (s, H},I, TV, To) = (1, 5,50, 1,1.5) and

(m, ) = (3, \/3-7")

We emphasize that in this simple model, the only nonlin-
earity in this solution is due to the bi-viscous rheology.

Fig. 3 presents snapshots of the free-surface and in-
terface displacements at four times analgous to those in
Fig. 2. The significant energy transfer to the smaller
wavelength modes is evident in the interface displace-
We remark that there is more energy in the
As = 2 mode than in the Ay = 2 mode and that the
Ay = % mode also has significant energy.

Fig. 3 also shows that both the interface and free-
-surface displacements oscillate with the forcing frequency.
The time-average of these displacements over a period
of the forcing is zero; hence, permanent features in the
lower layer are not established for the bi-viscous rhe-
ology. We also remark that solutions of (6)-(10) for a
larger viscosity contrast (e.g. T’ = 500, I' = 1) that
more closely approximates the Bingham-plastic limit also
reveal spatial patterns with wavelengths related by (11)
that oscillate with the forcing frequency.

=

3.3 Pressure-dependent yield stress

We next consider a lower-layer rheology that models the
observation that sand is more difficult to move under
loading than unloading. To this end, we modify the rhe-
ology in (5) to accomodate a pressure-dependent yield

Fig. 4. Bi-viscous lower layer with a pressure-dependent yield
stress. Same as Figure 3, but with To replaced by Top(z,t), (12)
with C = 2.2.

stress given by
Yop(,t) = To(1 + Cps(2,1)) (12)

where C is a constant and py(z,t) = s[Po(z, t) +¢1 (z, t)—
(a(z,t)] + 2(z,t) is the dimensionless dynamic bottom
pressure. We then solve (6)-(10) with Yy replaced by
Top(z,t) therein. We choose C' empirically so that the
pressure-dependent yield stress, Yo, undergoes signifi-
cant variations, but always remains positive. The runs
presented have € = 2.2 for which the pressure-dependent
vield stress varies from 0.4 to 2.9.

Here, numerical solutions reveal that energy is ex-
changed among the directly-forced mode and those mode:
that are related to this fundamental wavelength by odd
and even integers: Anp = 2% (n = 2,3,4...). Again, the
only nonlinearity in this simple model is due to the rhe-
ology, but here the rheology depends upon the history
of the loading.

Fig. 4 presents the four snapshots of the interface and
free-surface displacements at times that correspond to
those in Figs. 2 and 3. In this case with the pressure-
dependent yield stress, the mode with wavelength Aqp =
3 has the most energy. We emphasize that this mode
was not excited in the constant yield stress case. Similar
to the constant yield stress case, the Azp = £ mode, the
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directly-forced Ao = § mode and the Xs, = % mode

also have significant energy.

Moreover, the plots of the interface displacement in
Fig. 4 show that the spatial pattern formed in the lower-
layer has a significant non-zero time average over a pe-
riod of the forcing. The pressure-dependent yield stress
has caused a permanent spatial pattern to form in the
lower layer. This may be interpreted as follows: once
an elevation is formed in the lower layer, the bottom
pressure below this elevation increases which increases
the yield stress. As a result of the higher yield stress,
the fluid in the elevation is less likely to experience an
applied stress that exceeds the critical stress, and hence
is less likely to erode under the periodic forcing. Simi-
larly, under a depression in the lower layer, the bottom
pressure and yield stress decrease, and the fluid in a
depression is easier to erode.

4 Discussion

We have presented here a simple dynamical model of
the coupled motion of long waves over a deformable sea
bed in an initial effort to model pattern formation in
the nearshore. This model is based upon the hypothesis
that sand may be modeled as a continuum with a non-
Newtonian rheology.

Using a bi-viscous rheology that is perhaps the sim-
plest continuum model of the two flow states of sand,
we have demonstrated that energy may be transferred
to wavelengths that are smaller than the wavelength of
the forcing. That these wavelengths are related to the
wavelength of the forcing by odd integers (see (11)) is
consistent with the bottom stress being an odd function
of the strain rate. The spatial pattern formed in the de-
formable lower layer, however, oscillates with the forc-
ing frequency so permanent features in the lower layer
do not form with the bi-viscous rheology.

By considering a more realistic (although still highly
idealized) rheology for the deformable lower layer, for
which we model the effect that sand is more difficult to
move under loading than unloading, we find that addi-
tional wavelengths are excited in the lower layer. More-
over, the spatial pattern in the deformable lower layer
has a significant non-zero time average which demon-
strates that permanent features may form in the lower
layer with a pressure-dependent yield stress.

Finally, we remark that for the pressure-dependent
yield stress, the dominant wavelength of the permanent
lower-layer feature is half that of the forcing. This re-
sult is consistent with laboratory experiments on the
formation of sand bars in a wave flume (e.g. O’Hare and
Davies, 1990) and the previous theoretical study of sand
bar formation by reflected surface waves (Carter et al.,
1973). The present theory, however, differs from that
of Carter et al. (1973) as 1t does not rely on the mass
transport velocity in the Stokes boundary layer in the

formation of the morphology, and does include the cou-
pling between the evolving lower-layer morphology and
the wave forcing.
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