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Abstract. The work considers three-dimensional cres-
cent-shaped patterns often seen on water surface in nat-
ural basins and observed in wave tank experiments. The
most common of these ‘horse-shoe-like’ patterns appear
to be sporadic, i.e., emerging and disappearing sponta-
neously even under steady wind conditions. The paper
suggests a qualitative model of these structures aimed at
explaining their sporadic nature, physical mechanisms of
their selection and their specific asymmetric form.

First, the phenomenon of sporadic horse-shoe pat-
terns is studied numerically using the novel algorithm
of water waves simulation recently developed by the au-
thors (Annenkov and Shrira, 1999). The simulations
show that a steep gravity wave embedded into wide-
spectrum primordial noise and subjected to small non-
conservative effects typically follows the simple evolu-
tion scenario: most of the time the system can be con-
sidered as consisting of a basic wave and a single pair of
oblique satellites, although the choice of this pair tends
to be different at different instants. Despite the effective
low-dimensionality of the multimodal system dynamics
at relatively short time spans, the role of small satellites
is important: in particular, they enlarge the maxima of
the developed satellites. The presence of Benjamin-Feir
satellites appears to be of no qualitative importance at
the timescales under consideration.

The selection mechanism has been linked to the quar-
tic resonant interactions among the oblique satellites Iy-
ing in the domain of five-wave (McLean’s class IT} insta-
bility of the basic wave: the satellites tend to push each
other out of the resonance zone due to the frequency
shifts caused by the quartic interactions. Since the in-
stability domain is narrow {of order of cube of the basic
wave steepness), eventually in a generic situation only a
single pair survives and attains considerable amplitude.
The specific front asymmetry is found to result from the
interplay of quartic and quintet interactions and non-
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conservative effects: the growing and grown satellites
have a specific value of phase with respect to the ba-
sic wave that corresponds to downwind orientation of
the convex sides of wave fronts. As soon as the phase
relation is violated, the satellite's amplitude quickly de-
creases down to the noise level,

1 Introductien

Wind waves in natural basins display a variety of three-
dimensional patterns. Among them, patterns of spec-
tacular crescent-shaped form, resembling horse-shoes,
can be often discerned. The challenge to understand
and describe mathematically these patterns, apart from
the natural desire to explain a commonly observed phe-
nomenon, comes from two different sides. On the one
hand, the patterns are very important from the ocean
science perspective, since they modify the airflow above
the surface and thus affect the air-sea momentum trans-
fer. They also change in a specific way the radar scat-
tering from the sea surface (Shrira et al, 1999), and, last
but not least, they require conceptually new maodels to
describe statistically wind-wave field dynamics in their
presence {Shrira et al, 1996). On the other hand, the
phencmenon is of true interest from the viewpoint of
nonlinear science, as a new non-trivial scenario of pat-
tern formation having no close analogues in the very rich
literature on patterns (e.g. Bowman and Newell, 1998).

Though ne field studies of these horse-shoe patterns
are known, their main features inferred from common
observations were briefly summarized in Shrira et al.
(1996) (below referred to as SBK). Among these fea-
tures are:

(i) wave fronts are of crescent-shaped form and are al-
ways oriented forward, i.e., their convex sides look
downwind;
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(ii}) the patterns appear quickly after the onset of a
fresh wind, at early stages of wave development
characterized by high wave steepness;

(iii) the patterns might be localized in space and time,
but exist over space- and timescales greatly exceed-
ing the basic wave wavelength and period.

A number of experiments carried out in wave tanks
{Su et al, 1982; Collard and Caulliez, 1999) and wind-
wave facilities (Melville, 1982; Kusaba and Mitsuyasu,
1986; Collard and Caulliez, 1999), both in the presence
and absence of wind, made it possible to reproduce the
patterns in their ideal form under controlled conditions
and to measure their parameters. It has been estab-
lished (first suggested by Su et al, 1982; Melville, 1582
and later confirmed by Collard and Caulliez, 1999) that
the inception mechanism of the horse-shoes is indeed
due to McLean’s class II instability (five-wave decay) of
a plane basic wave. It was also found that wave steep-
ness above a certain threshold is necessary for their in-
ception. However, specific mechanisms of the pattern
formation remain unidentified.

SBK, having summarized the available observations
and a number of theoretical works aimed at explaining
the phenomenon qualitatively, suggested a possible sce-
nario of the emergence of the patterns. The authors
made the assumption that the single symmetric poir
with the largest linear growth rate due to McLean's class
1T instability prevails, while all other pairs (there is a
continuum of them lying within the instability domain
drawn by McLean {McLean, 1982; Craik, 1983)) may be
ignored. Although such an approach is common in stud-
ies of hydrodynamic stability and is plausible in some
cases {e.g. Craik, 1985), in general, it does require jus-
tification for each particular case. Relying mainly upon
the experimental evidence and giving some arguments
of qualitative character in support of this hypothesis,
SBK confined themselves to the consideration of a low-
dimensional system composed of a basic wave and the
fagtest growing pair of satellites. The resulting patterns
indeed render the specific geometry closely resembling
the-observed horse-shoe forms, but only under ¢ special
relation between the phases of the interacting waves.
Namely, the ‘effective phase’ # = 3o — 23, where a and
3 are the phases of complex amplitude of the envelope
of the basic wave and symmetric satellites respectively,
must be negative, the best agreement with observations
corresponding to the case # = —w /2. Any credible the-
oretical model aimed at describing the phenomenon of
horse-shoe patterns first should be able to explain this
specific asymmetry. It should be noted that in a more
general context the seemingly similar crescent-shaped
patterns often emerge in different hydrodynamic situ-
ations, but the underlying mechanisms are quite dis-
tinct. For example, the migrating barchan dunes hav-
ing well pronounced crescent shape are always oriented
backward, i.e., their convex sides look upwind.
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To address the specific front asymmetry, SBK first
analytically considered the class II instability of a ba-
sic wave, applying the Zakharov equation to this simple
three-wave problem known to be integrable (Shemer and
Stiassnie, 1985). Within this framework, no preference
for phases was found. Instead, the phase of a satel-
lite during the cycle of its growth and subsequent de-

‘cay rotates through all the possible values, giving a full

range of various three-dimensional patterns of all orien-
tations with overall distribution being symmetric in up-
and downwind directions, in the apparent contradiction
to the observations. However, SBK showed that non-
conservative effects, inserted into the system but small
enough to preserve the Hamiltonian structure to the re-
quired order, would create in the phase space absolutely
attractive foci, the patterns corresponding to them bear-
ing all the necessary features of those observed.

In this sense, SBK have built a plausible qualitative
theory of the emergence of [ong-lived crescent-shaped
patterns. The presence of non-conservative effects al-
lows the simplest three-wave system to evolve into a
steady state with the geometric form of the free surface
with the required characteristics. Still, a number of im-
portant questions were left unanswered or discussed at
a qualitative level only.

The most crude assumption was the selection of a sin-
gle symmetric pair of oblique satellites for the model of
the class II instability. Although the domain of the five-
wave instability is O(£®) narrow, £ being the measure of
the basic wave steepness, it is still continuous and there
is no a priori reason to confine the consideration of this
instability to a single pair of satellite harmonics even if
this pair is characterized by the maximal linear growth
rate. Moreover, this approach completely neglects the
sideband satellites growing due to the Benjamin-Feir
instability. Besides that, despite the recent advances
in understanding of global dynamics within the frame-
work of the truncated three-mode system (Badulin and
Shrira, 1999), even in the situations where the system is
known for sure to evolve to an attractor, it is often diffi-
cult to estimate the characteristic time of this evolution.
On the other hand, from the experimental viewpoint,
there are two major difficulties of the SBK theory. First,
in nature the most often observed crescent-shaped pat-
terns are sporadic and seem to be far from equilibrium.
In particular, all patterns observed in wave tank experi-
ments (Su, 1982; Collard and Caulliez, 1999), as well as
most of those seen in open-air basins, usually have rela-
tively short (although much exceeding the wave period}
time of existence. Second, the patterns have been also
observed in the tank experiments without wind (e.g. Su
et al, 1982) where no equilibria are possible. All this
prompts us to reexamine the basic assumptions of SBK
and to look for a new robust mechanism able to cre-
ate the essentially non-stationary, relatively short-lived
patterns of the same geometry.

The present study, being also based on the idea that
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the primary mechanism for the horse-shoes is due to
the class IT instability of a basic wave, considers general
sitnation when this instability gives rise to many pairs
of oblique satellites, with Benjamin-Feir {class I) satel-
lites being also taken into account. Since these ques-
tions constitute a problem evidently not tractable by
analytical means, an extensive numerical study of pos-
sible evolution scenaria was undertaken. For this pur-
pose, a novel numerical method recently developed by
the authors (Annenkov and Shrira, 1999} has been used.
This method, based on the perturbed integrodifferential
Zakharov equation, allows one to trace the long-term
evolution of a sufficiently large number of interacting
modes, both in a conservative system and in the pres-
ence of weak non-conservative effects. Weak dissipation
of the satellites, as well as weak generation of the basic
wave, was taken into account via the insertion into the
numerical model of small (of the order of the five-wave
interaction term) linear damping and forcing terms.

The numerical analysis allowed us to establish the ba-
sic facts concerned with the long-time evolution of five-
wave instability. First, even the system with the initially
large number of degrees of freedom appears to follow in
maost cascs, at least locally, the evolution scenario of a
low-dimensional system. This means that in a generic
situation only very few of linearly unstable modes (of-
ten different modes at different moments of time) would
grow considerably. Moreover, under the effect of weak
dissipation this small number of grown modes is nor-
mally reduced to just one pair. This suggests the ex-
istence of a nonlinear selection mechanism which is en-
hanced by dissipation. This mechanism reduces consid-
erably the number of grown modes, at the same time
noticeably enlarging their maximal amplitude. Evolu-
tion of the system is shown to result in the formation
of crescent-shaped transient patterns on the free surface
with steep front slopes and flattened rear ones, closely
resembling the observed horse-shoe patterns. The spo-
radic nature of the observed patterns is also reproduced
by the simulations. The patterns’ dynamics is found to
be determined mainly by quintet interactions, while the
presence of Benjamin-Feir modulation does not alter it
qualitatively.

The selection mechanism has been identified as fol-
lows: each growing pair of oblique satellites ‘pushes’ all
other pairs out of the narrow instability domain by cre-
ating a nonlinear frequency shift. Normally, one pair
prevails, so that most of the time the evolution closely
corresponds to that of the three-wave system. At the
same time, the presence of other pairs of satellites is
shown to lead to phase asymmetry: a growing satellite
pair has the required {‘correct’) phase value, while the

phases of decaying ones are unstable, so that the fre-.

quency shifts caused by the weak interaction with other
modes set them into rapid rotation. As a result, pro-
nounced horse-shoe-like patterns develop at each cycle
of the intermittent regime. The described mechanism
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does not require the presence of non-conservative ef-
fects as a prerequisite. Nevertheless, weak dissipation is
shown to significantly facilitate observation of the pat-
terns, due to prolonged satellites’ growth and elimina-
tion of noise.

The paper is organized as follows. Section 2 gives the
formulation of the problem in terms of the perturbed
Hamiltonian theory of surface waves and describes the
numerical procedure employed to solve the Zakharov
equation. Section 3 presents the results of simulation
of long-time evolution of a system comprising one basic
wave and a large number of initially small satellites. We
first concentrate on the detailed study of class II insta-
bility, while the role of Benjamin-Feir satellites is briefly
discussed in Section 3. The field evolution can follow a
number of different scenaria; we demonstrate the forma-
tion of horse-shoe patterns, both in the conservative and
weakly dissipative case, and suggest a qualitative expla-
nation of their properties. An analytic consideration of
some simple cases is given. In Section 4, first, a reap-
praisal of the familiar case of a basic wave decay into a
single pair of oblique satellites is suggested. Then, an
asymptotic approach is used to analyse much richer sys-
tems comprising two unstable oblique satellites. Section
6 discusses the results and approximations involved. In
the Appendix, the model problem of five-wave interac-
tions within the simple three-wave system is considered
analytically, and the asymptotic solution for the case of
initially small satellites is presented.

2 Basic equations and the numerical model

We consider three-dimensional potential gravity waves
on the free surface of an incompressible fluid of infinite
depth. Wave slopes are supposed to be of the order of
a small parameter £. Dynamics then is governed, up to
the order €%, by the integrodifferential equation

. Obg

5 = (wo+i’)fo)bo+/V0123bTbe350+1—2—3dk123

+ / Wor234b]b203b400 41234 dKi234

3 * Pk
+ 3 /W43210b152b35450+1+2—3—4 dkj23q, (1)

derived by Zakharov (1968) (see also Crawford et al,
1980) and extended to the order £* by Krasitskii (1994);
for our purposes, Eq. (1) is modified by the presence of
small {of the order £*) non-conservative effects. Here,
b(k) is a canonical complex variable, w(k) = (gk)'/>
is the linear dispersion relation, k = |k|, v(k) stands
for O(z?) damping/growth rate, integration in Eq. (1)
is performed over the entire k-plane. The compact no-
tation used designates the arguments by indices, e.g.,
Vo123 = V(k, ki, kz, ks), dor1-2-3 = 8{k+k; ~k; —k3),
dki9z = dk;dkadks, asterisk means complex conjuga-
tion, ¢ is time. All the details of the lengthy procedure
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of derivation of Eq. (1), as well as the expressions for
the kernels V, W can be found in Krasitskii {(1994).

In the conservative case the exact equations of motion
can be presented in the equivalent canonical form

Bb(k) _ OH
Bt T S @)

where the Hamiltonian H is expressed in terms of d(k)
by means of integral-power series

H= / (k)b(k)b* (k) dk—l—ZH 3)

n=4

The canonical variable b(k) is linked to the Fourier-
transformed primitive physical variables (k,t), n(k,t)
(free-surface potential and elevation of the surface, re-
spectively) also through an integral-power series (Kra-
sitskii, 1994). To a leading order, this relation has the
form

b(k)=%{ ) 1) + \/ﬁw(k)}, 4

expressions for higher orders generally are very cumber-
some. One example of transformation for a particular
case is presented in Appendix A of SBK.

The Zakharov equation used in the present work cor-
responds to the truncation of the series (3} at the term
H;. The sysiem is then perturbed by adding the terms
~(k), small enough to preserve the Hamiltonian struc-
ture to the desired order, in a standard way to take into
account small non-conservative effects.

Equation (1) has a number of important advantages
from the point of view of numerics. First, it is the so
called reduced equation, that is, it projects dynamics
into the space of nonlinear normal modes of the system,
leaving incomparably fewer interactions to consider than
in conventional physical space models. In other words,
much of the complexity of the original hydrodynamic
equations goes to coefficients that indeed have very cum-
bersome algebraic form. More advantages of Eq. (1) as
the basis for a numerical study can be pointed out; one
of the most important. ones is that the initial discretiza-
tion is not confined to integer number grids (it does not
include Fourier transformation on a timestep), allowing
to avoid possible artifacts due to a numerically created
resonator (Kartashova, 1991).

Though the idea to use this equation, upon proper
discretization, to study the evolution of a number of dis-
crete modes seems natural (Craik, 1983), there were few
attempts at implementation of such a numerical scheme.
Those known to us (Crawford et al, 1980, repeated in
Yuen and Lake, 1987; Krasitskii and Kalmykov, 1993)
were aimed at providing only examples of short-term
evolution of a few most unstable {usually two-dimen-
sional}) modes, often neglecting five-wave interactions
and/or not paying respect to the Hamiltonian structure
of the equation.
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In the present work, the recently proposed novel nu-
merical approach (Annenkov and Shrira, 1999) is used.
The algorithm is based on the following strategy. Given
the initial state of the fluid (Functions ¢(x,0), n(x,0),
where x = {z,y)), Fourier transformation and integral
power series expansion are used to obtain the initial
value of complex amplitude &(k,0). Then the function
b is discretized in k-space, being replaced by a set of
complex variables b, = b(kn}, m = 1,2,...N. Next,
all the coefficients V' and W are calculated and stored.
For the subsequent integraiion in time, the discretized
version of Eq. (1)

0B .
atm = 17mBm

i

N N N
+ D2 Viunpg BLByBy X
n=1 p=1 g=1
xei(mm+un —w,,-—wq)tAm+n_p_q
N N N N
35 DS W 515,85,
n=1p=1g¢=1r=1

% e:(wm+wn —Wp —Wy iy )tAm+'rL—p—q—f‘

N N N N
+ ZZZZWmmmB B3 BB, x
n—l p=1g=1r=1
xﬁl(w"‘+m"+wp_wq_w’)tAm+n+p7qA—rv {5)
is used, where B,;, = b, exp(—iwy,t), A is the Kro-
necker symbol (A, equals to unity when m = 0 and zero
otherwise). Finally, the obtained fluid state B{k,,,t),
m =1,2,... N is transformed back to physical variables.
The outlined scheme is proposed and thoroughly dis-
cussed in Annenkov and Shrira (1999), where some ex-
amples of its implementation are considered and various
impediments are addressed. In particular, the coeffi-
cients Vinppg and Wiyngge in Eq. (5) are actually four-
and five-dimensional sparse matrices (with a number of
symmetry properties), making the construction of an ef-
ficient vectorized algorithm to be quite a difficult task.
In order to overcome this problem, a special preprocess-
ing routine is included, so that the computed coefficients
are arranged into a number of long arrays, and thus all
the subsequent operations in Eq. {5) are vectorized. An-
other difficulty is that the initial discretization implicitly
assumes that the wave field at all moments of time is a
set of fixed d-pulses in the wavevector space,

N
)= bm(t)d
m=0

where k,,, are constants. However, in reality in course of
the field evolution other modes may start to grow from
ambient noise. To take this into account, a large num-
ber of *dormant’ modes is incorporated into the system:
while they do not affect the ‘active’ modes, they arc
checked for growth at each timestep using the linearized

(k - km)ﬁ (6}
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version of Eq. (5). If a dormant mode attains a certain
threshold amplitude, it is included into the nonlinear
scheme.

When the non-conservative effects are negligible for
the timescales under consideration, Eq. {5) is a Hamil-
tonian system and time integration is performed making
use of a symplectic algorithm, otherwise the system is in-
tegrated by the more conventional Runge-Kutta scheme.

All the details of the proposed algorithm are given in
Annenkov and Shrira (1999). Although it can be used
for numerical simulation of wave fields in a variety of
surface wave problems, in the present work, we concen-
trate on its applications to the problem of horse-shoe
patterns’ formation.

3 Instability of a single basic wave: evolution
scenaria

In this section we shall try to address a number of funda-
mental questions concerned with the formation of horse-
shoe patterns left unanswered by SBK.

As we already mentioned, the model of SBK is con-
fined to the consideration of only three harmonics in the
Zakharov equation. Although such an idealisation ap-
pears to be supported by the experimental evidence, it
does need thorough examination and theoretical justi-
fication. In reality, of course, neither the basic wave is
monochromatic, nor are the satellites. In this section we
will focus upon the issues related to the latter, i.e., we
will consider nonlinear evolution of many satellites gen-
erated by a single basic wave due to quintet interactions.
Among the fundamental open questions addressed are
those concerned with the mechanisms of mode selection
and the applicability of low-modal approach. (In the
present context, we will use the term low-modal as re-
ferring to multi-dimensional systems where only a few
modes are excited at a time in the process of nonlin-
ear instability.) Similar questions arising in view of the
neglect of non-monochromaticity of the basic wave are
considered in Sect. 5.

3.1 Three-wave model

First, the numerical method is applied to the simplest
three-wave system, in order to recall the basic properties
of this important model problem and to discuss in more
detail its main limitations.

Consider a system of the form (6) comprising only
three waves (N = 3) with the amplitudes a, b, ¢ and
wavevectors k,, ks, k. satisfying the condition

3k, = ky + ke, (7)
where o denotes the basic wave, b, ¢ are the satellites,
assumed initially small, k = {k;, k,). Without the loss
of generality

ke=(1,0), k=G +pa) ke= (3 —p~0)  (8)

3

It is implied that the waves a, b, ¢ form a nearly resonant
quintet, that is

3w, — wp — we < O(3). (9)

Thus, this combination of waves represenis the simplest
possible case of quintet interactions, and the fact that
the conservative version of its evolution in time is inte-
grable (Shemer and Stiassnie, 1985) makes it convenient
as a test of the algorithm described in the previous sec-
tion. Eq. (1) for this case takes the form

ay = —iu, + ive)a
~ 1 [Vaaaalal® + 2Vasas|0* + 2Vacacle/®}
— 3iWhcaaabc (a®)7,
—i{wy + ivy)b
~1 [2Vasaslal® + Visss bl + 2Viesclel?] b
~ iWheanac*a®,
o = —i(we +ive)e
1 [2Vacaclal® + 2Vhepel B2 + Viceelcf?]
~ iWpeaaad®*a?, (10)

by

System (10) depends on a number of coefficients and
three complex amplitudes specified by the initial con-
ditions, and the complete numerical investigation of its
dynamics goes beyond the scope of the present work.
For our purposes, we will consider only the subset of
initial conditions where the satellites are initially very
small. As a first meaningful example, the considera-
tion is confined to the case of symmetric satellites, i.e.,
k; = (3, q0), ke = (£, —q0), and non-conservative effects
are omitted. Then, the conservation of the transverse
component of momentum gives

|b]? — [el* = const.
Performing the transformation
a = Aexp(—ia), b= Bexp(—if), ¢ = Cexp(—1iv)
it is easy to see that the satellites with initially equal
amplitudes remain equatl all the time, i.e., B(f) = C(¢)

provided that B(0) = C(0). In this case, system (10)
reduces to the form

Ay = 3WicaaeA®B%sin @,
By = —WieaaA3Bsin®,
6, = §+PA*+ MB?
+ Wicaaa A(9B? — 24%) cos @, (11)

where all the variables are now real, and the two ampli-
tudes are linked by conservation of another component
of momentum,

A% + 3B = I = const,
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Fig. 1. Evolution of the system of three waves with amplitudes a, b, ¢ and wavevectors ko = (1,0), ky = (1.5,1.52), ke = (1.5,—-1.52),
obtained by the numerical solution of system (11). Dependence on time of the absolute values of the amplitudes A(t), B(t) and of the
phase ®(t) (see text for notation) is shown. Initial values are: A = 0.933 (corresponding to the initial steepness of the basic wave 0.21),

B=0014, ® = —n/2.

while the parameters are

6 = 3w, — wp— We,
P = 3Vasaa — 2Vabab - 2Vacaca
M = 6Vabab + 6Vacac — 4Vpcpe — Vbbbb - Vrccccv

The variable ® is the phase of the pair of satellites rel-
ative to the fundamental and is defined as

$=3a-8-7, (12)

from now on, for brevity, we will refer to this value (and
sometimes also to its sine) simply as ‘the phase’.

The specific form of a surface elevation pattern is
mainly prescribed by the value of ®. If —74+2mn < & <
0 + 27n, the patterns have their convex sides oriented
downwind, the best resemblance with the observed pat-
terns being at ® = —w/2 + 2wn. For simplicity we will
refer to such phases as negative and will omit the period
27n hereafter. Evidently, phases in therange0 < & < 7
correspond to the opposite orientation. However, as was
noted by SBK, Eqs. (11) form a reversible Hamiltonian
system, so that ® passes in a symmetric manner through
all its values. Thus, the system shows a variety of three-
dimensional patterns with no preference for orientation.
This means that a model of horse-shoe patterns cannot
be built upon the basis of such a conservative three-
wave system. SBK went on to incorporate small non-
conservative effects into system (11) and showed that
attractive equilibria with the required properties do ap-
pear.

Still, a closer inspection of this system is useful for fur-
ther progress in understanding. If the initial amplitudes

of the satellites are infinitesimal, then the trajectories of
system (11) are close to the separatrix originating and
ending at two stationary saddle points

2
B=0, A=A, <1>=<1>0:icos—1‘52LWIj%
For definiteness, and also because this ensures the max-
imal instability (see Stiassnie and Shemer, 1987), we
choose § = —PA%, and then &, = +7/2. An example
of a triad evolution for such a case is presented in Fig. 1,
for the initial value of phase ® equal to —7/2. The dy-
namics is periodic, with the recurrence period tending
to infinity when the initial satellite amplitude tends to
zero (Stiassnie and Shemer, 1987). The phase, rotating
counterclockwise, most of time stays close to ® = —n /2
(growth of satellites) or ® = 7 /2 (decay) with quite fast
transition between these values, zero phase correspond-
ing to the point of the deepest modulation. When the
satellites are small compared to the fundamental, all the
trajectories in (B, ®)-plane are in the vicinity of the sad-
dle points. Since the trajectories in the vicinity of the
saddle (B = 0, ® = —m/2) are divergent in B, there is
convergence of the trajectories in @, while in the neigh-
bourhood of the second saddle (B = 0, ® = 7/2) there is
convergence in B but divergence in ®. This implies that
if we perturb the system the trajectories corresponding
to growing satellites will tend to preserve their phase,
while those corresponding to decaying satellites will ex-
perience large variations of the phase, and thus, since
the system dynamics is very sensitive to the phase, be-
come unstable.
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Fig. 2. Evolution of the system of three waves with amplitudes a, b, ¢ and wavevectors k, = (1,0), ky = (1.5,1.52), ke = (1.5,—1.52),
obtained by the numerical solution of non-conservative system (13), with weak forcing of the basic wave T = 5 - 10~ 5w, and weak
dissipation of the satellites 'y = I'c = —5- 10 %wy. All the other parameters and initial values are as in Fig. 1.

These simple facts give insight into more complicated
situations. Although within the framework of Egs. (11)
the phase stays equal time in the vicinity of these points,
even a small perturbation can change the phase and thus
the whole system dynamics near the point ® = +x/2.
In other words, the long periods in the neighbourhood
of & = +7/2 and potential instability of these segments
of trajectories indicate a possible structural instability
of the three-wave system.

With the inclusion of small, in the above-mentioned
sense, non-conservative effects the evolution of the three-
wave system is controlled by (see SBK)

Ay = 3WicaaaAZB%sin® + T, A,
Bi = —WheaaaA®Bsin® +I'yB,
® = §+PA’+ MB?
+ Wheaaa A(9B? — 2A%) cos ®. (13)

where I'y = wy7,, [y = wpyp. For wind waves, it is nat-
ural to assume that I'; > 0, ', < 0 (weak generation of
the fundamental and weak dissipation of the satellites).
Note that if ', = I'y, then

(18% = 1ef*), = To (16 = 1)

that is, (|b*> ~ [c|?) decays exponentially with the rate
I'y, so that the transverse symmetry adopted in the
derivation of (13) is structurally stable. If we again
consider the dynamics of satellites on (B, ®)-plane as-
suming them small compared to the fundamental and
neglecting variations of the latter, the truncated system
(13) with the first equation for A omitted preserves the
similar two saddles. The typical evolution scenario for

initially small amplitudes of the satellites is portrayed
in Fig. 2. The evolution becomes slightly asymmetrical
since the growth of satellites is slower and their sub-
sequent decay is faster, as it follows straightforwardly
from the linearized version of (13). At the point of max-
imum, the phase is negative. This regime corresponds to
a limit cycle in the phase space of (13). Other more com-
plicated regimes, e.g., limit cycle with period doubling,
quadrupling, etc, are also possible but far less typical
(see Badulin and Shrira, 1999). The plot (Fig. 2), in
particular, illustrates the fact that there are still rela-
tively long periods when the phase stays close to the
potentially unstable value +#/2, suggesting that the
non-conservative three-wave system remains potentially
structurally unstable and thus might be too oversim-
plified to serve as a realistic model of the formation of
horse-shoe patterns.

3.2 Multiple class II satellites

In reality, a fundamental wave of finite amplitude pos-
sesses finite size domains of instability with respect to
four- and five-wave processes in the wavevector space
(see McLean, 1982; Craik, 1985, Fig. 6.6), so that the
simultaneous growth of many pairs of satellites (strictly
speaking, continuum of satellites) should occur. Non-
linear dynamics of such a continuum of linearly growing
satellites is simulated within the framework of the dis-
cretized system (5) by a large number of unstable satel-
lites. Since our primary interest is in three-dimensional
dynamics, in this section we focus upon the situations
where the satellites were taken in the five-wave (class
IT) instability domain and the stable part of the k-plane
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Fig. 3. Evolution of the system of 85 waves obtained by the numerical solution of the conservative Zakharov equation. The system consists
of the basic wave, with initial amplitude A(0) = 0.755 (corresponding to steepness 0.17), and 42 pairs of initially small (B; (0) = 0.014,
j =1,2,...,84) satellites, chosen randomly in k-plane according to condition (14). For three most unstable pairs (plotted with bold
curves and numbered 1, 2, 3 in the amplitude plot}), evolution of phase is shown.

only. The effect of finite bandwidth of the basic wave
spectrum and, in particular, role of the Benjamin-Feir
instability is briefly addressed in Sect. 5.

For the numerical study, a system comprising a basic
wave with wavevector kg = (1,0) and N pairs of oblique
satellites with wavevectors k; ;11 = (£ £p;,+¢;), j =
1,2,...,N was selected. In order to represent both
symmetric (with respect to k,-axis) and non-symmetric
oblique harmonics within and in the neighbourhood of
the instability domain, condition

An example of the conservative evolution of the sys-
tem is presented in Fig. 3. The plot demonstrates two
distinct features of the class Il instability with respect to
multiple satellites. First, most of the modes located in
the linear instability domain do not attain considerable
amplitudes; instead, their growth is quickly arrested,
resulting in stagnation at a quite low level. Only a few
modes at each moment can grow inattenuated, though
this behaviour is displayed by different modes at differ-
ent moments. Second, the evolution of the phases of

N these growing modes differs noticeably from that of the

p; =0, 1<5< o isolated three-wave system. In particular, it becomes
N essentially asymmetric. While a mode is growing, its

1<p;i<2 pi#0, 7 < J<N (14) phase keeps close to —m/2, as in the three-mode case; the
' maximum of the satellite amplitude again corresponds

1.48<q; <1.68 1<j<N to zero phase, but soon after reaching the maximum of

was imposed; in the experiments discussed in this sec-
tion, N = 42. Three different values for the initial steep-
ness of the fundamental (0.13, 0.17 and 0.21) were used.
The satellites were put initially small, with the ampli-
tudes of the order O(10~?) relative to the amplitude of
the fundamental; no essential dependence on the exact
value of satellites’ initial amplitude was revealed. Initial
phases of all the satellites were again prescribed at the
value most favourable for growth (—=/2). Evolution in
time was traced for about 103 periods of the basic wave.
We again emphasize that at this stage the Benjamin-Feir
instability was excluded.

the amplitude, the phase typically starts to change much
more rapidly, while the amplitude quickly decreases and
tends to stagnate at a low level. It can be noticed, how-
ever, that the described behaviour is not always well
pronounced for all growing pairs during the course of the
conservative evolution, thus allowing one to consider it
only as a tendency.

Meanwhile, in the more realistic weakly non-conser-
vative case (Fig. 4), these features are much better pro-
nounced. The phases of a few growing satellites are close
to —m/2 during their growth and near the maximum,
while during the decay the phases rapidly change. For
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conservative effects. The system is the same as in Fig. 3, with weak forcing for the basic wave and weak dissipation for the satellites

(To=5-10"%wg, T'; = =5 -10"%w;, = 1,2,..., N).

somewhat larger initial basic wave steepness (Fig. 5),
after the initial growth of all linearly unstable modes,
only one pair of satellites attains considerable ampli-
tude, while its phase remains in the neighbourhood of
—m/2 nearly all the time, except for the brief excursion
soon after the maximum of amplitude. Overall, the evo-
lution of the satellites can be summarized as follows:

(i) at each particular moment mazimum one pair is
large, though at different moments different modes
may prevail;

(ii) when a satellite pair starts to grow, its phase is

set close to —7/2 and remains in its vicinity al-

most until the maximum of the satellite amplitude
is reached; at the maximum of the amplitude the
phase is still negative;

after the mode passes the point of its maximum am-
plitude, the phase begins to change (rotate) rapidly;

(iii)

(iv)

if a satellite decays or does not grow, its phase ro-
tates passing quickly through all possible values.

These features of the behaviour were observed in the
large number of runs of the numerical model.

3.3 Two unstable pairs

The non-trivial dynamics demonstrated above for the
case of the basic wave instability with respect to multi-
ple class II satellites requires a more profound study. For

this purpose, consider first, as the simplest non-trivial
model, a five-wave system with just two pairs of satel-
lites, using the notation (ks, k.) for the first pair and
(kq, ke) for the second one, so that

3ka:kb+kc:kd+ke>

and the frequency mismatches 3w, — wp — w, and 3w, —
wg — we are both of the order of €3. Again, it is conve-
nient to assume that

ka = (LO),
3 3

kb:(§+P1:Q1)7 kc:(i_pla_ql)v (15)
3 3

kg = (5 +p2,q2), ke = (5 - P2, —q2)

Introducing, as above, the transformation
Aexp(—ia),
Bexp(-if1)
D exp(—ifs), e = D exp(—ivyz),

a
b

, C= Bexp(—i71)7

we arrive at the system of equations of the form

A = IWieeaA2B%sin @,
+ 3Wieana A2D? sin &, + I, A,
B, = —WicaaaA2Bsin®;

+ 2Vieqe BD? sin ¥ + Iy B,
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Fig. 5. As in Fig. 4, for larger initial steepness of the basic wave (A(0) = 0.933, corresponding to steepness 0.21).

Dy = —WaieaaaA3Dsin &,
— 2Vheqe DB?sin ¥ + 'y D,

&, = 6.+ P A? + M B% + (N, — 4Vjeqe cos ¥) D?
+ Wheaaa A(9B? — 2A?) cos @,
+ W genaa AD? cos @3,

&y = 0y + PaA%? + MyD? + (N — 4Veqe cos ¥) B2
+ Wieaaa A(9D? — 2A%) cos @,
+ 9Wheaaa AB? cos @1,

U, = 03+ PsA? + (N3 — 4Vye4e cos U)B?
+ (N4 4 4Vjcqe cos ¥)D?
+ 2A4°%(Wheana €08 @1 — Waeaaa cos @2),  (16)

where

¢ = 3a-F—m, P2=3a-02—7,

¥ = fi+tm—Ba—,

01 = 3wy — wp —We, 02 = 3w, — Wy — We,

03 = Wp+we—wd— We,

and the coefficients are

P. = 3Vasaa — 2Vabas — 2Vacacs

My = 6Vipas + 6Vacac
—4Viebe — Vibss — Vecee

Ni = 6Vadad +6Vaeqe

— 2Viabd — 2Viebe — 2Veded — 2Veece- (17)

Expressions for P», M2, Ns can be obtained in the same
way, transposing b <> d and ¢ < e. Expressions for

coefficients in the equation for ¥ will not be used and
are omitted.

As previously, the initial values of ®; and ®, are as-
sumed equal to —m/2, corresponding to the maximal
instability rate. Since both pairs lie in the instability do-
main, it is obvious that the evolution begins with their
simultaneous growth, as predicted by the linear theory.
As the satellites attain a cértain amplitude (still much
smaller than that of the basic wave), nonlinear effects
become significant, and the further evolution depends
on specific combinations of parameters. The main con-
clusion is that the presence of extra pairs of satellites
of initially small (but not infinitesimal) amplitudes can
change significantly the dynamics of an isolated triad.

Simulations show that in most cases the simultaneous
growth of both pairs up to considerable values of ampli-
tude does not occur. Instead, the modes grow in alter-
nance (Fig. 6): after the initial linear stage of instabil-
ity one of harmonics stagnates at a quite low amplitude
level, while the other one continues to grow, attains con-
siderable amplitude and decays similar to the evolution
of the three-wave system. At this stage, the presence
of another pair of harmonics does not seem to affect
the system behaviour at all, except for a rather remark-
able fact that the maximum of amplitude of the growing
pair in the presence of the stagnating one reaches higher
values than in its absence. Further on, the process is ap-
proximately repeated with another pair of satellites, so
that most of time the evolution appears to be close to
that of the three-wave system.
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Fig. 6. Example of the regime of evolution of five-wave system (15). Evolution of the system of five waves with amplitudes a, b, ¢, d,
e and wavevectors ko = (1,0), kp, = (1.5,1.542), k. = (1.5, —1.542), kg = (1.5, ~1.555), ke = (1.5, —1.555) is shown. Dependence on
time of the absolute values of all amplitudes (above) and of the phases ®1(t), ®2(t) (below) is plotted. Non-conservative effects are not
included. Initial values are: A = 0.933 (corresponding to the initial steepness of the basic wave 0.21), B = D = 0.014, &; = &3 = —r/2.
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Fig. 7. Another example of the regime of evolution of five-wave system (15). Wavevectors are chosen as k, = (1,0), k, = (1.5,1.52),
ke = (1.5, -1.52), kg = (1.5, —1.55),. ke = (1.5, —1.55), all the other parameters are as in Fig. 6.
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Fig. 8. Third example of the regime of evolution of five-wave system (15). Wavevectors are chosen as ko = (1,0), ky = (1.5,1.52),
ke = (1.5, -1.52), kg = (1.5, -1.53), ke = (1.5, —1.53), all the other parameters are as in Fig. 6.

This scenario of evolution normally takes place when
both pairs are close to the maximum of linear instability
(see Sect. 4). Meanwhile, if one of the pairs is charac-
terized by somewhat higher linear growth rate, it can
suppress the growth of another pair nearly completely
(Fig. 7).

In an exceptional case when all the satellites lie at the
margin of the linear instability domain corresponding
to the lowest values of the transverse wavenumber g,
where the growth rates are relatively small, the third
possible scenario is observed (Fig. 8). Both pairs grow
simultaneously and both attain higher amplitudes than
in the absence of each other.

3.4 Summary and discussion

We will now summarize the results of simulations re-
ferring to the instability of a basic wave with respect
to many pairs of oblique initially small satellites. While
three-wave systems, with small non-conservative effects,
exhibit nearly symmetric behaviour with respect to dif-
ferent values of phase, inclusion of one or more addi-
tional pairs of satellites drastically enhances the asym-
metry. The phase of a satellite during its growth and
near the maximum of amplitude remains close to —m/2;
the phase of the decaying one in most cases becomes
indeterminate, especially under the presence of small
dissipation effects.

The important role of dissipation requires some spe-

cial comments. First, the dissipation is essential in the
initial selection, since only the modes with maximal
growth rates and initial phases close to —7/2 can sur-
vive. Second, the presence of dissipation results in shift-
ing the phase at the point of maximal amplitude of
the satellite: the phase remiains negative at the max-
imum and in its neighbourhood. Thus, the phases of
modes whose amplitudes exceed a certain threshold are
always negative, and therefore the wave fronts are ori-
ented forward. Such sporadically appearing and disap-
pearing surface patterns closely resemble the observed
horse-shoe ones. The main contribution to the phase
and, thus, to the front curvature asymmetry comes from
the apparent instability of the trajectories for negative
phases, as discussed earlier.

The most nontrivial fact established numerically is
that the evolution of a multi-dimensional system re-
mains effectively low-dimensional. This is quantitative-
ly characterized in the histograms in Figs. 9, 10 and
merits some discussion. First we emphasize that the
observed low-dimensionality of dynamics is partly due
to our very special choice of variables which excludes all
‘slave’ modes retaining only true active modes. The sec-
ond factor, expected to contribute to the low-dimension-
ality, is the phase volume contraction typical of dissipa-
tive systems. Indeed, it is well known that a nonlinear
system characterized at an initial moment by a certain
finite number of excited modes can evolve in accordance
with two opposite scenaria. If nonlinearity prevails (in
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Fig. 9. Percentage of time (vertical axis), during which the spec-
ified number of grown satellites (horizontal axis) is present in the
conservative system. All the parameters of the systemn are the
same as in Fig. 3, except for the basic wave steepness (three dif-
ferent values are used). Evolution was traced up to 10000 time
units (inverse values of the basic wave frequency). For the purpose
of these histograms, a satellite was considered grown if its energy
exceeded a certain level relative to the total energy of the system:
2% (light bars), 4% (medium bars), 6% (dark bars).
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a certain sense) over dissipative effects, the number of
excited modes of the system tends to grow with time, in
the opposite limit the effective number of active modes
in the system decreases and the system often falls into
a low-modal attractor. At first sight the latter scenario
seems to be the case. It is easy to find the contraction
rate v of the phase volume

N N
V:Fa+g Fbj-f-g ch
j=1 Jj=1

and it is indeed negative when the integral dissipation
N N
> Ts, + > T¢;| exceeds the input I';. This is the
j=1 j=1

case for all our simulations when non-conservative ef-
fects were taken into account. However, the distinct
tendency towards low-dimensionalisation of dynamics is
revealed even in the case of purely Hamiltonian dynam-
ics, prompting to conclude that non-conservative effects
are of secondary importance in this context. Though
this seems to contradict the phase volume preservation,
the contraction of the phase volume in physically impor-
tant segments of the phase space is exactly compensated
by its expansion in other segments. For instance, con-
finement of the phases of the growing and grown modes
is accompanied by the rapid phase rotation of all other
modes. Strictly speaking, in the purely conservative case
the number of modes in the system actually grows, in
particular, due to neglected here quartet interactions.
However, this growth occurs in the subspace of the phase
space of no physical interest in the present context. If
one focuses attention on the subspace of interest, say the
modes with amplitudes exceeding a certain small thresh-
old, the rest of the phase space will provide a kind of
nonlinear dissipation for the chosen subspace.

Turning back to the observed phenomena, we note
that in most cases, provided that weak dissipation is
taken into account, we have seen that the multiple satel-
lite system most of the time can be considered as a per-
turbation of a certain three-wave system (different at
different moments): at each moment only one pair of
satellites can attain considerable amplitude, while all
the other ones are small and can be treated as a pertur-
bation. This raises hope to build a plausible model of the
instability of a basic wave with respect to a large number
of oblique satellites on the basis of matched asymptotic
expansions. Construction of such a theory lies beyond
the scope of the present work; neverthieless, in the next
section we will discuss a model of the selection mecha-
nism, based on this idea.

4 Selection mechanism

Numerical results discussed in the previous section sug-
gest that there exists a certain nonlinear mechanism re-
sponsible for the selection of modes and the eventual
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Fig. 10. Percentage of time (vertical axis), during which the
specified number of grown satellites (horizontal axis) is present in
the non-conservative system. All the parameters of the system
(including the amount of forcing and dissipation) are the same as
in Fig. 4, but three different values of the basic wave steepness are
used. Evolution was traced up to 10000 time units (inverse values
of the basic wave frequency). A satellite was considered grown if
its energy exceeded a certain level relative to the total energy of
the system: 2% (light bars), 4% (medium bars), 6% (dark bars).
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formation of horse-shoe patterns that can be revealed
by an analysis of the simplest low-modal systems. For
this purpose, we first consider some basic facts referring
to the class II instability in a conservative system.

A monochromatic wave of amplitude a and wavevec-
tor k, = (1,0) is known to be unstable with respect to
the pairs of oblique satellites with wavevectors k;, k.
satisfying (8), if a certain condition on p, ¢ implied by
(9) is fulfilled. Within the framework of the Zakharov
equation, the corresponding condition can be easily ob-
tained in an explicit form. Indeed, linearizing (10) and
considering the satellites as perturbations, a pair of de-
coupled linear equations for each pair readily follows

iI;t = Wieaaa@ & exp (—iot) + ’ybb

c*
n _a3 18
16 = Whcaaa@®b* exp (—iot) + v.¢, (18)
where
0= 3w, — wp — we + (3Vaaaa — 2Vabap — 2Vacac)|a|2;

a(0), b=bexp(~i [wb
= cexp (—1 [we — 2Vacac@?] ) .

o
I

2Vababd2] t) ’

0>

Condition of instability has the form

Re (\/4 beaaal®l® = (0 —i(m — %))2) >
= (% + 7). (19)

An example of the instability domain for v, = v, =
—5-10* (the standard value for our simulations) and
wave steepness 0.21 is drawn in Fig. 11. For comparison,
the instability domain for purely conservative case is also
given (Fig. 12). According to such a linearized theory,
all the initially small oblique satellites in the instability
domain grow exponentially, with the rate

Re <\/4 beaaa|l

Above a certain threshold of satellites’ amplitude, still
much smaller than the amplitude of the basic wave, their
evolution becomes nonlinear and different pairs begin to
interact. If only one pair is present, its evolution is gov-
erned by full set (11); the satellites grow as long as sine
of the phase is negative, pass the maximum of ampli-
tude corresponding to zero phase and then decay. The
process is recurrent, linearized system (18) being valid
as an approximation on each cycle for the exponential
‘tails’ in the neighbourhood of the point of smallest am-
plitude of the satellites. A complete analytical solution
to (11) is available but rather bulky. Analysis of the
most interesting case in the present context, when the
initial amplitude of the satellites is close to zero and can
be considered as a small parameter, is performed in the
Appendix.

The presence of just one extra pair makes the prob-
lem much more difficult. The equations are not inte-
grable any more and even the construction of an asymp-
totic solution is not straightforward. However, as noted

(o —i(m— %»2) —
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Fig. 11. Instability domain in k-plane for system (18). Growth
rates for initial steepness of the basic wave 0.21 are shown. Small
dissipation for the satellites is included (v, = v, = =5 - 10_4).
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Fig. 12. Instability domain in k-plane for system (18), with
Yy = Ye = 0, for initial steepness 0.21.
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above, the solution to system (16) obtained numerically
typically shows a relatively simple scenario of evolution
(Figs. 6, 7) that suggests to consider the problem asymp-
totically as, in the zeroth order, an alternation of two
three-wave systems. In particular, at the initial stage of
the evolution linear regime is realized. Then, at the mo-
ment when the nonlinear effects of interaction between
the satellites become significant, selection of modes oc-
curs, so that one pair of satellites continues to grow,
while the other one slowly decays. We emphasize that
this selection of pairs occurs at the level of satellite am-
plitudes much smaller than the amplitude of the basic
wave. This relative smallness of the satellite amplitude
at this crucial stage will be utilized as the small pa-
rameter for the construction of an asymptotic descrip-
tion of the selection process. The subsequent growth
of the selected pair approximately follows the evolution
of a three-wave system, since the influence of the other
pair on the system dynamics at this stage is negligi-
ble, to a leading order. After passing the maximum of
modulation, the amplitudes of both pairs again become
comparable, for another selection, and then the process
approximately repeats.

In principle, an approximate solution to system (16)
can be obtained in this way by constructing the asymp-
totic solution for each stage of the evolution and match-
ing the resulting expansions. Since our primary interest
lies in the selection process, consider (16) for the stage
B ~ D <« A with the nonlinear interactions among the
satellites taken into account.

First, it is helpful to make the scaling involved more
explicit. The Zakharov equation (16), derived as a re-
sult of expansion in powers of wave steepness assumed to
be O(e), is nevertheless written in the traditional nor-
malization where the amplitude of the basic wave be-
comes O(1), while the time scale is linked to the order
Wicasa = Waeaaa =~ O(€®). It makes sense to assume
that the two pairs lie close to the point of the maxi-
mum linear growth rate in k-plane, so that one may
put Wicaoa = Waeaaa = W. All the other coefficients
(namely, 6;, Pj, M;, N;, where j = 1,2) are of the or-
der €%, i.e., one order of magnitude larger. However, in
virtue of condition (19), the total initial frequency mis-
match with the nonlinear frequency shifts caused by the
basic wave, &; + P;A(0)? is of the order of the largest
term due to the quintet interaction, i.e., O(g?). Intro-
ducing 7 = Wt as a slow timescale, the typical ratio
of amplitudes of satellites and the fundamental at the
point where selection occurs B/A ~ D/A = p as a
new small parameter and M; = eM; /W, N; = eN; /W,
P; = eP;/W as new O(1) coefficients, we can now ex-
plicitly present the set (16) in terms of two small pa-
rameters 4 and € retaining only the leading order terms
in u?:

A, = 3A°B%sin®, + 342D?sin ¥, + ', 4,
B, = —-A%Bsin®, +1,B
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D, = —A®Dsin®, +IyD
& _ [(51 + P1A02] ,uzpl(Az - AOZ)
ir = +
W €
2]\”/- D2
+ NTI — 243 cos ¥4,
5. - [+ PA’]  pPP(A% - 4
2r = +
w €
2N R2
+ # — 243 cos ®,, (20)

where Ay = A(0), T =T/W.

System (20) enables one to understand the mechanism
of the selection process. At the initial stage of evolution,
when B?/A? « p and D?/A? < p, the linear regime is
realized: both pairs of satellites grow, provided that ®;
and @, are both negative. When the satellites attain
a certain threshold amplitude, the second terms in the
right-hand sides of the phase equations in (20) become of
order O(1). The signs of these frequency-shifting terms
due to the presence of other pair of satellites are such
that each pair tends to push the phase of the other pair
from the value which is favourable for the growth of am-
plitude, until one of the phases starts to rotate, prevent-
ing the subsequent growth of the corresponding pair.
Afterwards, only one of the pairs grows, while the other
one, with the rapidly rotating phase, is decaying. The
presence of the small parameter in the denominator of
the frequency-shifting terms specifies the characteristic
threshold level of the satellite amplitude where the se-
lection occurs: B ~ D ~ /¢A. One can describe this
mechanism as the ‘rivalry’ between the pairs, so that
each one, while growing, pushes the other one out of the
resonance with the fundamental via the frequency shift.

We already mentioned the interesting effect exhibited
by the simulations: the maximal amplitude of the re-
maining pair noticeably ezceeds that of the same pair
in the isolated three-wave system. In other words, the
presence of the other pair, despite the fact that it re-
mains small, acts like a catalyst enhancing the energy
exchange between the growing satellite and the funda-
mental. This fact can be easily explained by compar-
ison of (20) with the single-pair system. For example,
assuming that the first pair is selected for growth and
the second one damped, the system for the first pair in
the absence of the second one has the form of the set
(13). For the near-resonance d; + P; A2 = O(g?), while
the two constituents in this sum are an order of mag-
nitude larger and therefore should have opposite signs,
81 > 0, P, < 0. The growth of B in (13) is thus con-
trolled by the change of the amplitude of the fundamen-
tal: when A diminishes, the variation of the frequency
shift P; (A% — A2)/W becomes large and positive, lead-
ing to counterclockwise rotation of phase. Meanwhile,
in the corresponding phase equation in (20} N; < 0, so
that the term N;D? is always negative, and thus tends
to compensate the effect of the frequency shift for this
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pair, while the similar term in the other phase equation
drives the phase of the second pair out of equilibrium.
Hence, the effect tends to stabilize the phase of the first
one at the value that is favourable for growth, eventually
resulting in the increase of the maximal amplitude.

In order to build a quantitative model of the selection
process, one needs to integrate (20). Though this is not
possible in general case, there is an integrable class of
situations of interest corresponding to the case which
we refer to as of strong dissipation: the damping nearly
compensates the maximal growth rate due to the con-
servative class II instability but does not exceed it, i.e.,
the resulting actual growth rate is much smaller than
O(T,4) or O(W)!. Then the growth rate of the ampli-
tudes is an order of magnitude smaller than the typical
rate of change for the phases, enabling us to obtain the
explicit solution for the phases in the form

sin®, =
V=R Ry sinh [V=RiRa(t + C)]
R; + Ry — (R1 — Ry) cosh [/—RiRa(t + )’
Ry =6, + PLA? + N;D* — WA(9B? — 24?),
Ry = 6, + PLA? + N\D? + WA(9B? — 24%), (21)

where C is a constant determined from the initial con-
dition for the phase. The slow time dependence en-
ters through the amplitudes A, B and D. According to
Eq. (21), the behaviour of sin ®; depends on the signs
of R1 and Rz. If

|61 + PLA® + N\ D?| < WA 9B - 247, (22)

then Ry R is negative, and sin ®; is a hyperbolic func-
tion of time; in the opposite case, sin ®; oscillates; when
R R, = 0, ®, passes through zero. Taking into account
the signs of the coefficients, we obtain from (22)

& +PAZ-WA (2A2 - 932)
—N,
6 + PLA? + WA (24% — 9B?)
—N, ’
and, in the same way, the condition for ®,,

8y + P,A? — WA (24% — 9D?)
—N,
8y + P A% + WA (242 — 9D?)
—N, ’

<D?<

(23)

<B’<

(24)

Inequalities (23), (24) constitute the necessary condition
for the growth of B and D respectively. Consider, for
instance, (23). At the initial moment, the left boundary
of the interval is negative, provided the pair of satellites
with the amplitude B lies in the instability domain (cf.
(19)), while the right boundary is positive. Since ini-
tially D is close to zero, inequality (23) is satisfied. The

INote that this regime still does not violate the Hamiltonian
structure to a leading order.
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same conclusion holds for another pair. Consequently,
for a certain period of time ®, and @5 both remain in the
lower half-plane; this means the simultaneous growth of
B and D. If, in this process, one of the right inequali-
ties in (23), (24) breaks, sine of &, or &, respectively,
starts to oscillate, and the further growth of the corre-
sponding pair of satellites is suppressed. On the other
hand, breaking of the left inequality in (23) or (24) cor-
responds to the limit of the amplitude growth. For in-
stance, provided that the right inequality in (23) holds,
the amplitude B grows as long as

d+ PA? — WA (242 —~ 9B?
1+ 15 N( )<D2,
—iVq

so that, as noted above, the presence of small D enlarges
the maximal amplitude for B,

If ; + P1A2 and &, + P, A2 are both large, neither
B nor D can break the right inequality in (23), (24).
This is a rather exceptional case, possible only near the
boundary of the instability domain with the smallest
g. Then, the selection mechanism does not work, but
instead, the ‘mutual instability enhancement’ scenario
(ef. Fig. 8) is realized: despite the fact that the linear
instability rate is small, both pairs eventually grow to
considerable amplitudes.

Solution (21) stands for the model of the selection pro-
cess for the case when dissipation is strong, in the sense
specified above. The case of smaller dissipation is not
tractable analytically; however, numerical experiments
demonstrate that the above description of the selection
mechanism remains qualitatively valid.

Thus, out of two pairs of satellites present in the sys-
tem, normally only one pair grows to considerable ampli-
tude, according to the described mechanism. Certainly,
it would be important to have the possibility to deter-
mine a priori, in each case, which pair out of two given
ones is selected. A complete answer to this question
is beyond the scope of the present work; however, it is
possible to list some of the factors acting in favour of a
given pair. In-particular, a pair of satellites has more
chances to be selected if;

(a) the initial value of its phase is close to —w/2,

(b) the pair lies close to the point of maximal linear
growth rate,

(¢} coefficient Ny is small,
(d) nonlinear frequency mismatch is initially positive.

In general, these factors are contradictory; for instance,
(b) tends to favour symmetric pairs (with p = 0, see
(8)), while (c} sets preference for p close to f, etc. Nu-
merical experiments show in most cases the more or less
clear preference for the symmetric pairs in the vicinity
of the maximal linear instability point; the same seems
to be demonstrated by observations. However, in wave
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tank experiments, where the transverse length scale is
prescribed by the tank width, the situation might be
different.

Turning back to our main subject, we can now de-
scribe the process of the formation of horse-shoe pat-
terns. Although at the initial stage of instability devel-
opment, a large number of pairs of sateilites grows, each
of the pairs tends to destabilize the phases of all the
other pairs and thus to suppress their further growth,
so that eventually only a few pairs of satellites {(in most
cases, just one pair) survive and can attain considerable
amplitudes. In course of the development of the insta-
bility, the phases of the growing pairs are negative, typ-
ically close to —w /2, corresponding to the existence on
the free surface of downwind oriented horse-shoe pat-
terns, while the phases of all the other pairs rapidly
change. Soon after passing the maximum of modula-
tion, for a short period of time the phases of the grown
satellites are inverted, but then a number of other satel-
lites starts to develop, forcing the phases of the decaying
waves to rotate. After that, the nonlinear mechanism se-
lects a new pair for growth, and the process is reiterated.

5 Effects due to the finite width of the spec-
trum of the basic wave

So far, we have based our analysis on the assumption
that the wave field consists of a finite set of monochro-
matic waves represented by a number of d-pulses in
wavevector space [Cf. (6)]. It is obvious, however, that
an actual wave field is continuous, so that the consid-
eration of the process of interaction of monochromatic
waves should be regarded as an approximation to the
interaction of finite bandwidth wavepackets. In partic-
ular, the spectrum bandwidth of the basic wave, gen-
erated either by wind or by wavemaker, cannot be less
than e. A detailed study of the effects due to the fi-
nite bandwidth of this spectrum represents a separate
problem which would deserve a special study. The most
important effect in this respect is clearly the presence
of the modulational (Benjamin—Feir) instability of the
fundamental wavepacket. Does the presence of much
faster (O(g)™?) and more energetic four-wave (class I)
processes preserve intact the evolution scenaria estab-
lished above?

As a first approximation, the effect of the modula-
tional instability can be modeled just by adding of one or
more pairs of additional initially small satellites k;4+ =
(I1+4;0),7=12,..., where ky = (1,0) is the basic
wave central wavevector, A; lie within the domain of
the Benjamin-Feir instability (see, e.g. Craik, 1985).

Based on numerous simulations in wide range of the
parameters involved (two samples are given in Figs. 13,
14) we conclude that qualitatively, the account of the
finite bandwidth of the basic wave does not alter the

already established scenaria of field evolution on £~*-
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Fig. 13. Evolution of the system of 87 waves obtained by the numerical solution of the Zakharov equation perturbed by small non-
conservative effects. The system consists of the basic wave, with initial amplitude A(0) = 0.755 (corresponding to steepness 0.17), 42
pairs of initially small (B;(0) = 0.014, j = 1,2,...,84) five-wave satellites (the same set was used in Sect. 3, Figs. 3,4), and one pair
of four-wave (Benjamin-Feir) satellites (k; = (1 £ 0.27,0)), with the same initial amplitude. Weak forcing for the basic wave and weak
dissipation for five-wave satellites (Tg = 5 - 10~ Swg, Fj=-5- 10‘4wj, j=1,2,...,84) are included. For two most unstable five-wave
pairs (plotted with bold curves and numbered 1, 2 in the amplitude plot), evolution of phase is shown.
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Fig. 13, for larger initial steepness of the basic wave (A(0) = 0.933, corresponding to steepness 0.21).
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Fig. 15. Plot of the free surface for the wave field evolution shown in Fig. 13, for t = l300w0_1. Shape of the wave crests is visualized

with a few contour lines beneath the surface.

timescale, although quantitatively the effect could be
quite noticeable (Cf. Figs. 4 and 13, 5 and 14, respec-
tively). To illustrate this point further, instantaneous
plots of the free surface of the wave field evolution for
the examples plotted in Fig. 10 are shown in Figs. 15,
16, where both two-dimensional modulations and three-
dimensional horse-shoe patterns are present.

It has been previously suggested by Su and Green
(1984) that the class I processes, which have shorter
characteristic time of development, may trigger the class
IT instability. Our results do not support this hypoth-
esis. Moreover, in accordance with the earlier simula-
tions of Stiassnie and Shemer (1987), the presence of
the class I instability imposing fast oscillations to the
amplitudes and phases of the fundamental and the class
II satellites appears to inhibit the five-wave processes.
The large number of runs of the numerical model for
various values of the basic wave steepness and dissipa-
tion/generation ratio supported this conclusion. Qual-
itatively this fact can be easily explained, averaging,
by virtue of the existing separation of scales, the equa-
tions over fast Benjamin-Feir oscillations: the ‘averaged
phase’ of the satellite will always differ from the optimal
one —7 /2. The more intense is the fast modulation, the
larger is the deviation from the optimal value and, thus,
the less are the growth rates. (In the absence of fast
oscillations the phase of the growing satellites is auto-
matically set at the optimal value.) However, in order

to specify quantitatively how the account of Benjamin-.

Feir modulation inhibits the class II processes, a spe-
cial study is necessary which is not in the scope of the
present work.

6 Discussion

We will now summarize the main results of the paper
and discuss their implications and the approximations
involved.

Numerical and analytical consideration of a gravity
wave instability with respect to four- and five-wave pro-
cesses has enabled us to establish a number of properties
referring to the formation of three-dimensional patterns
on the free surface.

We have shown that nonlinear evolution of five-wave
instability in the generic case can be adequately repre-
sented as a low-dimensional process. Though at a linear
stage all linearly unstable harmonics do grow simulta-
neously, most of them cannot attain considerable am-
plitudes. Instead, at a nonlinear stage the subsequent
growth is arrested by the selection mechanism: nonlin-
ear frequency shifts lead in most cases to the compe-
tition among the satellites, so that they tend to push
each other out of the resonance zone. Since this zone
is quite narrow, eventually only a small number (typi-
cally, a single pair) of satellites survives and remains the
prevailing one, at least during one cycle of the satellite
growth and decay (modulation cycle).

Existence of this mechanism leads to several impor-
tant consequences. First, the developed class II instabil-
ity remains essentially low-modal, at least at character-
istic times of the order of modulation cycle. This greatly
simplifies the theoretical study of the five-wave decay of
a basic wave, being also in agreement with observations
(Collard and Caulliez, 1999). Second, the harmonics
pushed out by a growing satellite at some value of their
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Fig. 16. Plot of the free surface for the wave field evolution shown in Fig. 13, for ¢t = 2000w51.

amplitude (that can be easily estimated) take part in
the formation of noise, thus allowing one to introduce
the concept of natural noise level. Third, the mecha-
nism controls the effective phase of a growing satellite
in such a way that it remains negative for growing and
grown satellites and is indeterminate (rapidly changing)
for decaying ones. This gives a scenario for the emer-
gence of horse-shoe patterns on the water surface: at
each moment a certain pair of harmonics grows with a
fixed phase corresponding to downwind orientation of
the patterns, while the phases of all the other satellites
are rapidly rotating. According to this scenario, the for-
mation of patterns occurs rather rapidly, with the char-
acteristic time of the class I instability, and each partic-
ular ‘individual modulation’ exists for a about the same
characteristic time period. This correctly describes the
character of the observed sporadic patterns. Moreover,
the scenario explains the long standing enigmatic fact
of horse-shoe pattern observations even in tanks with-
out wind: since the size of the installations is finite,
just a fraction of the first modulation cycle is typically
available. Furthermore, in full agreement with the tank
observations, the mechanism works only for the steep-
ness of the basic' wave exceeding a certain level. Such a
threshold character of the process is clearly attributed
to the rate of dissipation: since the inviscid growth rate
of the class II instability is proportional to €%, too small
steepness of the fundamental is unable to provide the
growth rate sufficient to overcome the dissipation. It is
important to note, however, that apart from this thresh-
old, no essential qualitative dependence of dynamics on
the amplitude of the basic wave was noticed.

The role of dissipation is more diverse. It creates
the important phase shift of grown modes, making the
phases at the maxima of the satellites amplitude neg-
ative, and, besides that, enhances the phase dynamics
asymmetry by prolonging the growth and shortening the
decay of satellites. However, it is important to note that
steep gravity waves under the action of wind are likely
to develop breakers which obviously require much more
sophisticated description of nonlinear non-conservative
mechanisms compared to the extremely simple gener-
ation/dissipation model used in this work. Account of
nonlinear non-conservative mechanisms (yet to be elabo-
rated) will certainly enrich the dynamics. Nevertheless,
we expect that the basic physics established here will
remain qualitatively intact.

Thus, the simple model considered gives the qualita-
tive description of the sporadic horse-shoe phenomeron
which is consistent with the available observations.

The model seems to be especially adequate for lab-
oratory wind-wave experiments, where wavemaker pro-
duces a single almost monochromatic wave and other
external factors are excluded, so that the wave propa-
gates in nearly homogeneous low-level noise. In natural
conditions, however, such a quasimonochromatic repre-
sentation is possible for swell only, while wind waves
always have a certain spectral bandwidth. When the
bandwidth is of the order of wave steepness ¢, the pres-
ence of stronger and faster Benjamin-Feir modulations
of the basic wave should be taken into account for the
consideration of slower dynamics due to quintet interac-
tions. Although we have demonstrated the principal fact
of the absence of qualitative changes to the considered
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three-dimensional processes, the detailed consideration
of the influence of quartet interactions was not in the
scope of the present work. Still, it should be noted that
our study confirmed that in general Benjamin-Feir mod-
ulations tend to inhibit the class II instability, so that
one cannot rule out the possibility that this instability
may disappear under certain conditions. This question,
as well as the question related to the case when the ba-
sic wave spectrum is much wider than ¢, is open and
definitely merits a special study.

Among the implicitly adopted assumptions, we pre-
sumed the initial wave field to be spatially homogeneous,
so that an adequate description of the evolution could
be given solely in terms of purely temporal processes.
The possible role of spatial variations remains an open
question.

Another limitation of the present study is the un-
avoidable reduction of a system consisting of a basic
wave and a noise of continuous spectrum to that of a
certain (although large) number of harmonics. One can-
not exclude the possibility that a system with the infi-
nite number of degrees of freedom could manifest qual-
itatively different behaviour. The evolution may also
depend on the statistics of the initial ensemble (which
is, in fact, unknown). A number of model runsg with
Gaussian statistics for initial amplitudes and phases of
harmonics has shown the clear tendency for selection,
in accordance with the conclusions of the present work.
No qualitative changes in the system behaviour were
noted while varying the number of random satellites.
Still, this number in the present study had the upper
limit of about 200-250 set by the computer capacity, so
some caution is needed in addressing the behaviour of
infinitely dimensional continuous systems.

Having demonstrated the low-modal character of the
dynamics of the complex system considered, the present
work actually suggests that its evolution can be treated,
with a good accuracy, as a sequence of three-wave sys-
tems with random choice of the satellite pair (where the
corresponding statistics is specified by the unknown yet
statistics of the background noise), this process describ-
ing the formation of sporadic horse-shoe patterns. The
three-wave system in itself can exhibit a variety of dy-
namical regimes, the outcome of which depends on the
specific combinations of the system parameters and ini-
tial conditions. In particular, as it was shown by SBK,
such a three-mode system is capable to evolve to at-
tractors corresponding to permanent horse-shoes, while
the further work (Badulin and Shrira, 1999} demon-
strated the existence of more complicated attractors cor-
responding to oscillating patterns and showed that the
characteristic times of evolution towards these attrac-
tors can be sufficiently small. However, for a quantita-
tive description of the evolution in statistical terms, a
more precise account of non-conservative effects in the
model and a deeper understanding of the properties of
such a model are needed.
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Appendix Quintet interactions within a three-
wave system

Consider the interaction of three quasimonochromatic
wavepackets with amplitudes a, b, ¢ and wavevectors
k,, ki, k. that satisfy the relation (7). Dynamics of
such a triad is governed by the system (Cf. {10))

a; = —iza— 3inc(a2)*,

by = —ilb—3iWc*ad,

¢ = —if.e— 3iWb*ad, (A1)
where

Qa = wy+ Vaaaalalz + 2Vabab|b!2 + 2Vamc|6|2:

D = wh+ 2Vasas|al® + Visss|]® + 2Viese|c|?,

2, = We + 2Vacac|af2 + 2Vbcbc|b|2 + Vcccclclz:

other notation is as in Sect. 3. System (A1) is Hamil-
tonian and integrable, with the Hamiltonian function in
the form

H = welal® + "-*"'blb'2 + wc|C|2
1
+ 5 (1/’¢;{;er|a-l4 + Vbbbb|b|4 + Vcccclcl4)
+2 (Vasas|a|? B + Vacaclal?le]? + Vicse|b]?]cl?)
+W (a?')* be

and momentum conservation laws

3
la|® + 3 (162 + |ef?) = I = const,

% (18]* — |e[?) = I = const,

Following the lines of Shemer and Stiassnie (1985), we
rewrite system (Al) in the form

(aa*); = 6WIm [(aa)* bc] ,

@) = —2WIm [(a®)" e,

(ec*)y = —2WIm [(aa)* bc] . (A2)
and define formally a real function Z by the relation
dZ I

e A
& Im [(a ) bc], (A3)
so that, after integration,

o> = 6WZ+lao|?,

B> = —2WZ + bl

lc? = =-2W2Z+ |cof?,

and it makes sense to assume that at the initial moment
(t = 0) Z is zero, so that the constants ag, bg, cq are the
initial values of the corresponding amplitudes.

It is easy to see from (Al) that

Re {(as)*bc} = —foz dZ + Re | (ad)" boco|
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Instability
domain

and thus

(%f—) = |a* B
. 2
- {_/ ®dZ + Re [(03)*bo<:o]} (A4)
0

We have obtained a single ordinary differential equation
for the real function Z, where the right-hand side is the
known fifth-order polynomial in Z, namely

2
(%) =7 (A3)
where
Ps(2) = - (PWZ2 + NZ - Q)°

+ (6WZ + laol?)’ x
X (—=2W Z + [bo[?) (=2W Z + |col?) , (A6)

and the notation has been introduced

P = 3P, -P,—PF,

N = P,lao|® + Pylbo|* + Pclcol® + 3wa — wp — we,
Pa = 3Vaaaa - 2Vabab - 2Va.cam

Py = 6Vapas — Vieos — 2Vicoe,

P = 6Vacac — 2Vhebe = Veeces

Q = Re(aasboco). (A7)

The solution of (A5) has the form

(A8)

‘o /Z dz

0 v Ps (Z ) ’
where the integration is performed between two neigh-
bouring roots of the polynomial with the opposite signs

v

Fig. Al. Schematic plot of the struc-
ture of roots of the polynomial Ps for
the three-wave system k., = (1,0),
kb = (3/2,(1), kc = (3/2)_q) Depen'

~ dence of the roots on ¢ is shown. For
complex roots, real parts are plotted
(dashed curves).

(Shemer and Stiassnie, 1985). Obviously, Z is periodic
in t, with the period

Zr 4z

Zn 'PS(Z),

where Z; and Zg are the neighbouring roots of (A6),
such that Z;, < 0 < Zpg.

The explicit solution to Eq. (A5), in principle, could
be written out in terms of hyperelliptic functions. How-
ever, we are interested in the class of initial conditions
when the initial amplitude of the sidebands is much
smaller than that of the fundamental

|bo]? = |col? < laol?,

and, without the loss of generality, Im(ao) = 0.

Then, using ¢ = O(b%,c3) as a small parameter, we

can rewrite Eq. (A5) in the form

T=2 (A9)

(A10)

2
(%?) = — (PWZ? + NZ — eBlao®)”

+ (laol2 +6W 2)° (€ —2W Z)?, (A11)
where B = Re(bgcy)/|bo|? measures the initial phase of
the satellites (in particular, 8 = 0 if Ph(bp) = Ph(co) =
+w/4).

Since € is small, roots of the polynomial in the right-
hand side of Eq. (A1l) have different orders, at least
two roots being much smaller then the other ones. This
prompts. to look for the roots as

r =10 +0(@), ra =V + 0(e), 3 = +0(e),
Ty = eril) + O(€?), rs = 6r§1) + O(?). (A12)

It is easy to see that the smaller roots 74, 75, to a leading
order, are

_ laP(B+1)

- _ |€lo|3 (B-1)
YT N 4 20a0PW’

Ts = N — 2‘a0|3W. (A13)
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2 F5(2) 455(2)
a) b)
Fig. A2. Typical form of the potential Ps (a) within and (b) outside of the instability domain.
Expressions (A13) are valid, to a leading order, for all Instability is possible only if
arameter values except for the neighbourhood of the
P b & —2|ag]PW < N < 2|ao|*W, (A16)

points where N = 2|ao[*W = 0.
The larger roots ri, rz, r3, to a leading order, are
obtained from the cubic equation

AW (6Wr + |ag|?)° — (PWr + N)? = 0. (A14)

An interesting special case occurs when
[972 (Plao|> — 6N) W? — P?] (Plao|® — 6N) = 0,(A15)

and two roots of Eq. (A14) coalesce. In particular, if
the condition
Plagf> = 6N =0,

is satisfied, then

1 P2 N

_Jao®* 3 N o L P° N
37864 W3 PW°

"2= Toaw T i PW?

In another case, if
972 (Plag|> — 6N) W2 — P3 =0,
then

pooo ol 3N eol? 3 N
V27 3w T PW 3T T uaw T a4 PwWS

Roots of P5(Z) for the case p = 0 are plotted in Fig. Al
as functions of ¢q. Due to large difference of the or-
ders of the roots, the plot is schematic and is intended
to demonstrate just the basic features of the structure.
Two examples of the form of the potential Ps(Z) are
shown if Fig. A2.

Now we recall that in the solution (A8) the upper inte-
gration limit is allowed to change between two real roots
of opposite signs with the smallest absolute value. It is
clear, however, that the roots r4 and r5 have the small-
est absolute values and opposite signs if N < —2|ao|*W
or N > 2|ao[*W. This means that the amplitude of
modulations is very small there.

then both r4 and r5 are positive, and Z is allowed to
vary between the smallest of (r4,rs), that is,

r = Jaol (B+1)
T EN 1 2aofW

and the negative root of the polynomial Ps(Z), which
can be, with good accuracy, estimated as

3 N

__|ao.|2___
T 24W  APW

This defines the amplitude of the modulations. The
amplitude reaches its maximum while approaching the
neighbourhood of the point N = 2|ao|3W; at this point,
the asymptotic expansion breaks.

Region in the parameter space where inequality (A16)
holds can be termed the domain of instability. Within
it the solution can be written out, to the leading order,
as

_/Z dr y
~Jo (r—0())
1

X
VAW (6Wr + Jaof?)® — (PWr + N)?

(A17)

where Z is allowed to change between 0 and r_.

To the leading order, the period, defined by (A9),
is infinite. More realistic values for the period can be
obtained by the extension of the asymptotic procedure
to higher orders. Note, however, that if N = 0, then the
small roots coincide, and the solution has infinite period
in all orders. In this case, there is infinite time between
modulations of the three-wave system governed by (A1),
existence of this regime being easily verified numerically.

Thus, the approximate expression (A17) for the ex-
act hyperelliptic solution to (A1) within the instability
domain (A16) is formulated in the form of an elliptic



50

integral. If, however, condition (A15) is satisfied some-
where within this domain, two more roots of the polyno-
mial coincide. In this case, the solution can be further
simplified to trigonometric form.
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