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Abstract. We consider particle motion in nonautono-
mous 1 degree of freedom Hamiltonian systems for which
H{p,q.t) decpends on N periodic funciions of ¢ with in-
commensurable frequencies. It is shown that in near-
integrable systems of this type, phase space is parti-
tioned into nonintersecting regular and chaotic regions.
In this respect there is no difference between the N =1
(periodic timc dependence) and the N = 2,3, ... (quasi-
periodic time dependence) problems. An unportant con-
sequence of this phase space structure is that the mecha-
nism that leads to fractal properties of chaotic trajecto-
ries in systems with N = 1 also applies to the larger class
of problems treated here. Implications of the results
presented to studies of ray dynamics in two-dimensional
waveglides and particle motion in two-dimensional in-
compressible fluid flows are discussed.

1 Introduction

Nonautonomous one degree of freedom Hamiltonian sys-
tems — often referred to as 1% degree of freedom systems
- arise naturally in the description of at least two impor-
tant geophysical systems. These are studies of ray dy-
namics in two dimensional waveguides (Abdullaev and
Zaslavsky, 1991, 1993; Brown et al., 1991; Keers et al.,
1997; Smith et al., 1992) and studies of particle mo-
tion in two dimensional incompressible flows (Aref, 1984,
Brown and Smith, 1991; Brown and Samelson, 1994,
del-Castillo-Negrete and Morrison, 1993; Osborne et al.,
1986; Ottino, 1990; Pierrehumbert, 199}; Ridderinkhof
and Zimmerman, 1992). Most theoretical studies of sys-
tems of this type assume that the dependence of the en-
vironment (via the Hamiltontan function) on the time-
like variable is periedic. This assumption allows well
known results such as the KAM theorem (Arnold, 1989;
Tabor , 1989) to be exploited to provide insight into
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the underlying dynamics. Unfortunately, the geophysi-
cal systems that motivate these studies generally have
structure which is not consistent with the assumption
of periodicity. In this study we consider a much less
restrictive class of 1% degree of freedom Hamiltonian
systems - those for which the Hamiltonian is a func-
tion of N periodic functions of the time-like variable
with incommensurable frequencies. Systems of this type
— hereafter referred to as quasiperiodic — can be used
to realistically describe commonly encountered environ-
ments in both types of geophysical problem mentioned
above. It is shown that phase space in quasiperiodic sys-
tems has the same qualitative features as phase space in
the more restrictive (periodic) class that has been ex-
tensively studied. One important consequence of this
phase space structure is that the mechanism that leads
to fractal properies of chaotic trajectories in periodic
systems (Shlesinger et al., 1993; Zaslavsky et al., 1997)
also applics to quasiperiodic systems. Some geophysical
implications of this result will be discussed.

Before proceeding, it is useful to provide some quanti-
tative background material. We are concerned with one
degree of freedom Hamiltonian systems,

deg o8d
dp  OH
T —_a_qa (2)

where it is assumed that H depends explicitly on time ¢,
H = H(p,q,1). Recall that it follows from application of
the chain rule and Egs. 1 and 2 that the rate of change
of H following a trajectory is equal to the local time
rate of change of 1,

dH OH
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It is well known (see, e.g., Lichtenberg and Lieberman,
1983) that this nonautonomous one degree of freedom
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system can be transformed to an autonomous two degree
of freedom system,

dq,'_alq .

o TP )
dp; AH -

o =G0 =L (5)

Here p) = p, po = —H, g1 = q, g2 = {, 7 is the new
independent variable, and

H{(p1,p2), (91,92)) = H{p1,91.92) + p2. (6)

The second of Eqgs. 4 gives dt/d7 = |; with this condition
the remaining equations reproduce Egs. 1, 2 and 3.
The transformed system (4-6) has a bounded phase

space only for the special case in which H(p, ¢,1) is a pe-.

riodic function of ¢; in this case ¢ can be defined modulo
one period, thereby setting bounds on ¢5. Only for this
special class of Hamiltonians H (p, ¢,t) can the KAM
theorem (which guarantees the existance of a dense set
of nonchaotic trajectories for sufficiently small pertur-
bation to a time-independent Hamiltonian) be applied
to the transformed system (4-6). For this special class of
Hamiltonians, Poincaré sections for the system (4-6) can
be constructed by plotting the (p1,¢1) = (p, ¢) coordi-
nates ol one or more trajectories at integer multiples of
the period of H. Because of the importance of working
in a bounded phase space, the simplifying assumption
that H(p,q,t) is periodic in ¢ is frequently introduced.
Unfortunately, as noted above, the assumption that H
is a periodic function of ¢ often poorly approximates the
geophysical systems that one would like to study.

In the next section it is shown that the periodicity as-
sumption can be relaxed while maintaining a bounded
phase space. An allernative transformed system is intro-
duced to which the KAM theorem applies. Furthermore,
it 1s shown that the partitioning of phase space into non-
intersecting regular and chaotic regions that character-
izes periodic systems carries over to the more general
(quasipetiodic) class of problems treated here. Some
implications of this phase space structure to the previ-
ously mentioned geophysical applications are discussed
in section 3. Qur results are summaruzed in the final
section.

Previously, Beigie et al. {1991) have studied quasiperi-
odically forced dynamical systems. The focus of that
work was a detailed local analysis of trajectories, includ-
ing an analysis of the intersections of stable and unstable
manifolds in chaotiec regions and the corresponding lobe
structure, and the application of Melnikov analysis. In
contrast, the focus of our work is the qualitative struc-
ture of phase space (the coexistance of nonintersecting
regular and chaotic regions) and the consequences of
this structure on the long-time aysmptotic behavior of
trajectories in geophysical systems.
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2 Quasipcriodic Hamiltonian systems

In this section we consider systems of the form (1, 2)
for which II'(p, ¢,1) depends on N periodic functions of
t. N 1s assumed to be finite. The nonzero frequencies
ai, 1 =1,2,.. . N may be (but need not be) incommer-
surable. (The special case for which the frequencies are
commensurable can be reditced to the problem for which
H is periodic in 1, i.e., the N = 1 problem. Note, how-
ever, that il the period is long relative to all times of
interest 1n the problem being studied, then this period-
icity is of little practical value, Under such conditions,
it is useful to apply the results described below. We
shall focus on the incommensurable frequency problem
because this is the most general problem to which our
results apply.) Rather than transforming the system to
{4-6), we transform the system to an autonomous N +1
degree of freedom system whose phase space is bounded:

dq,' _ 6?[ _ .,

E— api’ 3—1,2, ..N+1, (7)
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Here p; = —H/o;, i = 1,2, ... N, pnys1 = P, ¢ = oil,
i=1,2,...N, gy4y1 = ¢, 7 i3 the new independent
variable, and

H((Pl,--

-sPN-!—l)» (fh, . -,fIN+1)) =

N
H(pN4t, qN41591,- -, ON) + Y oipi. (9)

i=1

Each of the first N equations in (7) reduces to dt /dr = 1.
Then the first N equations in {8) reproduce Eq. 3, while
the last of Egs. 7 and 8 reproduce Egs. 1 and 2. Note
that each of the ¢;, i = 1,2, ... N, can be defined mod-
ulo 27. The KAM theorem can be applied to the trans-
formed system (7-9), thereby guaranteeing the existance
of regular trajectories when H(p, ¢, 1) is sufficiently close
to a time-independent Hamiltonian H (p, q).

The system (7-9) has N integrals which are in velu-
tion. These are ¢;/6;: —gn/on,i=1,2,...N — 1, and
H. The integrals are independent provided 8H/dp #
(. Only one additional ntegral is required to render
the system integrable. The presence of the N integrals
strongly constrains motion in the 2(N + 1)-dimensional
phase space. It 1s useful to envision trajectories as curves
which lie within a tube which densely covers an N-torus
and whose cross-sectional coordinates are (p, q}.

Numerical results which illustrate some general prop-
crties of this motion are shown in Fig. 1. In this example
N = 2. The model system used to generate the results
shown describes sound ray trajectories in a perturbed
Munk (1974) model of the ocean sound channel,

e(z,r)

Co

= l4ele”—p-1+
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2
Za,- sin(ime’ B) cos(2mr /N 4+ 9:).  (10)
i=1

Here ¢ is sound speed, z is depth, r is range, 1 = 2(z —
zq)/ B and and the constants were assigned the values
¢, — 1.49 km/s, e = 0.0057, B = 1.2 km, a; = a2 =
0.0015, 01 = 0,92 = 2.7, Ay = 20 km and Ay = 10(v/5—
1) km. The ray equaticns are (note that z plays the role
of the generalized coordinate ¢ which is conjugate to the
vertical slowness p, r is the time-like variable and 2x/A;
is the frequency o;)

dz  OII

dp  0H

i T (12)
with

Hip, z,7) = —\/e *(z,r) — pt. (13)

For this problem the transformed system (7-9) has three
degrees of freedom and two integrals so trajectories lie
on surfaces of dimension 2 x 3 —2 =4 in the 2x3 =6
dimensional bounded phasc space. A three-dimensional
slice {whose coordinates are (z, p, ¥ mod Az)) of this space
can be constructed by viewing trajectories at inleger
multiples of A;. In this 3-d spacc chaotic trajectories fill
volumes while regular trajectories lie on surfaces. A sec-
ond slice (whosc thickness is nonzero) can be taken by
plotting only those points in (z, p) which satisfy |» mod
X2 —r,| < 4. Fig. 1 was constructed in this fashion
using § = A;/100. The distribution of points shown
is interpreted in the same way that Poincaré sections
for autonomous 2 degree of freedom systems are inter-
preted: sequences of points corresponding to chaotic and
regular trajectories fill areas and lie on smooth curves,
respectively. Some blurring is present, however, because
¢ > 0. With this minor caveat, Fig. 1 is seen to have
the same qualitative features that are commonly seen
in Poincaré sections for autonomous 2 degree of free-
dom systems. In particular, phase space appears to be
partitioned into nonintersecting regular and chaotic re-
gions. Stated somewhat differently, there is no evidence
of Arnold diffusion {Arnold, 1989; Chirikov, 1979). This
is surprising inasmuch as the transformed system (7-9)
corresponding to (11-13) has three bounded degrees of
freedom: generic systems with three or more bounded
degrees of freedom are known to exhibit Arnold diffu-
sion.,

We now show that for the class of problems treated
here, Arnold diffusion cannot occur. Consider a system
of the form (7-9) which is a small perturbation to a
time-independent (integrable) system. Chaotic motion
arises in the vicinity of those trajectories which satisfy
the commensurability condition

m10'1+m20"2+...+mNcrg\r+mN+1w:O (].4:)
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Fig. 1. Phase space porirait for a quasiperiodic Hamiltonian
systemn which describes sound ray trajectories in a stratified ocean
maodel perturbed by a superposition of N = 2 periodic functions
of range, the time-like variable. Five trajectories are shown. This
figure was constructed by twice slicing a bounded six-dimensional
phase space as described in the text.

where the m;’s, i = 1,2,...N + 1 are nonzero integers
and w is the frequency of the unperturbed periodic mo-
tion in the (p, ) plane. Dividing (14) by on gives

ON—-1
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where v = w/ay is the winding number. Unlike », the
ratios o;/an, 1 = 1,2,...N — 1, are fixed properties
of the environment. In contrast, in any fixed environ-
ment a continuum of w’s — and hence also ¥’s — will be
present. This situation should be contrasted to that for
autonomous N + 1 degree of freedom systems which,
when perturbed, lose all of their integrals except for the
Hamiltonian. For systems of the latter type Eq. 15 is
replaced by

Lhevi+lva+ .. +Hiyvnw +Hing1 =0 (16)
where the [;’s are nonzero integers. Solutions to Eq. 16,
corresponding to different values of the I;’s form a web
in v-space. For N > 2, i.e., [or three of more degrees
of freedom, all points on this web are connected. This
web — sometimes referred Lo as Arnold’s web — connects
all chaotic regions in v-space. Chaotic trajectories may
wander anywherc on this web via the process known as
Arnold diffusion; see Chirikov (1979) for more details.
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In contrast, in systems described by Eq. 16 with V = 1
{corresponding to two bounded degrees of freedom) or
systems described by Eq. 15, only a 1-dimensional v-
space can be explored. For such systems the connect-
edness of solutions to Eq. 15 or Eq. 16 is lost; chaotic
trajectories are isolated from each other in v-space by
bands of regular motion. The diffusion rate tends Lo in-
crease as a system is perturbed away from an integrable
state. Thus, Arnold diffuston is generally easy to de-
tect numerically in systems that are far from integrable,
but may be difficult to dectect in systems that are close
to integrable. In spite of this minor caveat, it is clear
that systems which do not exhibit Arnold diffusion are
more strongly constrained — and fundamentally different
— than these that do. The class of systems considered
in this paper are of the former (constrained) type.

3 Fractal properties of trajectories

Discrete samples, p(#;), ¢(¢:).i1 = 1,2,..., of the solu-
tions to the equations of motion (1 and 2) may exhibit
fractal properties, even when H{p,q,t) is specified an-
alytically. (This is somewhat surprising inasmuch as
the functions p(t) and ¢{t) are infinitely differentiable
when H{p,q,t) is specified analytically.) Fractal prop-
erties of trajectories in Hamiltonian systems have re-
cently been explored by Klafter et al. (1996); Osborne
and Caponio (1990); Pasmanter (1988); Shlesinger et al.
(1993); Zaslavsky et al. (1997). Most of this work has
focused on autonomous twe degree of freedom systems
with a bounded phase space - or the equivalent class
of area-preserving mappings. In such systems it has
been shown that in systems with a mixed phase space,
those trajectories which fill the chaotic seas have frac-
tal properties. For nontrapped trajectories a commonly
explored manifestation of fractal behavior is anomalous
diffusion, i.e., rms growth of particle displacements pro-
portional to t1/2 where the fractal dimension D lies be-
tween 1 (ballistic motion) and 2 (Brownian motion). As
the measure of regular regions of phase space approaches
zero, D approaches 2. Because, as was shown above, the
dynamics of 13 degree of freedom Hamiltonian systems
whose time-dependence is quasiperiodic can be reduced
to those of an area-preserving mapping, the mechanism
that leads to fractal trajectories in systems of the latter
type must also apply to systems of the former type. In
the remainder of this section, this expeciation is shown
to be consistent with a numerical test and is discussed
in the context of occanic fluid parcel trajectories and
problems involving ray dynamics.

A natural and robust means to characterize the [ractal
nature of trapped chaotic trajectories — such as those
shown in Fig. 1 — is to make use of a box counting
algorithm, based on the scaling relationship

Cls) = SIP w52 (17)

H
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Fig. 2. The distribution function C{s) vs. s for one of the tra-
Jjectories which lies in the chaotic sea shown in Fig. 1, computed
using a discretely sampled trajectory containing M = 10° points.
For small s, C(s) approaches the limit 1/M = 1075, A least
squares fit to the 10 rightmost points gives the slope estimate
D =173+ 0483.

Here s? is the area of each box and Pi(s) is the proba-
bility that a sample of the trajectory occupies the i’th
box. Fractal behavior is accociated with 1 < D < 2.
The scaling relationship (17) was tested using one of the
trajectories that fills the chaotic sea seen in Fig. 1. To
compute C{s) the domain shown in Fig. 1 was mapped
onto the unit square with s = 2°™ m = (,1,2,...12
andi =1,2,...2%™. The results are shown in Fig. 2; the
fractal dimension I & 1.73. This estimate was found to
be insensitive to the sampling interval. This simple ex-
ample illustrates the result that the recently discovered
connection between fractal properties of trajectories and
chaotic Hamiltonian dynamics in systems with a mixed
phase space extends to Hamiltonians with quasiperiodic
time dependence. This connection provides a natural
explanation for the occurrence of fractal trajectories in
the two geophysical systems that we have discussed.

The fractal dimension of trajectories of surface drifters
and submerged floats in mesoscale and large scale oceanic
flows is I} & 1.3 (Brown and Smith, 1990; Osborne et al.,
1989). These trajectories (z(t}, y(t)) satisfy equations of
the form

dy_ 00 dr_ v

dt — 8r'dt  dy

Here the streamfunction (2, y, {) takes the place of the
Hamiltonian H(p,g,{) in Eqs. 1 and 2. While most
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oceanic fluid parcel trajectories appear to be chaotic and
have fractal properties, there is also evidence of non-
chaotic trajectories (see, e.g., Richardson ct al., 1989)
and hence evidence of the existance of regular islands in
phase space (z,y). The simultaneous existance of reg-
ular and chaotic regions in phase space 1s, of course,
consistent with the observation that fractal trajectories
and a mixed phasc space are closely linked. Thus, we in-
terpret observations of apparently fractal oceanic drifter
and float trajectories as an indication that the underly-
ing Lagrangian ccean dynamics are those of a 1% degree
of freedom Hamiltonian system with guasiperiodic time
dependence and a mixed phase space. It is important to
note that most occeanic flows can be realistically mod-
elled as having quasiperiodic time dependence {possibly
with large ), but cannot be realistically modelled as
having periodic time dependence. (Pertodic time de-
pendence with a period which exceeds the duration of
observations can be assumed, but such a picture is not
useful from a dynamical systems point of view because
regions of phase space are then not sampled more than
once.) Although the conceptual picture of an oceanic
streamfunction with quasiperiodic time-dependence 1s
extremely useful for finite duration T observations, this
picture cannot be expected to apply in the limit T" — oo;
in this limit the number N of periodic components of
¥(x,y,t) required to reproduce fluid parcel trajectories
is expected 1o increase without limit.

The conceptual picture of oceanic flows having quasi-
periodic time dependence can be applied to flows which
are characterized by power law energy spectra provided
the number of spectral components in the description of
the flow is finite. If the streamfunction for such a flow
were known, it would be possible to construct a Poincaré
section and identify regular and chaotic regions in the
flow. In principle, Poincaré sections can be constructed
using the procedure described above for arbitrary large
{(but finite) N; in practice, this procedure is feasible only
for small N.

The application of our results to problems involving
ray dynamics is more difficult to test because ray tra-
jectories — and hence also their fractal dimension - are
not directly measurable. In spite of this, Zaslavsky and
Abdullaev (1997) have argued that the phenomenon of
‘chaotic transmission’ — whose origin i1s the nonunifor-
mity of phase space and the stickiness of islands — should
be measurable. For problems involving ray dynamics in
environmeunts with weak but complicated (describable
as quasiperiodic with finite N) dependence on the time-
like variable (range), we belicve that the fractal nature
of ray trajectories is less important than the stabiliz-
ing influence of regular regions in phase space. (Recall,
however, that fractal trajectories and the existance of
islands are related.) To understand the stabilizing in-
fluence of regular islands, note that under typical ex-
perimental conditions (for a point source, for example)
the wavefield can be described as a sum of contributions
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from a continuum of rays; the existance of even a small
number of regular regions within such a ray continuum
constrains the motion of all the rays which make up the
continuum and hence the entire wavefield.

4 Summary and discussion

In this paper we have considered nonautonomous 1 de-
gree of freedom Hamiltonian systems for which H de-
pends on N periodic functions of ¢. It was shown that
such systems can be transformed to an autonomous N +
1 degree of freedom system with a bounded phase space
which has N integrals., The KAM theorem can be ap-
plied to the transformed system, guaranteeing that for
a sufliciently small perturbation to an integrable system
some regular motion is preserved. Furthermore, it was
shown that when chaotic motion is present in such sys-
tems, Arnold diffusion cannot take place. Thus, the par-
titioning of phase space into nonintersecting regular and
chaotic regions that characterizes the N = 1 (periodic})
problem also applies to the quasiperiodic N > 2 prob-
lem. In other words, the dynamics of the latter class of
problems can be reduced to those of an area-preserving
mapping.

It has recently been shown that the partitioning of
phase space into nonintersecting regular and chaotic
regions that characlerizes arca-preserving mappings is
closely hnked to fractal behavior of trajectories which
fill the chaotic seas. Thus, it follows from our results
that the mechanisms that lead to fractal trajectories
in area-preserving mappings also apply to 1 degree of
freedom Hamiltonian systems whose time dependence
is quasiperiodic. The geophysical systems that we have
discussed can be realistically modelled as quasiperiodic
systems. The results presented provide two important
pieces of information about such systems: 1) in near-
intcgrable systems some regular islands are expected;
and 2) the occurrence of trajectories exhibiting fractal
behavior in such systems is tied to the existance of reg-
ular islands in phase space.
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