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Abstract. We describe an effect of phase-locking catastrophe
arising in an ensemble of a great number of oscillators
interacting by means of their emitting waves. These waves
can be cither pulsatile, that is, soliton-like, or continuous
stattonary waves generated by the oscillators considercd as
resonators. Each one of these waves will introduce cerlain
perturbations among the phases of the oscillators of the
ensemble in such a way that it is possiblc (o follow in time
the distribution of these phases. In fact, we deduce the
p.d.¢’s governing the evolution in time of this distribution,
which displays a tendency of accumulating around certain
of its values (phase-locking), and also of sudden increasing
of the intensity of the physical effect (a “phase transition™}.

1 Introduction

The sudden emergence of a coherent wave of high intensity
in a medium which up to then was the siege of a great
number of (apparently) random incohcrent identical waves
with very small intensity in weak interaction is a
phcnomenon  arising in many different  fields, from
earthquakes in geophysics to brain waves in biophysics.
Generally speaking they can be gathered under the general
denomination of phase transitions, and considered as such.
In fact, such "big" waves are due 10 some particular, non
random distributions of the phase differences of the small
waves, crealing a superposition with great values for the
resulting amplitude. It is the aim of this paper to describe,
without any "heuristic" hypothesis, and in a deterministic
(that is, non probabilistic) way some physical models that
may account for such phenomena, and deduce the
corresponding evolution cquations leading to such abrupt
bifurcations.

Obviously the whole theory rests on the physical nature of
thc elementary components (small waves, oscillators
cmitting these waves, cic.) of the ensemble, on the different
kinds of intcraction that may takc placc between them, and
also on the number of such components of the ensemble. We
shall then start by some previous considerations about the
same phenomenon with only two interacting identical
oscillators. Not only the mathematical treatment can be
carried much further, but also this casc will provide some
uscful information aboul the corresponding phenomenon in
an cnscrablic with many oscillators.

2 'The Huyghens effect (two inter- acting clocks)

Though this eflect has always becn well known in the
theory of nonlinear and nonconservative oscillations yet it
remained unexplained up to very recently, and lies at the
basis of many subscquent developments, namcly thosc
presented in this paper. Huyghens himself described very
precisely that effoct in a letter to his father (Huyghens,
1893y Whenever two identical clocks were put near onc
another, the phase difference between their pendula tend to
a certain asymptotical constant value. This was usually the
opposition of phases, though other values could also occur
depending on the initial conditions, the structure of the
clocks, etc. (It should be reminded that Huyghens was, so
lo speak, the inventor of modern clocks, provided with the
so-called escapement system that was going (o change so
deeply the measure of time.}). The physical idea underlying
this phenomenon may be resumed as follows |

In its evolution the pendulum of cach (isolated) clock
undergoes a shock with its own cscapment, by means of
which small equal amounts of energy are periedically
supplied 1o the pendulum as a compensation for its losses
by dissipation, friction, etc. In clocks with simple internal
structure, these shocks arise once in a period and whenever
the pendulum goes through a certain fixed value of the
phase, usually ¢ == /2. These shocks are simply the tick-
tock we could hear in all clocks up to the appearance of our
modern quartz clocks. (Must it be reminded that, precise
and reliable as these Iater clocks are, they still call for a
good theory accounting for their marvelous propertics?). 1t
seems natural to assume that in each of these "tocks" (due
to the collision, in each clock, of the arm of the pendulum
with the trigger of the escapment) a wave-like soliton is
created, with very small amplitude (cnergy). that propagates
in space and will perturb the other clock (if it is not too far).
then giving rise in s pendulum to a small modification of
the phase. A straightforward calculation gives for this
perturbation the value & = +Xsin¢, where ¢, is the phase
of the clock immediately before the collision, and & is a
small positive constant that depends on the physical model
of the clock. Sign + (resp -) must be taken if the solilon
comes from the right (resp. left). Now this second clock,
when undergoing its own next "tock”. generates its own
solitonic wave, identical to the above one with the only
difference of the slight modification of the phase. It then
follows that the first c¢lock, when receiving the soliton
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coming from the second one, actually receives a
pertutbation in which he has, so to speak, introduced a
modification of its own, that is, an information about its
own state. And so on. This is the way by which the phasc
difference between the two clocks changes in time. Happily
enough, we have at our disposal a beautiful theory of the
clock given by Andronov in the early fortics (Andronov et
al., 1963) which is the exactly fitted tool we needed in
order to describe the Huyghens effect. The Andronov clock
is simply a damped harmonic oscillator (the dissipation
being due to "fluid" friction, i.e., proportional to the
velocity) which is periodically supplied in energy from the
outside. The amount of ¢nergy in cach supply is always the
same and takes place instantancously once in a period
whenever the oscillator takes a certain fixed value of its
phase. It is then easily seen (Andronov et al., 1963) that
such non linear, dissipative system is a limit cycle. With
it, it is possible to deducc an o.d.e. governing the
evolution of the phase difference 7(r) between two clocks
according to the reasoning above. The deduction can be
seen in (Vassalo Pereira, 1981) and leads to

d
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where I' is a positive constant depending on the physical
characteristics of the clock. From ils exact analylical
solution
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we may derive the cssential properties of the system,
namely the asymptotical values 7, =T{t =x)= %% of
the phase difference, which are precisely those observed by
Huyghens three centuries ago.

Let us point out that the Andronov limit cycle fulfills
some of the physical requircments expected for a sound
description of the effect, namely, periodicity, dissipation of
energy, and stability. This last requirement implics the
existence of a strong attractive basin for the limit cycle such
that its representative point (RP) in coordinates r, ¢ never
leaves the neighbourhood of the unperturbed orbit. More
precisely, the perturbation arising from the small solitons
originating in the other clocks introduces a changc in the
phase ¢ but does not modify the unperturbed value of the
radius vector r. This "separation” of the variables is an
esscntial ingredient throughout the theory in as much as the
statc of a clock can thus be given merely by the value of its
phase regardless the unperturbed value of the radius vector.
This fact has a far reaching importance when we go over o
the description of a great number of such clocks in
interaction. One could only object that the Andronov limit
cvele model for the clock is perhaps not a very suitablc one,
according to somne reasons of structural stability. Yet the
cssential feahires of the above mentioned results are broadly
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independent of that particular model, as it was shown by
Abraham in a paper (Abraham, 1990) where the original
theory was generalized both from the mathematical and the
physical point of view.

3 An ensemble of oscillators (limit cycles) with
pulsatile interaction

The next step in the theory is naturally the description of
an ensemble of N>>1 identical Andronov oscillators, that
is, limit cycle clocks in pulsatile interaction as it was
described above. Each particular clock of the ensemble is
now enduring small phase perturbations under the form of
collisions due to small identical solitons proceeding from
the other N-1 clocks. That same particular clock, when
emitting its own solitons, will in turn perturb the phase
values of the other N-1 clocks. Now since the state of any
clock is urambiguously given by the value of its phase
(thatis ¢, instead of » and ¢ - see the hypothesis above - it
follows that the state of the whole ensemble can be given by
means of some distribution function w{7,¢) such that
N.w(t.¢9) d¢ is the number of oscillators of the ensemble
with values of the phasc within the interval (¢,¢ + d¢) at
instant t.

Before we go on by briefly exposing the deduction of the
evolution equation for ext,¢), we must previousty recall a
useful result in probability theory concerning the
composition (convolution) of a greal number of gaussian
distributions with slowly varying dispersion. It can be
viewed as a consequence of the central limit theorem and it
states that the final distribution is still of gaussian-type
with amplitude and dispersion given by certain functionals
depending on the cor- responding quantities of the
distribution components. To be more precise:

Let x be some parametcr starting at instant f ={, with
value x(t=t,)=x,. and cnduring random variations of
magnitude Ax==25(r) (with equal probability for having
sign + or -). Then the probability density for x (o be
x(t=1")=x" atinstamt 7 = ' is given by

)

_(x 7 I
4fD(s)ds }|

with D(2)= +6 () p(r), and p(t)denomlg the number of
variations/perturbations endurcd by the parameter x in unit
time at instant t. (This result is a straightforward
gencralisation of the well known particular case with 4, p

congtants, available in any textbook)

i
' 2
P{xo,lo;x’,t'} = [4JEJ'D(S)dS) .exp
o

Let us then follow along time interval (7,t+d!) some
particular oscillator in the ensemblc, whose phase is
incessantly perturbed by the collisions with the small
identical solitons procecding from the other N-1 oscillators.
If we assume that each solitonic wave is created whenever
the phase of some clock goes through the value ¢ = # of its
phase, then the number of perturbations endured by a
particular oscillator during (r./+dt) is given by
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pNdt=Nw(t.g=%)dr. As it was said above, the
magnitude of each perturbation is given by 8= +Xsing.
{Here we may of course assume that we have equal a priori
probabitity for any soliton to come either from the lefi or
from the right). In the limit X =0 we have the unpertarbed
case: the state of each clock is totally independent from the
others and « is then given by some "ne varietur” function
of argument ¢ —¢ .

Let then be one among the N clocks having a certain
valie ¢(7,) =¢, of its phase at a given instant f,. At
instant 1, + d¢ its phasc will then be ¢, —dit - 0, where 8
is the devialion (with regard to the unperturbed value) due
to the collisions with the solitonic waves coming from the
other N-1 clocks. According to the above mentioned result
on gaussian distributions, the probability density for the
clock to have phase ¢, —dr- 6 at instant 7, + dr, starting

from the initial condition ¢(t,} = ¢, is equa lto
_=&
401, )dr )
with 8 (1) = R sin® (1) =R sin’ ¢(r, — dr). Tt ollows that
the number of clocks of the ensemble whose phascs at
instant ¢, + di are found in (¢h,¢ + d¢) is given by the
usua! convolytion, that is,

o(t.9) = folt,,9). Pls.t,55 - di - 8.1, + di}ds =

w(t,.$) { (s=di-¢y)
=S Do P | @

Pty .t - dt - 8,1, +dt} = (4 D¢, )dht) E cxp(

By making use of an approximative algorithm for the sharp
gaussian function in the integrand (and without assuming
any further physical hypothesis!) it is possible to write this
integral equation for «{f,¢} under the cquivalent form of a
partial differential equation. This (strictly mathematical)
deduction can be seen in detail in (Vassalo Pereira, 1989)
and leads o the following nonlinear parabolic p.d.c.,

‘;m(up) J ot ¢)+Nr¢2m”¢ ) 7 (o(t, ) sirf )
—wil ) = —oll,+— ol d=%)—(w(,P)sin”
a1 PP 6 Doy b esin e
Clearly if the interaction between the oscillators (that is, the
amplitude of the solitons) is neglected, then X=0. Qur
equation thus takes the simplified form

dw Jdw

TR Y
and we have o(1,¢)= f(¢ - 1), that is, a "ne varietur"
distribution of the phases in time. The parabolic nature of
this final equation is not surprising for it is well known
that, in broad terms, such equations (Fouricr, Fokker-
Planck, etc.) always emerge in close connection with the
physical description of diffusion ficlds (such as heat,
brownian motion, etc) where random microscopical
collisions play an ¢ssential role. Now this is precisely what
happens in our model, with the perturbations due to the
collisions of the solitons with the clocks. This remark will
prove useful later, when dealing with perturbations of an
utterly different kind (continuous stationary waves), then
leading to hyperbolic instead of parabolic state equations -
see below equations (1) and (2) - Some non linear parabolic
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equations of this kind are studied in mathematical physics
under the denomination of "reaction-diffusion equations",
and their behaviour often includes the existence of phase-
locking-type solutions, cascade frequencies, etc. In the
present case, such study can be achieved by writing w(z,¢)
as a Fouricr series and analysing the infinite system of
ordinary differential equations obtained for the Fourier
coefficients. We can also write axt.¢) as a power series of
the small parameter + NR®’, and inicgrate the sequence of
first order lincar p.d.e providing the sequential coefficients
of the series (each p.d.¢ requiring the solution of the
preceding one). An application of this last method was
given in (Karatchentzeff et al., 1994), where we could find
the multiplication of frequencies and sccular terms
associated to different orders of the approximation.

Let us point out that the phase-locking strongly depends
on the value of $ NX’, a "small" parametcr which carries
inform-ation concerning the dimension of the ensemble as
well as the interaction intensity among the elements of the
ensemble, since it is the product of the "big" integer N (the
number of oscillators of the ensemble) by the "very small"
constant X (the amplitude of the solitons).

4 An ensemble of N>1 resonators with continuous
wave-like interaction

In the preceding model each clock produces more or less
instantancously a small soliton once in each period and
whenever the emitting clock goes over some particular state
of its own (In the Andronov clock such state is simply
specified by the value ¢ =a/2 of the phase). It is by
means of these solitons that the oscillators of the cnsemble
interact. Now a more realistic model would obviously
require a continuous instead of a pulsatile interaction, that
is, with each oscillator perturbing the other N-1 at any
instant of time (and not only at the instants of recurrence
upon some particular state) and carrying information of the
instantancous state of the perturbing clock at any moment.

It then seems natural to assume, in an amcliorated model,
that each oscillator perturb the remainder N-1 by means of a
stationary wave generated and maintained by the oscilator
itself in its vibrating motion {a model quitc similar to
Planck resonators supporting the black body field of
radiation), that is, with very small amplitude and with
phase coinciding at any instant with the phase of the
oscillator itsclf. As we are going to see, this new and also
mathematicaly more demanding model displays some very
interesting properties that are absent in the preceding ones
(namely, the possibility of phase transitions). Let us then
make a few preliminary comments about the essential
"ingredients” of this new modcl:

a) Oscillators with strong "radial stability".

For the same reasons that were invoked above, we also
need here an oscillator endowed with some kind of stability
and dissipation of energy. Such was the casc of the
Andronov clock which proved so wuscful in the above
model, and if we are now compelled to give it up, that is
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"merely” due to mathematical, not physical reasons, In
other words, if we retained the Andronov clock in our new
mode! it would prove technically impossible to carry on the
analytical calculations after a certain sicp of the theory. We
thus have to look for another, more mathematically
"workable" oscillator replacing the former one and, of
course, fulfilling thc above required physical propertics.
Now this oscillator will be simply an harmmonic perturbed
oscillator coupled to some self-acting device (that one may
think of as an "ersatz" of the trigger of a clock) acting once
in a period and bringing instantaneously the (perturbed)
value of the amplitude to the corresponding unperturbed
value. By so doing, the essential property is maintained,
that is : the amplitude (but, of course, not the phase) of the
perturbed oscillator always lies in the neighbourhood of the
unperturbed {constant) value. As it happened with our first
model, the state of any oscillator is thus entircly defined by
the sole value of its phase, since the amplitude may be
regarded as keeping the same, unperturbed value in course
of time. Roughly speaking, this oscillator may be regarded
as a "coarse limit cycle” whose interest lies mainly on the
facl that we may follow the values of the perturbed phase
while being sure that the amplitude will not diverge. It then
follows that when we consider a great number of such
oscillators, thc state of this ensemble will then be
completely defined by means of some distribution on the
phases, that is, by the density function w(t,¢) introduced
above and whose physical meaning is kept in this new
model.

b)The iheorem of Ravleigh

Since each resonator produces a stalionary wave of the
samc kind (same period and same small amplitude), any
resonator will then be perturbed by a small stationary wave
which is the superposition of &N — 1= ¥ similar waves, and
whose phase depends on the instantaneous distribution of
the phases of the ensemble, that is, on the density function
w(t,¢). We now make use of a theorem (Rayleigh, 1965}
which is a fundamental tool in order to deduce the
probability distribution governing the values of the phase of
that superpositon. We now briefly expose its content: Let
us consider a great number N of harmonic vibrations, all
with same period and same amplitude x . The resulting
superposition of such waves will then be a (non-harmonic)
vibration with same pertod. and whose amplitude R and
phase & depend on the phase differences between the
component vibrations. Clearly, a probability distribution
for the phases of the N components will induce some certain
probability distribution [ = f(R, ¥, N) for the amplitude

and phase of the resulting wave. Now what Rayleigh did
was [0 assume equal "a priori” probability for the phasc
components and deduce from it a p.d.e. for f= f(R,®;N)

the which, strangely cnough, was but the Fourier equation
for heat diffusion! More precisely, and wrilten in carlesian
coordinates x= Reos P, v = Rsin®, he found

JRON) = f(R =5 0=t ()
@f 9 4 af
J a ¥-T kTGN
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The normalised solution is the gaussian distribution (sec
figure 1)
£ 4y )

1
SN, x,y) = nxlNexP(_ KN

with its well-known properties: The probability is the same
for a fixed value of the resulting amplitude independently of
the resulting phase; it takes its maximum value for null
amplitude of the resulting vibration; it tends quickly to zero
for increasing values of

Figure 1. Gaussian distribution.

the resulting amplitude, etc. Let us recall that, strictly
speaking, the resulting amplitude of N identical harmonic
vibrations with samc amplitudec x can never be gieater than
Nx . This apparently trivial remark will appear under a
different light when giving up the hypothesis of equal "a
priori" probability of the phases, as we shall see.

In fact, in order to account for the physical properties of
our new model we must look for a generalisation of the
theorem of Rayleigh for the case when the distribution of
the phases of the elementary vibrations, that is, the density
function w{#.¢), is not a constant, which means that we no
longer have equal probability regardless the values of the
phases). As it is shown in Appendix, where we give the
deduction of the generalized theorem of Rayleigh, we now
find a new lincar p.d.c. giving the probability distribution
F(R®.Ny = f{x,y;N) for the amplitude and phasc of the

resulting wave, whose coefficients are functionals of the
density phase function w(f.¢}. depending in a simple way
upon the first Fourier coefficients of exz,¢). To be more
precise we have

5 a’ & d d d
I+ZB o/ +C—f+l)—f+[;'-—f- = —'L
d X dxady Ay ax dy aN
where
KI KI
=T(I+Jtr12), B=Ifrﬂz

Actually, and for mathematical simplicity, the Fourier
coefficients «,,«x,,f,. B, do not refer to the function o(f.¢)
itself but to (7, )= e2(t, ¢ = —r +1p ). which is obviously
thc same function » now described in a rotating frame
turning with the angular velocity of the unperturbed phasc
¢Ury=— . In other words, L2(y)dyr is the probability for
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the representative point of any oscitlator of the ensemble to
have a phase difference with regard to the unperturbed phase
¢(t) = -t within (3,3 + dp). The physical difference is
irrelevant and the mathematical treatment becomes much
simpler,

In the particular case considered by Raylcigh of cqual
probability in the phases, we have

Q) = const = (21) ",

and we obtain the simplified form of the original equation,

Now the geometrical structurc of the solution of this
generalised cquation is very different from the above, non-
generalised one. In fact, for some values of the coefficients,
i.c., for some values of the Fourier coefficients of Q(2,yr) -
or, equivalently, of (r.¢) - il shows a gaussian-type

structure, nol very different from the usual, non generalised
form studied by Rayleigh. To be more precise (see
Appendix for the defails), as long as we have
A=1-7"(; +8) >0, where «,.pB, denote the second
Fourier coefficients of $(2,17), we have for f the analytical
expression (3) of the Appendix, corresponding to the
geometrical form shown in figure 2. In particular, such must
be the case at the initial stage of the cvolution of the
ensemble, for it seems natural to

Figure 2. Gaussian-like distribution.

assumc an equal lacking of information about the state of
the oscillators, that is, a, =, =0 (&4 =1), which implies
A=1>0. Yet if at some instant of time «,,f8, are such
that A=l1-7z'(x; +f,)<0, (and nothing "a priori"
prevents such possibility), then f= f{R,D;N) takes the
anaytical expression (4) of the Appendix, corresponding to a
very different, hyperboloid-like structure, which no longer
tends to zcro for increasing values of R. This means that the
above trivial remark concerning the rigorous null
probability for a resulting amplitude of N identical
harmonic vibrations with same amplitude « (o be greater
than Nk, now appears of utnost importance, implying for f
the discontinnous geometrical forms shown in figures 3 and
4with f=0 for B =x"+ y' =(Nx)". As we arc going to
show, it is this sudden and radical change of the gcom -

121

Figure 3. Hyperboloid-like distribution.

etrical properties of the Raylcigh distribution
Sf=f(R,®&;N) that is rcsponsible for a bifurcation
phenomenon in the analytical structure of the distribution of
the phases w(1,¢).

Figure 4. llyperboloid-like distribution {near the limit).

Let us then cxpose the underlying physical idea of this
model:

We thus start with N >>1 identical oscillators of the
above described type, whose phases are distributed
according to w(!.¢), ie., with Nwil,¢)d¢ oscillators
with phase in the interval (¢,¢ + d¢) at instant t. Each
oscillator acts like a resonator, i.c., it generates a stationary
wave with very small amplitude x , and phase coinciding at
any ingtant with that of the oscillator itself. Any oscillator
then comes perturbed by the superposition of the waves
originated by the other N -1, that is, if we denote by ¢,

the phase of oscillator o° j, then oscillator n° j is perturbed
by a smail wave that can be written under the form

Nxsin¢ = Nrcsinqﬁ‘ -3 Ksinf—1+ (d +1)
A ! i-1 ! id !
for

= R, sin(-7+ @,)
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Now since ax?.¢) is not constant, we make use of the
generalised Rayleigh equation in order to calculate the
probability for the superposition of the ¥ = N —1 waves to
have certain values R,, @, for the resulting amplitude and
phase, the which is precisely provided by thc Rayleigh
function f(MN,x,y). In other words

SN x=Rcos®,. y= R sin®,) dxdy,
with

dx =dR cos® -dd R sind,

dy=dRsin®, +dd, R, cos P, ~
is the probability for that superposition to have, at instant (,
its amplitude and phase within the intervals (R,, R, + dR,)
and ((I)D,CD,, + d(I)u). The deduction of the equation
governing the evolution of m(4,¢) in time can now be
described in the following way:

Any oscillator, starting with phase ¢ at instant t, would
have, if unperturbed, a certain valuc ¢ of its phasc at instant
t+dt. But due 1o the small waves generated by the other
N = N -1 oscillators, that particular oscillator is perturbed
by a small wave which is the sum of these N=N -1
waves, and which has preciscly the probability
SN, x=R,cos®,, y=R, sin® ) dxdy of taking certain
valucs K,,d, for its resulting amplitude and phase. From
here it is possible to calculate the probability for the
oscillator to have, at instant t+dt a certain value ¢ of its
phasc, that is, a certain value® = ¢ — ¢ for the deviation of
the phasc with rcgard to its unperturbed value. This
probability will be denoted below by Prob(f). The
expression of « at instant t+dt then follows by the usual
reasoning in probabilities, by means of an integral equation
which is merely the "convolution" of Prob(6) with the
expression of « at instant t This integral equation, afier
some analytical work, can finally be put under the
equivalent form of a p.de. which is the equation for the
evolution of of w we were looking for, Let us now turn
this reasoning inlo a more mathematically detailed way:

The phase difference & between two oscillators starting
with the same initial conditior ¢{¢ = #,) = ¢,, where one is
unperturbed and the other is perturbed by a small stationary
wave generated by the other N -1 oscillators of the
ensemblc, is given by an elementary calculation and we
obtain

¢ - ¢ = ArR, sin{~1, + @, ) cos @,

= B((po,'zn,r =t +AL R, fbc)
with R, = R(¢,), ©, = $(s,). As it was said above, at the
beginning - of the evolution (we then  have
1-7'(a,” + b,) > 0) the values of R,,d, are distributed
according to a gaussian-like probability density f{lN,x,y) as
the one shown in figure 2 whose analyiical expression can
be found by the usual methods in second order linear p.d.c.
( sce Appendix ). From this, it follows that the probability
density for for 8, which we denote by Prob(6), is given
by
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d6 Prob()t,, D7 = 1, + A1) = [ F(N,x,) dxdy
D

Ds{x.,y: 956(!0,®0;1=I,, +Al;R‘,,(I)n)58+d8}=

6+ do
Arcos B

X,y =————— = yCost, —Xsiitl, s
{ Y Atmsfbu Y e e

where the formula given above for 6 appears in the
definition of the domain of integration. We find then

dOPr oY 61, ®,;1= 1, +Ar)=
de

= o
= [ (N, X,y =x1g + ———————) dx
[Ar cosd, cost, |J;f( ’ %o )

A cosd, cost,

We only have 1o introduce in the integrand the expression
obtained for fN.x,y) (see (3) of Appendix) by solving the
generalized Rayleigh cquation {always assuming the initial
situation in which it is 1-'{a,” + b} > 0), and carry on
the analytical calculations. We omit that tedious but
elementary procedure, and simply present the final form of
Prob(8). We find

Prof{B) 4., =1, + Af) =
-
pl(tﬂ)coschiolJ

2 2 2 . '{
= Vax’ (A0 p, (1 )eof g F .exptmi{m)?

with @ (O =1-ma, ),
coefficients of

where a,, b, are the Fourier

w(t, ) = -él; +2 (ak(t) cos kg + bk(t)sinkq)) .

Following thc rcasoning cxposcd above, it 1s now obvious
that wm(, + Al,¢) is given by the "convolution" of m(f,,¢)

and Prob(6) :

Xty + A.g) =

= [olt,9,) Prof(ﬂ =¢, - ¢—At)(tu.¢o;t =4+ At) de,
o)

and by making usc of the cxpression obtained above for
Prob(6) .
wit, + A g - An

—(¢p 57

\
7 ds
e (1) (A0 cost o

{
=f ot .5) ex
wfNaxp (1) (An* cos’ off

From this integral cquation it is possible to deduce an
cquivalent p.d.e. for m(z,¢) in a strictly mathcmatical way.

that is, without assuming any further physical hypothesis
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than those employed so far in our model. The analytical
"modus faciendi” can be seen in (Vassalo Pereira, 1996) and
merely makes use of a certain approximate expression for
the very sharp gaussian function in the integrand. We again
omil the calculations and stmply write the final form of the
evolution equation for the phase statc function of the
ensemble «(7,¢). At this stage of the theory, and for the
sake of simplicity, it is better to consider instead of w(z,¢),
the function (2,39 ) = (Y, ¢ = -t + ), which is simply the
expression of w(r,¢) taken in the rotating frame turning
with the same angular velocity of the unperturbed phase.
Not only the physical meaning is more obvious, but the
mathematical structure of the evolution cquation for this
new function is much simpler than with the former one. To
be more precise, we find (as long as we have A >0 )

Nk’ 3’ 7
o P auyed g ) =euy) O

NB: By making use of thc Fourier scrics of

Qy)=olg=-t+y),
I ¢ .
Q)= Py Z(a*(t)cosktp + B, (t)sinky)
we obtain
o, =a coskt— b sinkt
B, =a, sinkt+b coskt’
We thus find for the functional g,
expression
p(D=sl-ma, ()=
= l—n(az(t) cos 2t + f,(1) sinZI)’

and for the discriminant A .

the equivalent

Aet-n(a’+b ) =1-nx{a, +8,°).
Let us present some comments about this equation;

It is obvious that starting at some instani of time in a
situatton of equal "a priori" knowledge (or lacking of it)
about the distribution of the values of the phases (i.e,
w=Q=const.=(27)"'), such distribution imediately
changes in ttme. Another almost obvious property is that
w and&} are periodic in the phasc arguments with period
& - and not only 2w . This implics, namely, that the
phases of the oscillators will never be found "concentrated"
in a neighbourhood of only one value of the phase. In fact,
whenever such concentration occurs, then a similar
concentration will also exist with the same number of
oscillators and in opposition of phase,

Furthermore, the study of the cvolution of the Fourier
coeflicients of € (or of w) allows us to conclude that there
is a "transfer” in time of the intensities of these coefficients
from lower to higher order, ie, from smaller to higher
frequencies. In broad tcrms, this denotes a tendency for the
phases 1o "accumulate" in the neighbourhood of some
precise values of these phases {(as we pointed above, there
are at least two of them, and in opposition of phase.)

The presence of the constant Nk’ in (1) also deserves
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some comments. This constant is the product of two factors
: the parameter N (the number of the existing resonators in
the global system, which can be taken as giving a measure
of the "dimension" of the ensemble) and «* (related to the
intensity of the mutual interaction among the resonators of
the cnscmble). The value of this product is obviously of
primary importance in the whole theory, and the fact that
both parameters appear in the cquation solely through its
product shows that there exists some sort of reciprocal
"compensation” between the dimension of the global
system and the smallness of the interaction among its
components, In other words: An ensemble with relatively
few oscillators and a (relatively) strong interaction will
display the same behaviour than an ensemble with a higher
number of oscillators and a weaker interaction - as long as
the value of the product Nx® remains the same in both
cases.

Let us now assume that after some instant of time the

discriminant takes negative values:
l-n(a22+bzz)<0 .

According to Appendix, the probability density fhas now
a very different analytical expression, with very different
geometrical properties (scc  figure 4), with negligeable
values everywhere unless in the neighbourhood of two
points in the intersection of the circle x* +y' = R’ = N'x’
with a straight line whose expression is cxactly provided by
the theory . We thus have 10 resumc the same mathematical
procedure followed above with another expression for f, now
given by (4) of Appendix. Since there is no other difference
in the reasoning, we omit again the intermediate
calculations and merely state the final result, that is, the
new form of the state equation for the evolution of 2@7.y)
(Let us recall that €2 is simply the description of « in the
rotating frame of the unperturbed phase)

2 2

d . d
Nik_:zpz?(t) cos t W(gnw}coﬂ’(w _t)) = EQU‘, W) 03}

By ¢@,we denole another functional of ¢, whose

expression is different from g, . presentin (1):

L U] S— (—-—-—-—Ll‘”“ _1g :)

(xﬁz)z +(1—:za1)2 xﬁi

Comparing equations (1) and (2), we see that they both
sharc the same amalytical structure, with the only difference
of the non linear factors in their first members. For a
vanishing interaction among the resonators both cquations
reduce Lo the same simplificd form

2
YL Q@ yp)=0,
in which the phase distribution of thc cnscmble is
conserved and turns as a whole with the unperturbed
angular velocity.

Let us recall that with the above modcl of the cloks, in
which the interation was due to discontinuous, shock-like
perturbations, we obtained a parabolic equation for ihe state
equation of the ensemble. In the present model, with the
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interaction duc to contimuous, wave-like perturbation it is
not surprising that at thc end we find a hyperbolic state
equation, as it is generally the case in the description of
vibrating fields (d'Alembert equation, vibrating string, ¢tc).

Since the analytical structure of both equations is the
sathe, we may transpose for (2) what was said above about
the properiies of equation {1). Ycl we must point out an
essential difference between the two, namely, the presence in
equation (2) of the coefficient N'x’, instead of Nx° as it
was the case in (I). This means that when (and if) the
discriminant 1 - (azl + bf) goes from positive to negative
values, the "weight" N of the ensemble (N >>1 is the
number of identical oscillators of the whole ensemble) then
starts playing a fundamental role in the physical behaviour
of the global ensemble. In fact, even for Nx” small (et us
recall that x is the very small amplitude of the stationary
elementary waves generated by the oscillators and by which
they interact among them in the enscmble), the parameter
Nk’ may assumc significant, non negligeable values. In
other words, the physical effect then comes "multiplied by
N.

5 Concluding remarks

We have thus described in a rigorous, non heuristic way,
a bifurcation phenomenon which consists in an abrupt
change (from (1) to (2)) of the state equation of a statistical
ensemble of interacting oscillators . Such transition occurs
whenever the Fourier coefficients a,, b, of the state function

w take valucs for which the discriminant 1-7 (o, + b,)

changes its signal. But adding to this “catastroph”, there
is still a sudden increasc of the intensity of the physical
effect, of the order of the "dimension" of the system, i.e., of
the number of elementary systems of the global ensemblc.

Appendix The generalized Rayleigh equation

Lci us denote by R and @ the amplitude and
phase shifl of the superposition of & identical harmonic
vibrations all with samc period 27 and same amplitude
K

Rsin{-t + ®)= 23in(~1 +17,).

£

We assume that the values w, of the phases of the
component vibrations are distributed according to some
probability density €2(y#), not nccessarily a constant, It
follows that any supcrposition of these N vibrations will
fix a pair of values R, , represented by a point in a planc
(x,v) by means of polar coordinates:
x=Rcos®, y=Rsind, Inversely, any point (x,y)of
the plane represents a wave due to the superposition of NN
elementary harmonic waves with amplitude R = +J.r? +v
and phasc shift ® =g '(4).
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H we now consider a great number n of different
combinations of the N elementary waves, the corresponding
n representative points in the plane (x,3) will then be
distributed according some density function fiN,xy), such
that nfiNxy) dx dy is the number of superpositions
whose amplitude R and phase shift @ arc found within the
ncighbourhood dx.dy of the point x,y. Obviously, the
probability density f{N.x.y) for the resulting wave must be
, sincc Nk is the biggest
possible value for the resulting amplitude, corresponding to
the situation of the N oscillators in phase. Yet there is no
need to emphasize such restriction since the analytical
expression found for f(N.x.y) is gaussian-like (at least as fir
ascase 1 -’ (er,” + B, )> 0 is concerned - see below), and

thus quickly tends to zcro with increasing r.

Let us assume that to cach of these n superpositions we
add one elementary wave of the above form « sin(—f +yr),
whose phase shift ¢ has the probability density £(y) for
its values. Among the n superpositions (of N elementary
waves), let us find those thal can lead {o a final
supcrposition (of N+1 e¢lementary waves) with R.®
belonging 1o the neighbourhood dx.dy of the peint x,y. 1t
is clcar that only those superpositions whose representative
points x',y" are on the circle centered in (x,y) and radius x
(thatis, x’ = x +x cosyp’, ¥ = y+xsiny ') can produce a
final superposition of the desired kind, and that by simply
adding an clementary wave with amplimde ¢ and a
suitable value of the phase, which is precisely v’ +a . Now
the number of superpositions {of N elementary waves)
whose representative points are found within dx'dy’ is given
by nf(N.x"y)dx'dy', and among these only Q(yp")dy’
may produce a superposition (of N+1 clementary waves)
with representative point in dx.dy.

zero for +ofx’ +y' > Nk

It follows thal in order to obtain the number of
superpositions (of N components) providing a
superposition (of N+1 components) with representative
point in dxdy, we only have to consider all the points x'y'
situated on the circle centered in x,y and radins x , and
integrate over the phasc angle 3’ €(0,2x)

1x
ndxdy' 1!‘f(N, X=x4xcosy’ ¥ =y +xsimp )Qupydr'

Since N>>1 we may take this argument as conlinuous and
write

nevdy f(N+1L,x,y) =

[ a/f 1.
= ndxd X (N, x,
ndx ylf(Nx vi+1 ﬂN(N x _V)J

Ifwe then develop f{IN,x"y'") in the powers ol k¥ >>1 |
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JINx + xcosy, ¥+ simg) =

_ af ol
= f(Nx, )+ K‘( pp cosy + 7y Slmp) +

2

2 1 1
P -a—-icoszw+2 i cosy sim:+i—£si1fu; +o
24 ax dxdy ay

we find the equation

éf

RELYE ) 2 o
N KJE-I—Q.TIQ(IP)LOS ydy+k W.,—fﬁ(ﬂ,ﬂ)mn y dy

K 52; JQUp)cos psiny dy
y

af af ,
+K ﬂ.fsz(lp)cosw dy +Ka—y.f£2(w)smw dy+...

The functionals of £2(yr) in the second member can be
expressed by means of the Fourier coefficients of Q(y) .
Let us recalt that Q(y) dy is the probability density for

the representative point of any oscillator of the ensemble to
have a phase difference 1 with regard to the unperturbed

phase ¢(t) = —t. If we then write
1
Q) ==+ 3 cos by + Bysinky)
with
] ix 1 2r .
a, = ;{Q(s)coskx ds, B, = ;_{Q(s)sm ksds |
we obtain the values of these functionals;

I

fQ(w)cos P dy = 4(I+na )

s‘c

Qe )sin’y dy =4 (1-7 ;).

J‘Q(lp )sinyr cosp dyr = %,82
[Qw)sing dy = B,

}Q(y’; Jeosyr dy = mox,
Henee the final form for the p.d.e. defining f{N.x.v):

af —— =K df+mcﬁld—f+
dN ax ay
2 3 2
+5 (1+'ra2)—-0 f+h—x 7’ f (l—-:ra )___6 /
4 dx 2 axdy 4 gy
To this linear homogencous p.de with constant

cocfficients we impose the probabilistic normalization of
f{N,x,y) and also the additional natural condition
lim /(N.xy) =8 (x 0.

Since this equation can be easily solved by making use of
the standard methods in linear p.d.e., we refer to (Vassalo
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Pereira, 1.,1996) where that integration was first performed,
and merely state the final results in this Appendix. That
inlegration follows two distinct paths according to the sign
of the discriminant A = 1-7*(a,” + B,°). For A>0 it cn

be shown that f{N x,y) takes the form
J(N.xy)=

- 1 ex <1
chzJK

l | . }
& ——eX -—\a, X"+ 24,1y +
T p{ Sl 2TV + @) )

Since A >0, it is obvious that a,, and «,, cannot be both
negative. Assuming then that we have ¢, >0, we may
Write

-ma) )kt + 2n B xy-(1+na, )y 3)
NxA

FINx, %)=

[ a,x+da y)

-’ ]
NJIK’J_ {-_[ -2 a“au yz}}

If we change from x,y to new variables X|Y such that
2=(c.!ux+auy) pr ol 2y ’
2a 2a

then f takes the gaussian-like form

FNxY) = -——L—cxp{—[Xz + Yz]} 39
v Nak’JA )

Figure 2 shows some of the essential properties of this form
of f{(N.xy) ): In the x.y plane, OX is coincident with Ox,
and OY is the straight linc

d 1-mmax
o G lome
all ﬂﬁ!

The probability density f{N,x.y) has an absolute maximum
at the origin x=y=0. Besides, on each on¢ of the cllipses
X (x,+Y (x,=tax +axy+ta,y =C =const
we have the same value of £ decreasing exponentiatly as C

increases. For very small values of the discriminant A all
these cllipses approach the straight ling OY. In the limit,

setrat )0 ST

and f takes non negligeable wvalues only in ihe

neighbourhood of QY, with a maximum at x=y=0, and
decreasing exponentially out of the origin.

Finally, if @, >0, then we must have a,, >0,

and the preceding considerations arc casily transposed for
this case, without any significant changes in the properties
of f(N.xy).

Turning now to the case A = 1-x*(a," + 8,7} < 0, we
are going to meet an unexpected propertly of the distribution
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probability fiN,x,y). In fact, the analytical expression of
f{N,x,y) in the whole plane x.y, is now

SN, x.y) =
Const —(1-wa )z +27 B xy~ {1 +xa )y’
= €X > (4)
N Nk*A
_ Const p{ _L( : 2)
=" ex > @, X +2apxy+ay,y }

that is, the same expression found above in the case A >0,
with the only difference of the changed sign in the
exponent. Clearly a,, and a,, cannot be both positive: if we
then assume a,,>0 (a4,,>0 would Ilcad 1o similar

conclusions) the transformation

X' =

(a,x +a,y) v |aua22 — 2| .

2a 2q

1 1

gives for f the form

_f(Mx,_y): CUHSICKP{_Xz +}72} (4)

In these new coordinates OX is coincident with Ox, and
OY is the straight ling

l-nmx
y=—-q“'x=-~——-—l.x
all Hﬁ!

In the limit, for values of the discriminant approaching zcro

we have
ef—0
aetwlesp)mo S0

The geometrical form of f{N,x,y) can be seen in figure 4 : it
is an hyperboloid with saddic point at the onigin x=y={),
and asymptotes

X=2Y ==>
1-ma,

£}
y= 11 = .
‘alziJhlazz_auzI ”ﬁzim

The lincs of cqual probability are now the hyperbolae

Xy Y= ba, X vagay+ba,y = C = const

For C=0 we have the two asymptotes, and for C>0
(resp.<0) f takes increasing (resp.decreasing) values as C
increases (resp.decreases).

For Asl-x’ (rx,2 + ﬁzz) very close to zero fN x,v) will
only take significant valucs ( that is, the cxponcnt is
positive ) in the narrow region lying between the
asymplotes, in which all the hyperbolac approach OY (sce
figure 3). It follows that f takes two egual absoluie maxima
al the intersections of OY wilh the circle of radius N« .
This is simply due, as we have pointed out in the text, (o
the stricl impossibility for a superposition of N waves of
amplitude ¥ to have a resulting amplitude greater than
Nk :
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Ly > (Nk) = f(Nx,y) =0

Such remark, which was trivial when the gaussian-like
character of fiN,x,y) implied negligeable values for x,y fir
from the origin, is now of utmost importance. Furthermore,
since the probability distribution F is normalized in the
domain x* +y’ <(Nk) (and N>>1) these maxima arc
very sharp and f is almost negligeable out of their
neighbourhood. In fact, these conclusions arc a consequence
of both the normalization of thc probability and the
increasing exponential values taken by { on the straight line
OY (and far from the origin). In other words, a transition
from positive to negative values of A denotes a
"bifurcation” behaviour of the probability distribution for
the superposition of ¥ >>1 identical harmonic vibrations.
It is this fact that is responsible for the existence of iwo
different equations - namely, (1) and (2) - governing the
evolution of the ensemble of oscillators, and thus describing
deterministically a phase transition of the statistical
ensemble as 1t is shown in the text.

We must still point out that cven for A negative but not
necessarily very close to zero, the same geometrical
conclusions concerning Lthe two (then not so sharp) maxima
of { are true, namely the existence of high values in the
neighbourhood of the above mentioned intersections of OY
with the circle of radius Nx (scc figure 4).
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