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Abstract. The run-up of solitary-type pulses propagating at
a small angle with respect to the shore normal is analysed by
means of a weakly-two-dimensional extension of & solution
of the nonlinear shallow water equations for a non-breaking,
solitary pulse incident and reflecting on an inclined plane
beach similar 1o that of Synolakis (1987). A simple an-
alytic expression for the longshore velocity of the solitary-
type pulse is given along with examples of computations.
The proposed solution can be employed in modelling run-
up flow properties of solitary-type pulses (e.g. (sunamis,
primary waves of wave groups propagating in shailow wa-
ters, ...). The hodograph transformation that is used and the
flow properties are illustrated in terms of contour plots. A
limiting pulse amplitude is defined such that breakdown of
the solution occurs. A soiution for the run-up of multiple-
solitary-pulses in shallow waters is also described. Some
of the salient characieristics are itlustrated and discussed.
Breakdown conditions are analytically defined also for the
multiple-solitary-pulses solution. A strong condition is given
which couples information on both pulses amplitudes and
distances. An easier (but weaker) version of the criterion
is given in terms of a pair of decoupled formulae one for the
pulses amplitudes and the second for their initial positions.
Very large run-up is achieved because of the merging of two
or more solitary pulses which are smaller than the limiting
pulse. The role of pulse separation within a group of solitary
pulses is also analysed in terms of both a ‘nonlinearity pa-
rameter’ A and a ‘groupiness parameter’ G. It is found that a
critical distance exists between two pulses which minimizes
the back-wash velocity and, as a consequence, the nonlinear-
ity parameter A

1 Introduction

The motion of water waves near the shoreline on a gently
sloping beach has been described by many authors using var-
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ious hydrodynamical equations: linear and nonlinear shal-
low water equations, Boussinesq and various approximations
to these equations. A long-wave approximation for the full
equations of motion gives as the leading terms (e.g. Pere-
grine , 1972) the nonlinear shallow water equations (NL-
SWE). These equations are obtained by assuming that ver-
tical accelerations of the water, or those normal to the beach,
are negligible compared with gravity. The same sort of equa-
tions can be succesfully used to model the run-up of fsunamis
which are long waves generated either by submarine tec-
tonic displacements, or landslides (see for example Carrier
(1966)). These are essentially waves propagating in shallow
waters.

Carrier and Greenspan (1958) (hereinafter CG) give an
analytical solution for the shallow-water motion of tempo-
rally periodic, finite amplitude, non-breaking standing waves
on a beach of constant slope. It is still one of the few ana-
lytic solutions available, together with that derived by Shen
and Meyer (1963) for mn-up due to a bore. A third analyt-
ical solution is that by Synolakis (1987) (hereinafter S§Y87)
in which a solitary-type pulse is used as an initial condition
for the NLSWE. At present, Synolakis’ solution is, although
not of permanent form, the only NLSWE analytical solution
for the run-up of solitary pulses which includes the effects of
reflection and has proved very succesful in predicting inun-
dation patterns of solitary waves.

All the above anatytical solutions are attractive as they al-
low direct computation of flow properties in the near-shore
region. They also represent “benchmarks’ for comparing and
testing any numerical solver of the NLSWE, However, their
drawback rests in their horizontal one-dimensional namre,
This together with the calcnlation of the velocity characteris-
tics in the waves run-up have been considered as the main un-
solved problems related to tsunamis run-up (see Voit (1987)).
Hence, the relevance of the present work to the study of
tsunamis run-up.

A few cases of studies of the evolution of horizontally-
two-dimensional long waves can be found in the literature.
For example the work of Carrier and Noiseux (1983) deals
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with the interaction of tsunamis waves with a coastline. They
compute the reflection of obliquely incident tsunamis off a
continental shelf. Characteristics of the reflected waves and
of the run-up are studied by solving the linear shallow-water
cquations. A sccond work can be mentioned by Golinko and
Pelinovsky (1988) which refers to the run-up of long waves
in a channel of arbitrary cross-section.

Recenily Brocchint and Peregrine (1996) (hereinafter BP)
extended the finite amplitude, standing-waves solution by
CG for the case of weakly-two-dimensional periodic flow
conditions. This new solution was used to discuss the wa-
ter flow in the ‘swash zone’ i.e. in that part of a beach over
which the instantaneous shoreline moves back and forth as
waves meet the shore.

Although very useful to model periodic flow conditions,
that solution cannot be used to represent those tlow condi-
tions in which a single wave group propagates, with a small
angle to the beach normal, from deep walers into shallow
waters., Examples of evolution of an envelope soliton (so-
lution of the nonlinear Schridinger equation) from deep to
shallow waters have been numerically analysed by Barnes
and Peregrine (1995). Some of their computations suggest
the group in shallow waters can be represented as made of
primary waves behaving like solitary waves and a wave of
depression,

During the time that a wave group is in the swash zone,
there is a complex interaction between the waves in the group
and the swash motion from previuos waves. These are thought
10 be critical in assessing the generation properties of tow fre-
quency waves in the swash zone (Watson, Barnes and Pere-
grine (1994)). Hence, the need for a solution for V solitary
waves interacting in shallow waters.

In section §2 a solution is therefore proposed along with
some test case which enables analytical computation of all
the main flow properties (frece water surface and both ve-
locity components) associated with the run-up of of weakly-
two-dimensional solitary pulses. A novel analytical solution
is also given in section §3 for interacting solitary pulses in
shallow waters (multiple-solitary-pulses solution). The main
examples of application of the above selutions are both the
run-up of a single group of waves (multiple solitary waves)
and the run-up of a tsunamis (single solitary wave). Both so-
lutions are characterised within their domain of validity j.e.
providing breakdown does not occur. A summary of the re-
sults is given in section §4 along with some considerations
on ongoing and future research.

2 A weakly-two-dimensional solitary pulse solution

In the following we briefly introduce the mathematical back-
ground used to compute the solution. This is also character-
ized by means of a couple of relevant test cases.
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2.1 Theory and background

Using dimensional (starred) variables we introduce basic def-
initions (see figure 1) choosing the still water level to be
z" = 0 and the total water depth:

d*(z”,y", ) = A" (") + 77 (", 37, 1) 2.1

where z* = h™(x*) is the seabed, and z* = n*(z”, y*, t*)
is the position of the free surface. Thus, the z*-coordinate is
pointing seaward .e. here we use a convention opposite to
that used by CG and BP.

For a plane beach, the equations without bottom friction
can be put in a simple dimensionless form with no explicit
dependence on the beach slope (e.g. Meyer and Taylor , 1972;
Brocchini and Peregrine , 1996). According to the scaling
used in CG and BP it is:

ilf* ,ya tm
o VT T oo O

d dJd L= u” "

do Bl lo (9lo8)? (gtoe)%(

where dy and [, are the two scales respectively used for ver-
tical and horizontal lenghts and 8 [(?{(1073) typically] is the
angle between the horizontal and the beach face. Hence the
dimensionless (unstarred) equations read:

dy + (ud)z + (vd), =0 {(23a)
U+ uug vy, +d, =1 (230
v +uv, v, +d, =0 (2.30)

where ¢ and v are respectively the depth-averaged onshore
and longshore velocity components and where the right hand
side of each equation represents the ‘beach source term’ (i.e.
the acceleration due to the beach slope in (b) and (¢)).
Equations (2.3) can be further simplified by approximating
for waves incident at small angle to the beach normal and
for weakly-two-dimensional flow (Ryrie , 1983). The fully
coupied set of equations can be decoupled in a set of two
equations in characteristic form for the “‘onshorc problem’

(2.4a)
(2.4b)

a4+ (v + e)ay =0
Be+(u—¢)3, =0

AN
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and one for the ‘longshore problem’;
(2.5)

The Riemann invariants a, J and ~ depend on the ‘beach
term’ and they are:

Y + uwyy = 0.

a=2ctu—t (2.6a)
B=2c—-u+t (2.6b)
y=v-—twl —d+ar=v- 1. (2.60)

CG used a hodograph transformation in solving the ‘on-
shore problem’:

A=a-8=2(u—1t) (2.7a)
o=a+ 3 =4dc (2.7
u (g,A) = i—a. (2.7¢)

Using the above transformation the two characteristic equa-
tions for the ‘onshore problem’ can be combined to give a
single linear equation in o:

(U¢a)o - U¢AA =0. (28)

Finally the usual (x, t) coordinates are related to (o, ) as
follows:

P VI S X
t= ?i — %X (29b)
o

Following BP we now solve the ‘longshore problem’ and
give an analytical solution for the longshore velocity v. There-
fore we integrate equation (2.5)using the CG coordinate trans-
formation. After some non-trivial algebra the equation can be
rearranged to give:

R (S S
a a a a

A solution valid for any ¢ is
v = S 2.11)

This soluticn has been used by BP to extend CG standing-
wave solution for weakly-two-dimensional flow conditions.
In a similar fashion we use (2.11) to extend a solitary pulse
solution similar to that found by Synolakis. We referto SY87
for mosi of the details on the mathematical derivation of the
solution and report here only the main resuits.

Equation (2.8) is solved by means of a Fourier transform
technique. It can be shown that a suitable solution which is
bounded at the shoreline ¢ = 0 and at ¢ = oo takes the form
{(in our dimensionless and scaled variables):

o0 —ik{1—A/2
b0, < 161 [ B Jolboj e
—00 k .]0(2}6) - 'I,Jl (2]6)
where Jy and J; arc the Bessel functions of order zero and
one respectively. The particular form of the solution is speci-
ficd by ®(k). For a solitary pulse centered atx = X att — 0
the following profile is here used:

n(z,0) = A sech®&{x — X)

dk (2.12)

(2.13)
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where A is the dimensionless pulse height and £ = (34/4)1/2,
Please note that A corresponds to the height-to-depth ratio of
Synolakis® solution and comparison of the results is made
accordingly.

The transform function ®(k) associated with the profile is:

®(k) = Zkcosech(Bk)et X (2.14)

where 3 = «/2£. On substitution into equation (2.12), we
obtain the specific selution for a single solitary pulse as:

Jo(ka [2)ei?
To(2k) — iJ,(2K)
whered = X — 1+ A/2.

We are now able to compute explicitly all the flow vari-
ables by inserting the above solution in (2.7¢),(2.9) and (2.11);

dk (2.13)

2 - o0
p=— % cosech{3k)

Ji(ka/2)et*?
o[Jo(2K) — iJ1(2K)]

u=@[ k cosech(3k) dk (2.16a)
3/

J()(kﬂ'/z)eikﬂ
Jo(2k) — iJ(2k)

vzg f k cosech(3k) dk  (2.16b)

n=uv— 3u’, (2.16¢)

These properties can be computed either by direct integra-
tion or by using Cauchy’s integrat formula. In SY87, the
Laurent series for the above integrals are computed together
with the related asymptotic expansions for large values of o
and £.

In order to illustrate the behaviour of (u, v, ) and avoid
troubles with any eventual singularities in the (o, A) — (z, )
transformation, we prefer to perform a direct numerical com-
putation of the integrals and constantly monitor the behaviour
of the Jacobian

J=c[u§—(u;\—%)2].

Convergence is ensured by performing the integration over
the (—5, 5) range for k using a constant integration step of
dk = 0.001 (Synolakis, private communication).

(2.17)

2.2 Two cases of single pulses

We now illustrate the main Sow characteristics referring to
two specific examples. In particular we discuss the patterns
of the free surface elevation, of the onshore velocity » and
of the longshore velocity v. Furthermore, it is interesting to
visually inspect the hodograph transformation of (g,A) —
(x,t). This is an alternative approach to that which employs
plots of characteristic curves to inspect the dynamics of the
flow. We find this alternative method more useful for the
case in hand because characteristics are useful for determin-
ing bore initiation far from the shoreline. Here breakdown
occurs close to the shoreline. Another advantage of analysing
the hodograph transformation is to relate the point of break-
down of the solution to the coordinates mapping.
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Table 1. Equivalent wave length of solitary pulses

Amplitude {(4)  Length (L)
0.81 2.8
0.70 3.0
0.60 3.3
0.50 3.7
0.25 5.0

The first example refers to a solitary pulse characterized by
A =0.5and X = 4. The choice of the amplitnde, which for
the case of a single pulse is only of practical convenience, has
been made in view of the multiple-solitary-pulses discussed
in the next section. On the other hand the distance X from
the still water shoreline has been chosen in dependence of
the ‘reference length’ or ‘equivalent pulse length’ L of the
solitary pulse.

It is common to define an ‘equivalent wave length’ L in
the sense of the distance within which the surface elevation
exceeds some (p) percent of its maximum value i.e, such that

7(L) = pA. (2.18)

This definition can be specified by using solution (2.13)
and choosing p = 0.05. After SY87 this measure became a
standard length used for solitary waves (see also Kobayashi,
DeSilva and Watson (1989)) and is defined as:

L = (1/&)arccosh (\/0—1)5) .

We immediately see that this length decreases with the am-
plitude A. A few reference values of L are reported in table 1
for the cases under investigation. Note that it is not correct to
use the dimensionless variabies d and L to define a condition
on the suitability of the NLSWE rather it is necessary to use
the dimensional variables d* and L*.

According to the scaling (2.2), the relation for the dimen-
sional variables reads:

(2.19)

% = 8% (2.20)
giving

A" 1
d*/L*=0(6) <1 and U,= e, (—) >1.(2.21)

k*Z dx3 = 92
ford/L = O(1) and A/d = O(1) which are typical values
used in our analysis (here U, represente the Ursell number).
The location X of the pulse centre (where n = A) is about
a distance L offshore of the limit X5 = 1 of the ‘shallow
water region’, where the value of X, is defined by requiring
that offshore of it nonlinear contributions in both (2.9) and
{2.16) can be neglected (e.g. Carrier (1966)). Hence we

define:
X=Xo+L=1+1L. (2.22)

Inspection of table 1 reveals that appropriate distances for
pulses of amplitude conditions 0.50 < 4 < 0.81 is in the
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range 3.8 < X < 4.7. We therefore choose a value for
the distance X = 4 which is approximately valid for most
considered pulse conditions and is near exact for the pulse of
limiting amplitude which, in the following analysis, is uscd
as ‘benchmark’.

For the case in hand the relevant contour plots are reported
in figure 2. Inspection of figures 2(a) and 2(c) shows that a
very similar pattern characterizes the free surface elevation 5
and the Jongshore velocity »: the contoursp = v = 0.34 and
1 = v = (.47 represent a pair of ‘ridges” in the (x,t) plane.
These ‘ridges’ are produced by the solitary pulse which prop-
agates from the seaward boundary of the domain and is re-
flected at the shore. Taking a ‘slice’ at a fixed value of the
r-coordinate means we are following the time evolution of
the signal. For example, the profile of the free surface ele-
valion 57 at x = 3 only shows the peak of the incident signal
for t < 3. However, for t > 6 peaks of both the incident and
a reflected signal are present. These signals are separated by
‘shelf’ region which has been experimentally observed.

Although very similar away from the shoreline, the pat-
terns of 1 and v become rather different close to the undis-
turbed shoreline. Differences are due to the nonlinear term
u? /2 which appears in (2.16¢). This becomes non-negligible
only for small values of x. This can be guantified by intro-
ducing a measure of the intensity of nonlinearities as

A= Max{(n — v) _ Max(u?/2)
Max(n) Max(n)

For the present case it is &' = 0.40. A is used more ex-
tensively in the next section for analysing merging pulse i.e.
multiple-solitary-pulses.

A completely different pattern is seen in figure 2b for the
onshore velocity component u. This is essentially antisym-
metric with respect to the time when the maximum run-up
15 reached. At this time both  and v reach their maximum
value which, due to the antisymmetric structure of » and to
equation (2.16¢), is the same:

Max() = Max(v).

{2.23)

(2.24)

Note also that because of the particular choice of coordinates
(i.e. the z-axis pointing scaward) the velocity of the incident
pulse is negative as dr/df < 0.

Figure 2d illustrates the behaviour of the (o, A} coordi-
nates in the (x,t) plane. Breakdown is caused by singular-
ities of the Jacobian 7 and is shown by the strong defor-
mation of the coordinate grid. This could be interpreted in
terms of wave breaking where the flow becomes tarbuient.
However, Meyer suggests that wave breaking should not be
confused with the breakdown of the coordinate iransforma-
tion (Liu, Synolakis and Yeh , 1991). In the following we
therefore refer to a ‘solution breakdown’ rather than to ‘wave
breaking’.

In the specific example of figure 2d, breakdown occurs
during the back-wash phase and is indicated by the arrow.
Here the (o, A) coordinate grid becomes highly distorted and
the (¢,A) — (z,t) ransformation is no longer single val-
ued. The restriction for breakdown during the back-wash is
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Fig. 2. Solitary pulse as for (2.14) with A = 0.5 and X = 4. Contour lines of: (a) the free surface elevation 7, (b) the onshore velocity component u, (c)
the longshore velocity v and (d) the (g, A)-coordinates in the (z, t)-plane. Lines of constant A run from left to right whilst lines of constant & run from top to
bottom. Breakdown occurs only during the back-wash and it is indicated by the arrow. Contour values increase from dark blue to white.

weaker than for the breakdown which occurs during the run-
up of the wave (e.g. SY87). From a physical point of view
this means that waves that do not break during the run-up
may break during the back-wash.

In the following, however, we only discuss the breakdown
of the solution during the pulse run-up. In order to establish
the conditions of breakdown we performed a large number
of numerical computations using pulses of different heights.
It is found that breakdown occurs for pulse of dimensionless
height such that:

A > 0.81. (2.25)

This criterion essentially confirms that obtained by Syno-
lakis: by means of an asymptotic analysis he computed a
limiting height-to-depth ratio of 0.81

Again breakdown of the solution is clearly illustrated by
representing the contour plots of the hodograph transforma-
tion for a solitary pulse of A = 0.81. The arrow in figure
3 indicates the region where the coordinate grid is distorted
because of breakdown during the pulse run-up. Clearly the
back-wash, occurring for ¢ > 4.5, is characterized by an even
stronger distortion of the coordinate grid.

A final result achieved by numerically integrating the so-

lution rather than relying on asymptotic expansions concerns
the maximum run-up which can be easily computed by the

expression

R =3.11 A%/4 (2.26)

where R = |zpin|- Although the dependence of the run-
up on the pulse amplitude confirms that given by Synolakis
the numerical coefficient obtained by numerical integration
is slightly larger (Synolakis computed a value of 2.83).

Time
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I ey cavcew v A O R AL . ]
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Fig. 3. Solitary pulse as for (2.14) with A = 0.81 and X = 4. Contour lines
of the (o, A)-coordinates in the (x, t)-plane. Lines of constant A run from
left to right whilst lines of constant ¢ run from top to bottom. Breakdown
occurs also during the run-up and it is indicated by the arrow. Contour values
increase from dark blue to white.
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3 A solution for merging solitary pulses

The linearity of equation {2.8) means its sohution can be given
as a sum of solitary-pulse solutions. Thus we analysc a multiple-
solitary-pulses solution given by:

=

¢ (3.27)
=0
N . -
_ 32 % o _Jolks /2)etFvi
- jz_;)_ 3 Lf;osmh(ﬂ i) T @k) — s (0F) °F

whered; = X;—1+X/2,8; = m/2¢; and &; = (3A4;/4)V/2.
Fromi this, the main fow properties 73, « and » can be com-
puted by means of equations (2.7¢), (2.9), (2.11) and (2.16c).
In this section we introduce and characterize the solution for
multiple-solitary-pulses. The main aspects concern the solu-
tion validity (i.e. define the condition for its breakdown), the
intensification of the nin-up because of the merging of two or
more pulses and the eventual groupiness of the pulses. The
last two aspects have been analysed by properly ‘tuning’ the
only two free parameters which characterize our solution i.e.
the pulse amplitude A and the separations AX = X; — X,
of two initially contiguous pulses. Our interest is illustrat-
ing the run-up propertics rather than tabulating the solution,
hence we choose to discuss a few inieresting test cases.

3.1 The breakdown condition

Here we assess the conditions for which the multiple-solitary-
pulses solution does not break down. It is known (e.g. SY87
and BP) that the hodograph wransformation (o, A} — (z,f)
becomes singular close to the shoreline o = 0, This has been
confirmed by the simple exercise of numerically computing
the integrals involved in the expression for 7 all over the
domain of interest.

Under the above assumption we derive an analytical con-
dition for the pulses amplitudes and relative distances among
the centres of the pulses such that no breakdown occurs, Itis
easy to show that

e ik?;

. 4 1,

lim (e, \)=—] k“cosech({8k)
a—0 3 —c0
which does not depend on o. Hence, in the limitoe — (:
T % (ur - 1)’ (3.29)

and the T acobian, which for pulse amplitudes small enough
is negative all over the domain o > 0, can only vanish inside
the domain for u > 1/2. The transformation is then regular
for

uy < 3 where
ik
To(2k) — i1, (25)

2 o0
uy=—= [ k% cosech(3k) dk. (3.30)
3 —00
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Fig. 4. Behaviowr of =M_ (—1)™m™/20™ for M = 5 (solid line),
M = 50 (dashed line) and M = 100 (dot-dashed line).

Following the procedure given in SY87, the function
can be computed analytically by means of Cauchy’s intepral
formula. This is possible due to the analyticity of the inte-
grands as discussed in Synolakis (1988). Further, for large
values of £, each term of the resulting Laurent series can be
replaced by its asymptotic form. The condition for the irans-
formation to be regular in case of multiple-solitary-pulses is
then:

N o0
—12(r/3)1 23 AN () mT 2N < 1 (33])
=1

m=1

where x; = X; + 1+ A/2.

This is the most general, although rather complicated, rela-
tion which combines both A;s and x ;s to represent the break-
down criterion for the muliiple-solitary-pulse selution. It can
also be rewritten as:

~12(xV3)'/* T

1 Aﬂ/d}JJ— < %
where $; = 3200 (~1)™ m/2e7 ™% (3.32)

However, it is possible to obtain a pair of much simpler
(although weaker) constraints for the A;s and ;s separately.
The first step is to notice that

oo
Min (Z (-1)™ m7/2‘pm) = Epin = —0.0285  (3.33)
m=1
for ¥ = ¥, ., = 0.0653. This is also illustrated by figure 4
which shows that convergenceis achieved for M = 50 where
M is used as an ypper limit for the index m of X5,

Hence, for suitable values of x;, (i.e. suitable values of
¥, = e~ 28xi) it is possible to minimize the sum X, for
each j. This assumption gives a firsl constraint for the x;s
i.e. for the X;s:

— 26x; = In(Wpin)

A ln( P min)
— X,= {14 =4 —_Tun 34
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Once known the initial position and height of a solitary
pulse (for simplicity labelled by § = 1) it is possible to com-
pute the initial position of any other solitary pulse (labelled
by 7) according to the simple formula:

o m¥min) {11
=T («r ﬁ)

Note that 4; = A; implies that X; = X, in order to mini-
mize the sums ;.

The main constraint for the regularity of the solution is
derived by equation (3.31) where we substitute ¥,,,;,, for the
second sum:

(3.35)

N
12V 2 i ¥ AV < 4 (3.36)
j=1
This reducces to the condition:
oA < - ! ~ 0.627. (3.37)
! 24(77\/5)1/227’:“)1

J=1
Note that this constraint reduces to the criterion of equation
(2.25)asfor N = 1:

AV <0627 = A4, <(0.627)%/1=081.  (338)

The weak formulation of the breakdown criterion is such
that equation (3.37) can be used only if the pulses peaks are
separated by a distance given by (3.35).

On the other hand, if condition (3.35) is not satisfied by
a given initial distribution of pulses, the contributions of the
¥;5 cannot be minimized and the strong version of the con-
straint (3.37) must be satisfied for the transformation.not to
break down. From equation (3.31) this can be given as;

N
1
Aty < - ———— 3.39
;Z{ 7T u(x V32 -39

and, given the inital pulses distribution, can only be com-
puted by numerical means.

3.2 The run-up intensification

UOne of the most important aspects of the analysis of waves
meeting in shallow waters is the assessment of the extent of
the run-up. In particular we want to investigate any large in-
tensifications due to the merging of solitary puises. In other
words we want to show that it is possible to obtain a run-
up iarger than that of the pulse of limiting amplitude (4 =
0.81) by superposing some solitary puises of smailer ampli-
tude. The interaction we consider can be defined according
to Miles (1977) as ‘strong’ because it is a long-time interac-
tion between pulses travelling in the same direction.

Note that in order to compare the solution for merging
pulses to that of the limiting pulse centered at X = 4 we
consider the N —pulses solution having pulses centered in-
side theregion 1 < X < 4,
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A large number of tests have been run in order to achieve
this result which is illustrated in figure 5. At the top left cor-
ner {figure 5a) we find the free surface elevation pattern of
the pulse of limiting amplitmde. A similar pattern is shown by
figute 5b for a pulse of amplitude A = 0.5. This shows a run-
up of about a half of that of the limiting pulse. By properly
adiusting the distances between the pulses and their ampli-
tudes we achieved a multiple-solitary-pulse made of N = 4
equispaced pulses which does not break down and is charac-
terized by a run-up about 30% larger than that of the limit-
ing pulse (see figure 5¢). A pulses amplitude has been used
of A = 0.5 and the pulses initial positions are respectively
at X = 1,2,3,4. Note that, altough the run-up pattern is
similar to that of a single pulse, figures 5b, 5¢ and 5d refer
to multiple-solitary-pulses i.e. to initial conditions such that
N = 4 different pulses are superposed each with a different
centre X ;. In section 3.3 a detailed analysis is reported in
order to establish a criterion which relates the mn-up shape
to the pulses initial separation.

Although it is possible to achieve a similar result by a dif-
ferent combination of ampliades and positions we find it is
not trivial to ‘tune’ these properties in order to get a large
run-up with no breakdown. For example breakdown occurs
by supetposing in the region 1 < X < 4 two or more pulses
of amplitude 4 = 0.6 or larger. This justifies the choice of
describing multiple-solitary-pulses by using a maximal am-
plitude of A = 0.5.

A better result can be achieved by superposing a large
number of pulses of small amplitude, Figure 5d shows a run-
up pattern very similar to that of figure 5c; however, this has
been achieved by using N = 7 pulses of amplitude A = 0.25
centered at positions equispaced of AX = 0.5 seaward of
X = 1. Comparison of the last two figures of 5 also illus-
trates a simple concept: a comparatively larger run-up can
be achieved by using a large number of small pulses densely
distributed (N = 7, A = 0.5 and AX = 0.5 case) than
using less, larger pulses more sparsely distributed (N = 4,
A=0.25and AX = 1.0 case).

A final consideration concerns the ‘nonlinearity parame-
ter’ A of equation (2.23). Paradoxically this decreases mainly
by increasing the number of pulses considered as N = 0.30
for the (A = 0.50, N = 4} pulses case which can be com-
pared with both the (4 = 0.25, N = 7) case (N = 0.20)
and the the (A = 0.50, N = 1) case (M = 0.40). This is
simply explained by noting that Max({v} = Max(n) increases
with IV faster than Max(n — v) = Max(u?/2) increases with
either A or N. Dependence of A on the pulses separation is
studied in the next section.

Note that choosing the conditions for the multiple-solitary-
pulses of figure 5 we contravened equation (3.35) as we used
A; = A; with X; # X;. For the above cases the appropriale
condition to avoid breakdown is (3.39).

3.3 Waves separation and groupiness

It is clear that if flow intensification depends on the inital
spatial separation among pulse peaks AX it is necessary to



34

Time

3 2 1 c -1 =2
Onshore coordinate

Time
> o o™ O

N

(@]

3 2 1 0 -1 -2 -3 —4
Onshore coordinate

Brocchini: Run-up of solitary pulses

Time

3 2 1 0] -1
Onshore coordinate

Time

3 2 1 g -1 -2 -3 —4
Onshore coordinate

Fig. 5. The patterns of free-surface elevation for solitary pulses. (a) Single limiting pulse of (4; = 0.81, X; = 4.), breakdown occurs during run-down;
(b) single pulse of (A1 = 0.5, X1 = 4.). (c) Multiple-solitary-pulse of N = 4 pulses. Each pulse has amplitude A = 0.5 and initial positions equispaced
of AX = 1 seaward of X = 1. (d) Multiple-solitary-pulse of N = 7 pulses. Each pulse has amplitude A = 0.25 and initial positions equispaced of
AX = 0.5. seaward of X = 1. Contour values increase from dark blue to white.

relate this distance to the already defined ‘equivalent wave
length’ L or, better to relate important flow characteristics to
the relative initial separation AX/L.

A somehow similar analysis has been performed by Sti-
assnie and Peregrine (1980) in their study of a train of ‘KdV-
type’ solitary waves (TSW) propagating in water of slowly-
varying depth. They considered some aspects of the wave-
wave and wave-seabed interaction in shallow waters and gave
an estimate of the relative importance of the two interactions
on the propagation of the train.

A simple approach is taken here in order to describe the
wave-wave interaction in view of the influence on the run-up
pattern. The easiest way would be to compare the separa-
tion (uAt)spore between peaks of inundation with the largest
wave length in the group (L) but often this is not signif-
icant in the very shallow water of the ‘swash zone’ (i.e. the
inundation region). Here peaks of run-up of each wave of
a group often coalesce to give one single large run-up pat-
tern making it difficult (or impossible) to define (#At) g ope.
This is particularly true when the group is made of pulses of
different amplitudes.

To overcome this problem we define a ‘groupiness param-
eter’ G = G(AX/L) such that:

— (R) group
g (R) pulse

where

(3.40)

— Rgroup = largest run-up of the group;
— Rputse = run-up of the single largest pulse of the group.

According to this definition as regards the run-up a group
of N pulses in shallow waters can be considered as made of
single, non-interacting pulses for G =~ 1 while increasing G
gives a measure of the increasing interaction or groupiness.

In corder to keep the analysis simple we have studied two
pulses interacting in shallow water in dependence of the rel-
ative initial separation AX /L. The two functions N and G
have been computed for different separations and the effects
of increasing/decreasing amplitude have also been taken into
account (parametrically). The results are reported in figure
6.

Figure 6a reveals that the nonlinearity parameter N\ is not
monotonically decreasing with the pulses separation as one
might expect. Rather, there is a critical separation (AX),
for which nonlinearities are minimized. This distance, which
does not depend on the pulse amplitude, is found to be

L
(AX)~ 5.

As Max(n) = Max(v) steadily decreases with increas-
ing separation the above behaviour must be due to the non-
monotonic decrease of u with separation. This is better ex-
plained by referring to figure 7.

(341)
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Fig. 6. Dependence of the nonlinearity parameter N (figure a) and the groupiness parameter G (figure b) on the relative initial pulse distance. Solid curves are
for A = 0.50 and dashed curves for A = 0.25. The dotted line in figure b shows the analytical expression G = 1 + sech8(AX/L).
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Fig. 7. Patterns of onshore (tow row) and longshore velocities (bottom row) for two solitary-type pulses of amplitude A = 0.50. Results for three different
pulse separations are reported from left to right: AX = (AX), — 0.15L, (AX)¢, (AX)c + 0.30L
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Here patterns of onshore velocity (top row) and longshore
velocity (bottom row) have been reported respectively for the
three pulse separations (from left to right) AX = (AX), —
0.15L, (AX)., (AX), + 0.30L for a pulse of amplitude
A = 0.50. Two main features can be immediately seen.

First of all for AX < (AX), coalescence between the two
pulses is almost perfect (figures ‘a’ of both rows and cases
of previuos section) giving a single run-up pattern in which
the onshore velocity (mainly during the back-wash phase) is
slightly enhanced with respect to that of a single pulse. This
is not the case for AX > (AX), (figures ‘C’ of both rows) as
the run-up pattern is more similar to that of two single pulses
(although separation is not complete) and the onshore veloc-
ity is slightly smaller than that of a single pulse. An even
smaller onshore velocity attains to the case AX = (AX),
for which there is destructive interaction mainly during the
back-wash phase (see case ‘b’ of the top row).

A second important factor is the monotonic decrease of
longshore velocity with the pulse separation (see second row
of figure 7). Clearly, interaction between the two pulses al-
ways increases the longshore flow.

Figure 6a also shows that for large values of separation
(AX > L) the parameter N’ converges to an asymptotic
value which is equivalent to that of a single pulse.

Figure 6b reveals at first glance that the definition (3.40)
for G is a sensible one as the same pattern pertains to two
very different pulse amplitudes. Although the definition of
G is quite general the nice dependence found for the specific
case of solitary pulse in shallow waters suggests to look for
an analytical expression for G. The dotted line in figure 6b
shows this analytical expression which reads:

G =1+ sech®(AX/L). (3.42)

Hence, the largest run-up of the group is a highly nonlinear
function of the initial dimensionless separation.

Groupiness monotonically decreases from a zero separa-
tion, where G = 2, to a separation comparable to the lenght
L. Clearly the largest value of G is related to the number of
interacting pulses (two for the specific case). For AX/L >
1 an intensification is found for the group run-up which is
about 5% of that of a single pulse. However, notice that for
a separation as small as AX/L = 0.5 a definition of groupi-
ness based on the run-up separation would already be impos-
sible (see strong coalescence in figure 8a).

Figure 8a refers to the condition for which the nonlinearity
parameter N attains the smallest value. As already seen for
this case interaction is such to reduce the onshore velocity
field even compared to the case of a single pulse.

On the other hand, figure 8b refers to a case in which the
groupiness parameter is almost 1 and the separation of the
single run-ups is such to permit use of (uAt)gpore to define
a groupiness parameter.

Finally note the interesting feature of this run-up pattern
which pertains to the ‘hump’ of free surface elevation just
seaward of the run-down position (i.e. for ¢t =~ 4). This is due
to the interaction of the back-wash of the first pulse and the
second incoming pulse. A similar pattern was already shown
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Fig. 8. The patterns of free-surface elevation for the interaction of solitary
pulses. (a) Case of (A = 0.5, AX = 3.) and (b) case of (A = 0.5, AX =
6.). No breakdown occurs. Contour values increase from dark blue to white.

by BP for non-breaking, standing waves. However, here the
‘hump’ is so large to be comparable with the elevation at the
run-up.

4 Summary and conclusions

In the present work we have shown how to obtain a weakly-
two-dimensional extension of a solution of the shallow water
equations for a non-breaking, solitary pulse incident and re-
flecting on an inclined plane beach which is similar to that
suggested by Synolakis (1987). The solution is given by
analytical means and allows for direct computation of the
main flow properties of solitary pulses which, approaching
the shore at a small angle to the beach normal, run up a plane
beach.

Although a general, theoretical model is suggested at least
two main examples can be mentioned of flows of which the
proposed solution can significantly improve understanding.
The first refers to the computation of the flow properties gen-
erated by tsunamis (and eventually the forces exherted on
coastal structures). The second concerns the analysis of the
flow properties of those wave groups, propagating from deep
to shallow waters, in which the primary waves, modulated by
a longer underlying modulation, behave like solitary pulses.
Depending on the group characteristics (groupiness) these
can either be considered as single-solitary-pulses for which
a well-defined run-up/back-wash pattern is identified or they
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can interact as a multiple-solitary-pulse solution.

For a single-solitary-puise, the longshore velocity v is very
similar to the free-surface elevation 5 for a large portion of
the considered domain. However, close to the shoreline, non-
linear contributions expressed as function of the onshore ve-
locity « can be regarded as perturbations of the patterns of ).
Intensity of nonlinearities have been measured in terms of a
nonlinearity parameter A", A pulse of limiting amplitude has
been introduced such that breakdown of the solution occurs
tor amplitudes larger than 4 = 0.81.

Breakdown of the solution is analysed for a multiple-solita-
ry-pulses solution. A strong condition is given which couples
information on both pulses amplitudes and distances. An
easier (but weaker) version of the criterion is given in terms
of a pair of decoupled formulae one for the pulses amplitudes
and the second for their initial positions. These conditions
can be used to assess the possible interaction conditions for
a group of solitary waves which, running up a plane beach,
can interact both with each other and with the swash motion
from previous waves,

Run-up intensification due to merging in shallow waters
of solitary-type pulses has been analysed. It is found that
under suitable conditions such that AX < L/2 it is possible
to achive a run-up larger than that of a limiting pulse without
reaching breakdown of the solution.

Influence of the initiat relative pulse scparation on run-up
patterns has been studied by introducing a ‘groupiness pa-
rameter’ G. It is shown that the definition is sound and it is
found that for the specific case of solitary pulses it is possible
o give an analytic expression for G. Finally, it is shown that
noniinearities which characterize the solution can be mini-
mized by putting A X = L /2 the initial pulses separation.

Since the presented solution for the run-up of non-breaking,
multiple-solitary-pulse is an ‘easy-to-use’ tool for predicting
the inundation properties of a train of solitary waves research
work is in progress for applying the solution to the modelling
of extrerme wave trains which are to be built on the basis
of both experimental observation and of guasi-deterministic
theories of sea wave groups. Clearly the above analytical ap-
proach is not to be applied to breaking waves. In that case
results of run-up intensification and wave separation are ex-
pected to differ from those here described.

A second field of application of the weakly-two-dimensio-
nal solution for solitary-type pulses could be the estimation
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of the forces exherted in the longshore direction on coastal
structures.
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