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Abstract. A long AE index time series is used as a crucial
magnetospheric quantity in order to study the underlying dy-
namics. For this purpose we utilize methods of nonlinear and
chaotic analysis of time series. Two basic components of this
analysis are the reconstruction of the experimental time se-
ries state space trajectory of the underlying process and the
statistical testing of an null hypothesis. The null hypothe-
sis against which the experimental time series are tesled is
that the observed AE index signal is generated by a linear
stochastic signal possibly perturbed by a static nonlinear dis-
tortion. As discriminating statistics we use geometrical char-
acteristics of the reconstructed state space (Part I, which is
the work of this paper) and dynamical characteristics (Part
II, which is the work a separate paper), and “nonlinear” sur-
rogate data, generated by two different techniques which can
mimic the original (AE index) signal. The null hypothesis
1s tested for geometrical characteristics which are the dimen-
sion of the reconstructed trajectory and some new geometri-
cal parameters introduced in this work for the efficient dis-
crimination between the nonlinear stochastic surrogate data
and the AE index. Finally, the estimated geometric character-
istics of the magnetospheric AE index present new evidence
about the nonlinear and low dimensional character of the un-
derlying magnetospheric dynamics for the AE index.

1 Introduction

In previons papers about magnetospheric chaos (Pavios et al.,
1992a,b, 1994) we used two different approaches in order Lo

support the hypothesis of low-dimensional magnetospheric

chaos. In the first approach we presented a nonlinear anal-
ysis of the magnetospheric AE index time series and in the
second one we developed an appropriate nonlinear electric
circuit model. These studies were the continuation of a se-
ries of papers about the possible existence of magnetospheric
chaos (Pavlos, 1988; Baker et al., 1990; Vassiliadis et al.,
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1990; Klimas et al., 1991; Shan et al., 1991; Vassiliadis et al.,
1992; Price and Prichard, 1993; Prichard and Price, 1993).
However, a series of noticeable studies has given strong evi-
dence against the hypothesis of magnetospheric chaos and in-
dicates the significant role of the externally driven process for
the AE index profile (Prichard and Price, 1993; Price et al,
1994; Takalo and Timonen, 1994; Prichard, 1994). For an
extended review of studies of the nonlinear dynamics of the
magnelosphere see Klimas et al. (1996). Certainly the above
criticism showed that the supposition of magnetospheric low-
dimensional chaos was not well founded so far.

In a series of papers, which are going to follow, we include
new results aboul magnetospheric dynamics and the hypoth-
esis of low-dimensional chaos. In this first one, we use four
distinct geometric parameters derived from the slope of the
correlation integral as discriminating statistical procedures in
order to test the null hypothesis of stochastic signals, which
have the same power spectrum and amplitude distribution
as the original data. As we show in detail in this work the
use of appropriate characteristics of the reconstructed phase
space Irajeclory indicates significant difference between sta-
tistically and nenlinearly transformed stochastic signals and
the AE index time series. The AE index describes the mag-
netospheric dynamics during magnetospheric substorms (see
Section 3).

A finite length time series with broadband spectrum, as the
AFE data, may be a realization of a stochastic process or of
a low dimensional deterministic chaotic precess (Eckmann
and Ruelle, 1985). On the other hand, some geometrical or
dynamical characteristics (low correlation dimension or pos-
itive Lyapunov exponents) of the low dimensional chaotic
dynamics can be observed from particular linear stochastic
dynamics. Thus the analysis of experimental time series has
lo confront the problem of distingnishing between stochastic
and deterministic dynamies. A first step in this direction is
to deiect nonlinear dynamics in the data, In this paper we
face this problem for the case of the AE index time series by
examining geometrical characteristics of the signal.

In Section 2, we present the background of chaotic anal-
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ysis including the embedding theory, the surrogate data test
and the geometrical quantities used as discriminating statis-
tics. In Seclion 3, we present the results about the discrim-
ination between the AE index time series and the surrogate
data, while the discussion about the results are presenled in
Section 4.

2 Theoretical framework
2.1 Embedding theory and phase space reconstruction

The earth’s magnetosphere is a system of magnetized plasma,
which microscopically is an infinite dimensional system, the
dynamics of which is mirrored in the ground measured AE
index. Some kind of “self-organization” may give rise to sys-
iem evolution on a low dimensional manifold M of dimen-
sion d. This means that the magnetosphere can be described
macroscopically by a low dimensional dynamical system of
1 macroscopic degrees of freedom with n > d. For lin-
ear systems, “self-organization” is more an externally driven
process described by the external parameters of the system.
For nonlinear and dissipative sysiems, however, it is possi-
ble that the system evolves by its internal dynamics in such
a way that the corresponding phase space flow coniracls on
sets of lower dimensions which are called attractors.

Following the latter assumption, the connection of an ex-
perimental time series £(¢) = =(¢;) (for discrete time £;) to
the supposed underlying dynamics s(t) = f*{sg) is eslab-
lished with the state space reconstruction (Ruelle and Takens,
1971; Takens, 1981), based on Whitney's theorem (Whitney,
1936) that a d-dimensional manifold M can be embedded in
R™ifm > 2d+1, i.e. there exists asmooth & : M — E™.

Let x(#) = ®(s(t)) be the points on the reconstructed
trajectory for the embedding ®. Then the dynamics on the
original attractor is equivalently represented in the mirror dy-
namical flow x(¢) = F*(xg) of the reconstructed phase space
1™ according to

Ft(xq) = &(s) o {50} 0 7' (x) (1)

Thus, the embedding € is a dilfeomorphism which takes
the orbits f*(sg) in M (for an initial state sg) to the orbits
Ft(xp) in Ii™, preserving their orientation and other topo-
logical characteristics as eigenvalues, Lyapunov expenents
and the dimensions of the attractors, including the correla-
tion dimension (Broomhead and King, 1986; Casdagli el al.,
1992).

Asitis shown elsewhere the method of reconstructed phase
space conserves its significance even when the observed sig-
nal is derived by a stochastic process (Argyris et al., 1998;
Pavlos et al., 1999).

Assuming the observed signal is 2(¢} = h(s(¢;)), where b
a measurement function, the reconstrucled points are, using
the method of delays (Packard et al., 1980), x() = [=(f), z(i+
7), - Z(i + (m — 1)7)]T, where 7 a delay parameter.

The embedding theory summarized here constitutes the
basis of chaotic analysis of experimental time series, allow-
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ing for the extraction of information about the dynamics in
the original phase space by studying the mirrored dynamics
in the reconstructed phase space.

2.2 Geometric Characteristics of experimental time series

2.2.1 Correlation dimension

The theoretical concepts described above permit us to use
experimental time series in order to extract useful geomet-
ric characteristics, which provide information about the un-
derlying dynamics. Such a characteristic is the correlation
dimension D defined as

D = lim $2C0)
r—0 din(r)

where C(r) is the so-called correlation integral for a radivs
r. When an attracting set exists C/(r) reveals a scaling profile

2

Cir) ~ rdforr — 0 (3)

For time series, the correlation integral depends on the em-
bedding dimension m of the reconstructed phase space and
reads

N N
Clrvm) = =y 2 O O i) =x()l) @

i=1 j=i+1

where ©(a) = 1ifa > 0and @(a) = 0ifa < 1,and N
is the length of the time series. The scaling exponent d(m)
increases 7 and saturates at a final value 7 for a sufficiently
large embedding dimension my. Theoretically, this my 1s the
smallest integer larger than I according to Ding et al. (1993),
bul in practice g may attain larger valvues depending also on
7 (Kuginmtzis, 1996). Note that an embedding may require
a larger m. .

For periodic altractors the correlation dimension D be-
comes equal to the topological dimension d of the manifold
M, which includes the attractor. Usually for a strange atirac-
lor, I obtains a fractal value.

When the slopes d(m) of the correlation integrals reveal a
plateau at low values of r and the plateau converges for in-
creasing m, then this is strong evidence for low-dimensionalit
of the underlying dynamics Lo the observed signal. The stocha
tic component behaving as noise in the experimental time se-
ries, destroy the plateau and saturation profile al low values
of the radjus  and makes the derivation of reliable dimension
estimales diflficult.

2.2.2 False neighbors and embedding dimension

Besides the correlation dimension the method of false near-
est neighbors can also give an estimation of the smallest suf-
ficient embedding dimension mg. When the trajectory of the
system is reconstructed in a space of low dimensicnality, then
it is possible to have self- crossings and that gives rise to false
neighbor state vectors. This is gradvally improved as the em-
bedding dimension is increased and for a large enough em-
bedding dimension my false crossings and false neighbors
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disappear. Let x(j) be the nearest point to x(i) for an em-
bedding dimension rm. Then their distance is given by

r(6,3) = (2 —=()F+
+(@(E + (m = 1)) —z(j + (m — 1T)*S)

Passing from m to 7 + 1 embedding dimension this distance
lakes the form

T?ﬂ,-lrl (i,5) = Tfn(i,J‘) + (z(i + m7) — 2(j + m7))* (6)

Then if

|x(i + m7) — x(j +m7)| S
T'"ir

Rr (7

the nearest neighbors at time 4 are declared as false (Abar-
banel et al., 1993). The threshold value R+ is estimated to
be in the range 10 < Ry < 50. According to this criterion
as the embedding dimension m increases 1o a characteristic
value my the percent of false nearest neighbors may drop lo
zero. If this is actually observed for a time series, it con-
sists of a positive sign for the existence of low-dimensional
dynamics underlying the observed signal.

2.3 The method of surrogate data

According to Eq. (3) the scaling properties of the correlation
integral as r — 0 and the saturation of the scaling expo-
nent d(sn) — D as m increases are necessary conditions (or
the existence of low-dimensional dynamics underiying to the
experimental time series. However, it has been shown that
these conditions are not efficient in order to conclude low-
dimensional dynamics from an experimental lime series with
broadband power spectrum, as they can be reached also by
stochastic systems (Osborne and Provenzale, 1989; Proven-
zale el al,, 1991). Moreover, according to Theiler (1991),
the concept of low correlation dimension (fractal or integer)
can be applied to time series in two distinct ways, The first
one indicates the number of degrees of freedom in the un-
derlying dynamics and the second guantifies the sell-affinity
or “crinkliness” of the trajectory through the phase space. In
the first case, the scaling and saturation profile are caused by
the recurrent character of the reconstructed trajectory, i.e. by
uncorrelated in “time” and correlated in “space’ state points.
In the second case, they are cavsed by time correlaled state
points that are uncorrelated in space. In order to discrimi-
nale between the two cases, known as dynamic and geomet-
ric low-dimensionalily, we restrict the sum in Eq. (4) to pairs
(x(#), x(4)) with [§ — j| > w, for the Theiler parameter w
larger than the decotrelation time of the time series.

When low-dimensionality is persistent as a dynamic char-
acteristic after the applicalion of Theiler’s criterion, then we
have to decide first between linearity and nonlinearity and
then between chaoticity and pure stochasticity. By the term
chaoticity we mean the case that the deterministic compo-
nent of the process is prevalent and reveals low-dimensional
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chaos. For a stochastic process, the deterministic component
may correspond to low dimensional and even nonlinear and
chaotic dynamics, but its effect can be hardly observed as the
process is driven mainly by noise. Therefore, we focus here
on the solution of the first problem, i.e. determining whether
the AE index time series is linear or nonlinear. This is done
by following the method of “surrogate” data (Theiler el al.,
1992b,a).

The method of “surrogate” data includes the generation
of an ensemble of data sets which are consistent to a null hy-
pothesis. According to (Theiler et al., 1992b), the first type of
null hypothesis is the linearly correlated noise which mimics
the original time seres in terms of autocorrelation function,
variance and mean. The second and more general null hy-
pothesis takes into account that the observed time series may
be a nonlinear monotonic static distortion of a stochastic sig-
nal.

Every Gaussian process is linear while a non-Gaussian
process can be linear or nonlinear. An experimental time se-
ries may show nonlinearity in terms of a non-Gaussian point
distribution, which may be due to a nonlinear measurements
function of linear underlying dynamics. In this case, the gen-
erated “nonlinear” surrogate data mimic the original time se-
ries z(7) in terms of autocorrelation function and probabitity
density function p(z). It is always possible for a nonperiodic
time series of finite length to be a particular realization of a
noise process or of a low-dimensional deterministic'process.
Therelore, it is a statistical problem to distinguish a nonlinear
deterministic process from a linear stochastic process. For
this purpose we use as discriminating statistic a quantity ¢}
derived by a method sensitive to nonlinearity, as the corre-
lation dimension estimation. The discriminating statistic ()
is calculated for the original and the surrogate data and the
null hypothesis is verified or rejected according to the value
of “sigmas” S

g = Habs — Haur (8)
Js'uT‘

where pt5,- and ¢4, is the mean and the standard deviation
of £J on the surrogate data and obs is the mean of @) on the
original data. For a single time series, ji,p, is the single (J
value (Theiler et al., 1992b).

The significance of the stalislics is a dimensionless quan-
tity, but we follow here the common parlance and we report
it in terms of the units of § “sigmas”. When S takes values
higher than 2-3 then the probability that the observed time
series does not belong Lo the same family with its surrogate
data is higher than 0.95-0.99, correspondingly.

For testing the second more general null hypothesis de-
scribed above we follow the algorithm of Theiler (Theiler
etal,, 1992b), as well as the algorithm of Schreiber and Schmi
(Schreiber and Schmitz, 1996). Both algorithms create stocha
tic signals which have the same autocorrelation and ampli-
tude distribution as the original time series.

According to the first algorithm, first a white Gaussian
noise is reordered to maich the rank of the original Hime series
(this is o make the original time series Gaussian). Then the
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phases of this signal are randomized (to desiroy any possible
nonlinear structure). Finally, the original signal is reordered
to match the rank of the above consiructed coloured noise
(to regain the original amplitude distribution). The derived
shuffled time series is the surrogate time series.

The algorithm of Theiler was improved by Schreiber and
Schmitz by a simple iteration scheme in order Lo strengthen
the ability of the surrogate data to fit more exactly the auto-
correlation and power spectrum of the original time series.
Starting with a white nocise signal, its Fourier amplitudes
are replaced by the corresponding amplitudes of the origi-
nal data. The rank order of the derived stochastic signal is
used to reorder the original time series. By this reordering,
the matching of amplitude distribution is succeeded, but the
matching of power spectrum achieved in the first step is al-
tlered. Therefore, the two step process is repeated several
times until the change in the matching of power spectrum is
sufficiently small.

24 Critical Parameters for the statistical comparison be-
tween the AE index time series and the surrogate data

In order to be able to utilize as much as we can from the ap-
plication of the method of the surrogate data, we must decide
on the appropriate geometric parameters of the reconstructed
trajectory which are going to be used as discriminating statis-
tics. For this purpose we use the following quantities:

a The slopes of the correlation integral

b The standard deviation (Sg,) of the slopes

¢ The length of the scaling (L,..1)

d The cumnulative distances of the slopes (Fg;4)

e The percent of false nearest neighbors (fr,41)

We present now some theoretical explanations for the vuse
of the above magnitudes. The standard deviation S, of the
slopes is a function of In(r) (r is the distance radius in the
reconstructed phase space), defined as

S ©)

o llnrs) o \/ £ (D(n(ru) = DUn(re)))?
where {In(rg), k& = 1,2.--n} is a fine partition of a pre-
defined interval Aln(r) = [In(r,},ln(ry)] of possible scal-
ing (r, not too small, r; not too large), and D(ln(ry)),! =
1,--- N, are the estimated values of the slopes at every point
i in the subinterval (In(ry ), In(rg4q1)] of the above parti-
tion. By D(In(rg)) we denote the mean value in the interval
(ln{rg), In(rg,1)). It is important to note that in the region
where there is scaling of the correlation integral, the values
of the function S, (In(r)) must be close 10 zero.

The magnitute of the length of scaling is defined by the
relation

Lyl = ln(TZ) - 111(7‘1) (10)
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where [r1, r2] is the inlerval of distance r in which the stan-
dard deviation of the slopes Sy, is smaller than a quantity
¢ whose value is close lo zero. A sufficiently large L. is
a necessary condition for a dynamics evolving on an attrac-
tor. So, an estimation of the correlation dimension is without
physical meaning when L. is not large enough and the lo-
cal standard deviation of the slopes Sy, tends 1o zero.
However, when we compare the surrogate dala with the
original time series then it is possible that the scaling profile
to be observed for both data types, but the saturation value for
the slopes to be different for the original time series and for
its surrogate data. Therefore, we inlroduce a new geometrical
parameter, the cumulative distance Fy;,;, which is appropriate
for the aforementioned comparison, defined by the equation

—N W L2
Fds(Dth):\/Liﬂwlanml)w)r D) ()

where {In(r;},7 = 1,2, ..., N} is a finite partition of the in-
terval [In(r1), in(r2)] along which the slope reveals plateau
profile. In our case D; corresponds to the slope segment for
the signal and IJ; is a given plateau, thus Dy = constant.

The last quantity, i.e. the percent of false nearest neighbors
frgs, Bias been already presented in subsection 2.2.

3 Data analysis and results

The AE index describes the Auroral-zone magnetic activity
which is related with the global magnetospheric dynamics
through a complex system of currents. The magnetospheric
dynamics during substorms is manilested as sirong variabil-
ity of the magnetospheric and ionospheric electric currents
especially the auroral electrojets (McPherron, 1995). Distar-
bances in the Earth’s magnelic field produced by currents in
the magnetosphere and ionosphere are commonly described
by a number of magneltic aclivity indices, which are derived
from certain physical parameters connected to the dominant
phenomena causing the disturbance. The indices AU, AL,
and AE give a measure of the strength of the auroral elec-
trojets and are delined with the use of traces of the heri-
zontal component (H) of the geomagnetic field measured by
a world-wide chain of auroral-zone magnefic observatorics
(Davis and Sugiura, 1966). AU is the maximum positive
disturbance (upper envelope) recorded by any station in the
chain. AL is the minimum disturbance defined by the lower
envelope of the traces of the chain. AE is defined by the sep-
aration of the envelopes (AE = AU-AL) in order to obtain a
better measure of the strength of the auroral electrojets.
Figure 1a shows measurements of AE index which corre-
spond to the second half of the year 1978. The sampling rate
of the original signal was one minute while the time series
used in this paper contains Ny = 32768 data poinis that are
the eight minute averages of the entire time series, rounded to
the nearest power of two. That is the original time series con-
tains V 2¢ 250.000 data points. This time series has much
longer length than the time series used in our previous work
(Pavlos et al., 1992b, 1994) as well as in the works of other
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Fig. 1. (a) AE index measurements with eight minute time resolution corre-
sponding to the second half of the year 1978. The bursting character of the
AE index is obvious and indicates the strong coupling of the magnetosphere
with the solar wind. (b) Amplitude distribution for the first and second half
of the AE index time series. It is apparent the stationarity of AE index. (c)
The autocorrelation coefficient for the first 2000 units of lag time indicates
two different processes. The first corresponds to an abrupt decay of the au-
tocorrelation coefficient and the second to a slow decay.
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scientists. The stationarity of the time series is tested by esti-
mating the amplitude distribution for the first half of the data
set and for the second half of it (see Fig. 1b). The ampli-
tude distributions are the normalized ones as we subtract the
mean and we have divided by the standard deviation. From
the same figure it is obvious that the AE index time series
reveals non-Gaussian amplitude distribution.

The random character of the AE time series is revealed by
the decaying shape of the autocorrelation function (Fig. 1c)
showing an abrupt decay during the first 100-200 minutes
and a slow long decay afterwards. This profile of the auto-
correlation function could possibly be caused by two differ-
ent mechanisms. A dynamical one which corresponds to the
abrupt decay and a stochastic one (coloured noise) which is
responsible for the slow decay. The two discontinuous lines
in Fig. 1c reveal the two different mechanisms. Of course
the abrupt decay can not be explained solely as a chaotic be-
haviour as it is possible to be caused by a static nonlinear
distortion of a linear stochastic system.

3.1 Geometric characteristics of AE index time series

In the following, we present the results of the analysis of
the AE index in two stages. First, we show the geometric
characteristics of AE index data and then we compare them
with the corresponding characteristics of the “nonlinear” sur-
rogate data.

Figure 2a shows the slopes D of the correlation integral for
embedding dimension m = 20 and delay times T = 10—100.
It is obvious that there is a scaling of the correlation integral
(C(r,m) ~ r¥™)) for r = 30 — 60 and for low values of the
distance r in the reconstructed phase space. In this estimation
Theiler’s parameter takes the value w = 100. The scaling re-
gion is located for In(r) between 5-6.5, while for 7 = 60 we
have the best scaling. Figure 2b shows the slope D(In(r))
for m = 20,7 = 60 and w between 0-500. In this case, we
can observe that for w > 5 the slope remains invariant with
an apparent plateau in a long region Aln(r) = 5—6.5, of the
distance r. For values of In(r) < 5 there is scaling only for
w = { caused by time correlated state points, while for val-
ues of In{r) > 5 the scaling is caused by time uncorrelated
states due to space recurrence and space correlation. This
means that the AE index data are possibly connected with
low-dimensional dynamics which creates a recurrent trajec-
tory in phase space. Figure 2¢ shows the slopes for embed-
ding dimension m = 8 — 20,7 = 60 and w = 100. Figure
2d presents the mean values of the scaling exponents d(m)
estimated at the scaling region. The dashed lines in Figs. 2c-
d indicate the tendency for low value saturation of the slopes
and scaling exponents at the level D = 4 — 6, for a long
range of m = 8 — 20. However, as the signal of the AE index
may include a stochastic component the low value saturation
profile can be expected only in approximation. Taking into
account that the degrees of freedom d of the underlying dy-
namics is in the region D + 1 < d < 2D + 1, the above
result is in agreement with the dimension used in theoretical
models for the magnetospheric dynamics (Baker et al., 1990;
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Fig. 2. (a) The slopes of the correlation integral as a function of the radius r estimated for embedding dimension /n = 20, delay time 7 = 10 — 100 units
of sampling time and the Theiler parameter w = 100. For delay time 7 = 30 — 60 we observe the best scaling. (b) The same with (a) for delay 7 = 60
and w = 0 — 500, showing that there is no significant change of the slopes for w = 5 — 500. (c) The same with (a) for 7 = 60, w = 100 and embedding
dimension m = 8 — 20. (d) The scaling exponent d(m) as a function of the embedding dimension m estimated along the scaling region. For all m, the
scaling exponent takes values lower than 6 while there is a tendency for saturation in the range of values D >~ 4 — 5.
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Fig. 3. The ratio of the false to the total nearest neighbors as a function
of the embedding dimension m(r = 20). The ratio converges to zero for
embedding m > 8.

Klimas et al., 1991; Pavlos et al., 1994).

Figure 3 shows the ratio of false to total nearest neighbors
as a function of the embedding dimension m estimated for
delay time 7 = 20 and threshold value Ry = 10. The fig-
ure shows that the ratio of false nearest neighbors drops to
zero for embedding dimension m 2 7 — 8. This result im-
plies that the embedding of the attractor in an 8-dimensional
phase space 1s enough for the false crossings and false neigh-
bors to disappear. This is in accordance with the previous
result about the dimensionality of the underlying magneto-
spheric dynamics as it was concluded by the estimate of the
correlation dimension.

3.2 Statistical test of the null hypothesis

The non-Gaussian amplitude distribution of the AE index can
possibly imply the nonlinearity of the signal under appropri-
ate conditions. However, the nonlinearity of a signal can be
static or dynamic. As discussed in subsection 2.3 a random
like and non-Gaussian signal can be possibly caused by a de-
terministic nonlinear and even chaotic underlying process or
by a stochastic process observed through a nonlinear static
distortion. Figure 4 presents three surrogate signals and the
corresponding slopes of the correlation integrals for different
embedding dimensions. The two first surrogate signals were
generated by using the algorithm of (Theiler et al., 1992b,a)
and are symbolized as T-surrogates. The third one was gener-
ated by using the algorithm of Schreiber and Schmitz (1996)
and is symbolized as S-surrogate. Both types of surrogates
are supposed to preserve the amplitude distribution and the
power spectrum (and thus the autocorrelation as well) of the
AE signal. Thus both surrogate types are representative for a
static nonlinear distortion of a stochastic infinite dimensional
linear process. The general profile of the surrogate signals
(shown in Figs. 4a, c, ) is similar to the original AE index
lime series (shown in Fig. 1a). The profile of the slopes may
be similar to that for the original signal as we can conclude
by comparing Fig. 4b and Fig. 2c or to be significantly differ-
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ent as Fig.4d and Fig. 2c show. An intermediate state is that
shown in Fig. 4f which in some way approaches the profile
of Fig. 2c, without being completely similar. The existence
of at least one stochastic signal which can reveal significant
similarity in terms of slopes with the AE index signal indi-
cates that the AE index may belong to the family of linear
stochastic signals considered here. To test this null hypothe-
sis we generated two groups of forty statistically independent
T-surrogate and S-surrogate signals, respectively.

Fig. 5a shows the autocorrelation coefficient for the 40
T-surrogate and for the original signal. Fig. 5b shows the
same for the S-surrogate data. The autocorrelation coeffi-
cients for the S-surrogate data are concentrated close to that
of the original. The closeness is actually determined by the
convergence limit of the algorithm. For the T-surrogate data
the antocorrelation coefficients are scattered and show a ten-
dency towards a positive bias at least for small lags (see Fig.
5¢).

In the following, we present results of the statistical test of
the null hypothesis by using the five geometrical quantities
described in subsection 2.4 as discriminating statistics.

3.2.1 Slopes of the correlation integrals

Fig. 6a includes the slope of the correlation integral esti-
mated in a 20-dimensional state space for the AE index and
its T-surrogate data. Fig. 6b corresponds to Fig.6a and shows
the mean value and standard deviation of the slopes for the
T-surrogate data, and the slope of the AE index. Only for
very few T-surrogate signals the slope approaches that of the
original signal, particularly for small distances as shown in
Fig. 6a. This is better manifested in Fig.6c where it can be
observed that the significance is larger for small r. However,
a clear discrimination between the AE index and its surrogate
signals can not be established as the significance does not ex-
ceed the level of 2 sigmas for any but very small r-values. As
shown in Fig. 6c, S > 2 is attained only for In(r) = 5, and
then we can reject the null hypothesis with 95% confidence.
Figures 7a-c are similar with Figs. 6a-c but correspond
to the second group of the S-surrogate data. Here the dis-
crimination is more clear as the significance of the statistics
stays within the region ~ 2 — 3 sigmas for a large interval of
small r-values. In this case we can reject the null hypothesis
with confidence > 95%. However, the direct comparison of
the local slopes alone is not sufficient for the decision about
the null hypothesis because it does not contain information
about the scaling character. As shown in Fig. 6a and Fig.
7a the slopes of the surrogate signals generally do not reveal
significant scaling profile. For this reason in the following
we study the geometrical quantities appropriate for the com-
parison of the scaling character between AE index and its
surrogate data, as they were introduced in subsection 2.4.

3.2.2 Standard deviation Sy, of the slopes

The standard deviation of the slopes Sy, is estimated for
the AE index and its T-surrogate data in a 20-dimensional
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reconstructed state space, as shown in Fig. 8. For the sur-
rogate data, we present the mean value of S, and the de-
viation from the mean. For this estimation we divided the
region A lnr = 4.75 — 7.00 in 10 non over-lapping subinter-
vals and computed Sy, in each subinterval. By definition,
Sqev approaches zero when there exists scaling of the cor-
relation integral. In Fig. 8a, we observe that the S, for
the AE signal fluctuates at low values (Sge, = 0.05) in the
interval [5,6.25] of In(r) while the corresponding values of
Sqey estimated for the T-surrogate data are sensibly higher,
(Sgey = 0.2 —0.4). For this interval of In(r) the significance
of Sgey is in the range of 1.5-2.0 sigmas as shown in Fig. 8b.
These values suggest that the rejection of the null hypothe-
sis occurs with confidence 65 — 95%, (as the value of 1.5
sigmas corresponds to the probability value 0.65). Figure 8c
shows the discriminating statistic of Sy, for the AE index
(tall line) and the T-surrogate data (short lines) correspond-
ing to the 5-dimensional embedding using 7 = 80, which for
Sqev gives the best discrimination. This figure shows that the
difference is clearly significant permitting the rejection of the
null hypothesis at a confidence level larger than 95%.

Figure 9 is similar with Fig. 8 but for the S-surrogate data.
The Sg.., for the AE index, is well below the Sy, for the
S-surrogate data (see Fig. 9a). As shown in Fig. 9b the sig-
nificance is larger than that of the T-surrogates permitting a
more clear discrimination between the original and the surro-
gate data. That is, for all but one subintervals in the interval
[5,6.25] of In(r), the rejection occurs with confidence larger
than 95%. The best results obtained are shown in detail in
Fig. 9c.

3.2.3 The length of scaling L.,

The length of scaling L;.,; as defined in section 2.4 is es-
timated by the maximum length of an interval of In(r) for
which the standard deviation of the slope of the correlation
integral Sy, is less than a given value € close to zero, here
set to 0.05 according to the previous results. A large L.y
supports a physical interpretation of the results on the geo-
metrical characteristics of the reconstructed trajectory. Fig-
ure 10a shows the estimated values of L., for the AE index
and the mean value and standard deviation of Lg.,; for the
T-surrogate data, as functions of the embedding dimension
m. For each m the delay 7 giving the best scaling profile
for the AE index was used. It is clear that the L., for the
AE index obtains significantly higher values than those for
the T-surrogate data. The significance of the discriminating
statistic, shown in Fig. 10b, varies in the range of 2-6 sigmas.
Figure 10c shows the discriminating statistics of L., for the
S-surrogate data and for a single estimation with m = 20.
Again the S-surrogate data allow for better discrimination.
However, the results on L.,; in both cases suggest the rejec-
tion of the null hypothesis with confidence > 95%.

—
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3.2.4 Cumulative distance Fy;,

The Fy;, defined in Eq. (11) is a global measure for the devi-
ation of the slope segment from a given plateau. In contrast
to the above parameters, this parameter is appropriate as a
discriminating statistic even when the slopes of the surrogate
data show significant scaling profile. Figure 11a shows the
magnitude of Fy;, as a function of the embedding dimen-
sion estimated for the AE index and the corresponding mean
value of Fy;, estimated for the 40 T-surrogate data. For this
estimation we used as a plateau level for each embedding the
mean value D of the local slopes of the AE index on the same
In(r)-interval the best scaling was observed. It is clear that
the values of Fy;, for the AE index are significantly lower
from the corresponding values for the T-surrogate data. The
significance of the statistic Fy;, shown in Fig. 11b varies in
the range of 2-2.5 sigmas. Figure 11c shows the discriminat-
ing statistics of the same magnitude Fy;, for the AE index
(tall line) and the S-surrogate data (short lines) for a single
estimation with m = 20. The S-surrogate data allow for bet-
ter discrimination as the significance of Fy;; was found to be
~ 3 sigmas. Finally, in both cases the results on F;, suggest
the rejection of the null hypothesis with confidence > 95%.

3.2.5 False nearest neighbors £y,

The ratio of the false to total nearest neighbors f,,,, was esti-
mated according to the Egs. (5), (6) for the AE index as well
as for the two sets of surrogate data. Figure 12a shows the
estimated ratios for the AE index and its T-surrogate data as
a function of the embedding dimension and Fig. 12b for the
S-surrogate data. In both cases we observe strong difference
between the values of f,,, corresponding to the AE index
and the values of fjg; corresponding to the surrogate data,
especially for embedding dimensions 3-5. The significance
of the discriminating statistic of fygp for T and S surrogate
data is shown in Fig. 12c. For embedding dimensions in the
range 2-7, the significance is large, of order 2-4 sigmas for
the T-surrogates and 2-7 sigmas for the S-surrogates. The re-
sults based on the false nearest neighbors clearly suggest the
rejection of the null hypothesis.

4 Summary and discussion

In this paper we introduced five geometrical quantities of the
reconstructed dynamics as the discriminating statistics in or-
der to test for the magnetospheric AE index the more general
null hypothesis corresponding to the static nonlinear distar-
tion of linearly correlated noise, according to (Theiler et al.,
1992b,a).

The maximum values of the statistical significance for the
geometrical quantities obtained in this study are listed in Ta-
ble 1. The signals representing the null hypothesis of nonlin-
ear static distortion of linear stochastic data were generated
by two different methods, denoted with T and S respectively.
In both methods, the objective is to generate surrogate signals
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Table 1. This table shows the maximum values for the T-surrogates (column 3) of the statistical significance in sigmas for five different geometrical quantities
{columnn 1) together with the corresponding parameters (column 2). For the S-surrogates (last column), the optimized significance yields only fr, s, as only

one set of parameters was used for the other four quantities.

“Nonlinear” surrogate data
Geometrical Discriminating parameters T-surrogates | S-surrogates
Parameters Sigmas Sigmas
m =20
Slopes of the correlation integrals 7= 60 2.10 2.88
In(r) = 4.95
m = 20
Standard deviation of the slopes (S, ) T =60 193 2.63
Aln(r) = (5.87 — 6.10)
m = 20
Length of scaling (L ,cq;1) T =60 5.88 6.97
Aln(r} = (5.00 — 7.00)
m = 20
Cumulative distance (Fz;,) T =60 231 292
Aln(r) = (4.80 — 6.50)
m=4
False nearest neighbors (Frgp) T=20 4.00 6.64
Ry =10

that mimic the original signal in terms of the amplitude dis-
tribution and the power spectrum (or equivalently with auto-
correlation function). The S-surrogate data turn out to mimic
better the AE time series than the T-surrogaie data and give
sensibly higher values for the significance of the slatislics as
shown in Table 1.

The amplitude distribution for the AE index is non-{aussian.

For stationary time series, as AE index was found to be, if the
ergodic condition is supposed to be valid it implies the non-
Gaussian character of the underlying process. Non-Gaussian
processes may involve interesting nonlinear dynamics such
as chaos, but can also stem from stochastic Gaussian process
after a nonlinear distortion. Qur findings suggest the rejec-
tion of the lalter hypothesis for the AE index. With statistical
confidence at the 95% level (or even higher in some cases),
we could discriminate the AE index from the family of linear
stochaslic signals with the same amplitude distribution and
power spectrum as the original time series.

The rejection of the above null hypothesis strongly sup-
ports the hypothesis of low dimensionality and nonlinearity
of the deterministic component of the underlying dynamical
process to the AE index. More evidence on this is given in
a second paper (Part IT) where the dynamical characteristics
are investigated in terms of surrogate data sets.
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