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Abstract. The behaviour of the error growth is
analyzed in several eimple examples of systems
with external time-dependent foreings. In some
systems oscillations of the exror around the
paturation level can be ocbserved. A common
feature of these examples ig the error growth
dependence on initial time. In the examples
here coneidered the improvement in the
predictability derived from an adequate choice
of the initial time is comparable to those
obtained by reducing the initial errors.

1 Introduction

The genaral question of atmospheric
predictability has gaigned increasing attention
during the 1last years. The evolution of
atmopspheriec flow is governed by nonlinear
aquations, whose solutions exhibit sensitive
dependence on initial conditions. Some initial
errors, large or small, will amplify and, after
some time, render completely unreliable any
forecast., Predictability is analyzed by the
error budget that describes how fast forecast
errors grow on average. A number of studies on
error growth have been carried out using
atmospheric models of varying complexity, from
the simple analytical red-noise atmosphere
(Fraedrich and Ziehmann-Schlumbohm, 1994) to

simplified general eirculation mocdela or
operational weather forecasting models
(Schubert and Suarez, 1992; Lorenz 1982;

Dalcher and Kalnay, 1987).

Atmospheric dynmamics is an example of
nonautonomous aystem with time-dependent
external forcings. The incident radiation,
driving the large s8gale motion of the
atmosphere, is a periodic phenomenon. 1In
climate dynamics the situation is even more
compelling. The periodic wvariations of the
orbital parameters sBeem to be one of the
fundamental causes of climate change. We want
to study the incidence of these time-dependent
forcings in the theory of error growth. In
particular, in this paper, we shall concentrate
on some simple examples that can serve as a
guide for more general studies. Despite the
simplicity of the models we can obtain several
interesting conclusions. The first one is the
fact that some time-dependent systems do not
obey the usual dynamicse of the error growth,
that is, an initial stage of exponential growth
followed by saturation. We show that in the

case of the red-noise atmosphere with time-
dependent terms the errors undergo, in the
mean, an initial stage of exponential growth,
but followed now by osc¢illations around the
saturation level of the autonomousg system.

A second conclusion derived from this study
is the dependence of the error growth on the
initial time &, (the time at wich initial
conditions are imposed) . Error growth
dependence on several factors have been clearly
established in many studies. These factors are
the initial error size (Trevisan, 1993), the
weather regime and the location on the weather
manifold {Keppenne and Nicolis, 1989). If the
choice of the initial time modifies the
analytical structure of the error growth, then
t, can be viewed as a parameter playing an
active role in predictability theory. In
particular, the time necessary to reach the
predictability 1limit will in general be
different for different initial times {(even
supposing the size of the initial error mimilar
in both cases). We show that in one of the
models congidered in this paper the improvement
derived from an adequate choice of the initial
time is comparable to those cbtained by the
reduction of the initial error size (the
analysis error in operative weather forecasting
models) .

The plan ¢f the paper is ag follows. In Sect.
2 we study the impact of a time-dependent
forcing in systems that obey the Lorenz law for
error growth. In Sect. 3 the red-noise
atmosphere with periodic forcing is analyzed.
FPinally, in the Discussion the main phyasical
ideas involved in these models are considered.

2 Lorenz‘s law for error growth

The first attempt to deduce a law of error
growth from real atmospheric data ie found in
the work of Lorenz {Lorenz, 136%). In the mean,
the errors underge an initial stage of
exponential growth followed by saturation. As
it turna out, this trend can be represented in
a gqualitative manner by a quadratic law, the
logistic equation for the mean error X

ax _x3 i
3t A(Xx-X?y, (1)

provided that the parameter A is
adjusted.

suitably
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Fig. 1. Mean error X as & function of the dimensionless
time T=Gt. The msolid, dashed and dash-dotted lines

represant, regpectively, the geolutions of Bq. (7) for

I°=g.1 and T,=0, X,=0.1 and T =1z, and X =0.066 and

T,=0.

Let us consider an autonomous system

dx,
dt
whose mean error growth follows Lorenz’s law.
Equation (2) can represent, for example, the
model used by Trevigan et al. with small
initial errors {(Trevisan et al., 19%2),

Now, we introduce a periodic forcing in Eq.
(2)

= £,(x,), (2)

dx,
dt
with N the amplitude and w the frequency of
the forcing.

Introducing the new
dr=(1+Nsinwt)dt, Eqg. {(3) reads

= £;(x;) (1+Nsinwt), (3}

variable

dx;

ar " fixp)- (4)
Now the mean error will ohey the equation

dx 2

- = A(X-X 5

o =aAx-xh, (5)

equivalent to

% = A(l+Nsinet)(X-X%). (6}

The a&olution of Egq. (6)
condition X(t))=X,6 is

with initial

I(t) =

1 NA. M
1+(~"— wlJexp(—Jl(t—t:o) +——=Ycosut —cosmto))] .
X, w

Figure 1 showa this solution for two
different values of the initial dimensionless
time T=wt, T,=0 and ¥,=n. The numerical values
used for the constants are A/w=0.8, N=0.25 and
X,=0.1 (the initial error gize is supposed to
be equal in both cases}. At a given
intermediate time after imposition of initial
conditions the two c¢urvea reach different
valuea of error growth. The difference can be
large, for instance, for T=3 the valuea of the
error are (.65 and 0.45, and for Ted 0.79 and
0.66, respectively.

These differences

imply different
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Table 1., Predictability times derived from Eq. {8) for
different values of the predictability limit {X* from 0.2
to 0©0.8). Tha horizontal lines 1, 2 and 3 rafar,
respectively, to the initial conditions X,=0.1 and T =0,
X -0.1 and T,-n, and X,-0.066 ana T,=0.

2 03 04 05 06 07 08K

1 09 14 19 23 2K 33 40

2z 1.2 20 24 28 34 427 4B

3 1.3 18 27 32 37 40 4R

predictability times. The predictability time
t" is defined as the time it takes for an
initial error X, to reach a preassigned value
X". This definition can be expressed in a
mathematical form as

(x)? -

1 ., NA N (8)
1+(E;—1)exp(ﬂat +—Z;(cosm(t03+t ) —cosaty)|.

This equation cannot be solved analytically.
In Table 1 we include the predictability times
for different values of X'. In all the cases
the difference between both predictability
times ie important.

Finally, in order to compare the
predictability improvements derived from the
raduction of the initial error size and from
the choice of the initial time, we include in
Fig. 1 and Table 1 the error growth curve and
predictability times for T,=0 and initial error
2X,/3. We deduce from the curve that the error
growth for T,=m and X, 1s smallexr for
intermadiate times. In particular, the
predictability times for X'=0.5 are 2.8 and
3.2 (2.3 for T,=0 and X}, that is,
improvements of 22% and 39%, respectively. From
the predictability point of view a good choice
of the initial time ir comparable to a large
{1/3) reduction of the initial erreor size.

3 Red-noise atmosphere

Time geries observed in the atmosphere are
characterized by some of the properties of red-
nolse processes. Because of thisg similarity the
red-noise atmosphere has been used in many
studies as a subgtitute of the real atmosphere.
Recently Fraedrich and Ziehmann-Schlumbohm
(Fraedrich and Ziehmann-Schlumbohm, 1994) have
developed a predictability experiment in a red-
nolise atmosphere. By examining the lead-time-
dependent error budgets of individual and
engemble forecasts, thege authors derive
analytically various measures of
predictability. Despite the simplicity of the
model, the error budgets share some qualitative
features that may be compared to those of
numerical weather-prediction amd climate
models.

In this paper we extend the model of thesge
autheors by including a temporal dependence in
the red-noise process. The dynamics Y. =Y(t}
consist of a deterministic part and an additive
random part z,

b 4 = rn--lf,n—.l."zn' (9)

where
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£, = a+becosfw(nin,}], {10}
and a and b are constants. n, indicatesz the
time at which the process starts. The index n
takes the values 0, 1,....

The Gaussian white-noise z, has zero mean
<z >x0, variance 8,°=<z,’> and vanishing crossed
correlations <z z,>=0 if n is different from m.
We also suppose that Y, and z; are
gtatistically independent variables, <z,¥. >=0.
«<» referas to the sample average.

Equation (9) can be expressed in terms of the
initial condition Y, as

Yn = YOHD,n 1+zn+Ez: zix.{,nflf (11)
where
Hy o= £,.6,...£ {12)

is the product of the f's between i and j.

3.1 Persistence forecasts

A first approach to the problem of
predictability is provided by persistence
forecasts. Persistence predicta the future

states Y,, using the initially given state Y,.
The error budget of persistence forecasts {s
described by the evolution of the error
variance E =< (Y, -Y )?>, where the ea.mple average
is taken over all the verification pairs. Afterx
simple statistical manipulations E_, becomes

E, =~ A S;+B,SI, (13)

where A= (1 Ir!nnl)2 B, =1+X51 Hi,,, : and 8=« (Y, -
<Y, >} r=c¥ > i{s the 'initial variance of the
varlable Y {(we suppose a zero mean <Y, >=0}.

In Fig. 2 we represent Eq. (13) for two
different values of the initial time n,, n =0
and n,=n. We have taken for a and b the values
0 9 and 0.4. The variances are 5,°=0.6 and

+=0.3 and the frequency i ©=0,85. Moreover
I:he third curve in the figure shows the same
process with b=0, that is, with no temporal
dependence.

The three curves show an initial stage of
exponential growth. The two time-dependent
systems have important quantitative
differences, for inatance, we have for n=2
E.(n,=0)=1.3 and E,(n,-m)~0.98. Thesae
differences are also reflected into the
predictability times. In systems with a
discrete time variable the predictability time
n" is defined as the larger value of n for
which the error is smaller than a preassigned
predictability limit. For instance, taklng the
predictabillty limit as 1 wea have n°(n,=0)-=1
and n*(n,=r)=2. In many studies the variance
8, serves as a predictability treshold aad,
consequently, is taken as the predictability
limit. With this choice of the predictability
limit we would have the same predictability
timege in both cases. The behaviour of
autoncmous and nonautonomous systems differs
when the error of the autonomous process
reaches the paturation level. At this stage,
the systems with time dependent forcings show
an oscillatory behavicur around a level close
to the typical saturation 1level of the
autonomous system. The two oscillations are
gimilar, showing only a phase delay between the
values of the two curves, This is a large value
of the amplitude if we compare with the value
of the saturation level 1.14. Moreover, the
maximum and minimum values of the error at this
stage are equal for both choices of the initial
time, 1.41 and 0.97.
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Pig. 2. Brror growth E, ag a function of time n. The aclid,

daghed and dasgh-dotted lines represent, respectively Eq.
(13) for n =0 and N,=" (nonautonomous systems) and b=0
{autonomous system}.

3.2 Ensemble-mean forecasts

Now, we consider the error budget of ensemble-
mean forecasts of a model with an external time
dependent forcing. We denote by F;, an
individual forecast by one member of the
ensemble forecast (i=0,1,...,M-1). For a given
field wvariable Y, the error budget is
determined by the sample average of the squared
forecast errors

<(¥,[F]1)%> = <¥)> 1 <[F; 17> -2<¥, [F,]>. (14)

The square brackets [] define the average
over the lagged forecast ensemble:

(F) =Y, Fi/M. (15)

To calculate the error budget we musat
introduce realizations of the individual
forecasts F;

1
Fi =Y, ;o *wi* )y Willsin- (16)
The w'as are introduced to differentiate

between noisges in the verification (Y) and
ensemble-forecast building mode (F,). The
initial condition (Y.} is the same for both
modes.

We study separately the three terms in the r.
h. 8. °f§ Eq. (14}.

1) <Y¥i>. This is the simpleat term and the
calculatlon follows just the same steps of
those done in the former subsection:

<¥i> = SiH) .. ¢ 32{14 Ty Hlan) (17)

Note that this formula :is Valid gor nzl. For
n=1 we have H, =f and <Y¥;> =SI£Z+87.
2) <[F}*>. This term can be written as

<[F]% = % L <Fl> + —):" Yy <FiF>. (18)

The term <Ff> is given by an expression
similar to Eq. (17} with obviocus changes. On

the other hand, <FF,> (j>i) can be eapily
calculated
<F,F> = §¢H, , oj1+

{19)

S7(1-8,,)H, FE s: ko1 Hk,i—lxk,j-].'
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Fig. 3., Same as Fig. 2, but for Eg. {21}.

& ias Kronecker‘s delta. Note that because the
index kzlies in thezinterval (1,%—%) we, have
<F F ,>=Syf,, <F F,>=Syf f,, <FF,>=Sgf,f +5.f ...
We use the notation H,, . ,=1.

3) <¥_[F]>. This term is also very simple and

gives

1 -
(Yn[F]D' = T‘s!’zxo,ngl 1=; Ho,.l.-l‘ (20)

Putting together all thepe expressions and
collecting separately the terms in the two
variances we can calculate the error budget

E,=A,S; + B, 8}, (21)

where

1 “1
Mz f -0 o,i-1

. 2

A, =Hypn1 t +

{22)
2 -1 2 -1
;FE::O Ejn‘ B, ia8s 51 ~ FHMHJ .0 Ho, 117

and

- 1 -1 2 1 -1 -1 F]
By =1+ M ' E:'—l Bina * I‘"EELD F-1 Hii1
2 -1
+?E:o Eja-i (1-8,.)H, 4, (23}

2 - .
+FE:=: EM ):;i By i oy j.1-

The error budget is shown in Fig. 3 for
a=0.8, b=0.15 and w@. The variances are Sy-=1
and §.;=0.3. The third curve represents the
autonomous process, b=0. The analysis of this
system follows closely these presented in the
previous subsection for perasistence forecasts.
The following featuresg can be deduced from the
curves. We observe again an initial stage of
exponential growth. Taking the variance S§; as
the predictability 1limit the predictability
times are n’(n,-0)=2,n"(n,~n)=3 and n*(b=0)=2.
After this initial stage we ocbserve again an
oscillatory behaviour of the error in the
nonautonomous system. An important difference
emerges when one compares to the case of
persistence forecasts. As remarked earlier, the
ocgcillations in persistence forecasts have the
same amplitude, and maximum and minimum values
for both choices of the initial time. However,
in ensemble-mean forecasts only the amplitude
of the oscillations is egqual, approximately
0.34. The oscillations lie now in different
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intervals, (2.2, 1.52) for n_ 0 and (1.94,
1.26} for n,=n. Taking into account that the
gsaturation level for the autonomous system isg
1.68 we have that the error curveg of these
pystems are most of the time, respectively,
above and below the saturation level.

4 Discussion

We have presented an analysis of the dynamice
of error growth in nonautonomous asystems. The
analysis is restricted to some very simple
examples. The study of systems with time-
dependent forcings can be justified from, at
least, two points of view. Firstly, because
atmospheric and climate dynamics are examples
of nonautonomous dynamics driven by external,
periodic forcings. Secondly, from a purely
error growth theory point of view, the time-
dependent terms are also necessary. For
instance, Nicolis has suggested (Nicolis,
1952), that the logistic-like models of error
growth must be augmented by time-dependent
forcings in order to reflect the coupling of
the error dynamice with the structure of the
phase space.

In spite of the simplicity of the models here
conpidered, the results obtained can be viewed
ags a preliminary step in the study of error
growth in nonautonomous systems. Two principal
conclusions have been derived from these
models:

1) In the initial stage of exponential growth
the error dynamics is =sensitive to the choice
of the initial time. As the predictability
limit is reached at this stage, the different
guantitative behaviours for differemnt initial
times imply a dependence of the predictability
time on the initial time. This result justify
the view of consider the initial time as an
active parameter in error growth theory. This
dependence of the arror growth on initial time
can be easily understood by taking into account
the fact that at different initial times the
external forcings are different. We are placed
at different regions in the mathematical space
of external perturbations, and the respective
error dynamics are modified. Moreover, the
numerical estimations of Sect., 2 show that in
some cases the improvement of the
predictability time obtained by an adequate
choice of the initial time is comparable to
those obtained by a large reduction of the
initial error. As we shall discuss in the next
point, the error dymamics at the second stage
will alsc depend, in general, on the initial
time.

2} Autonomous and nonautonomoug systems
undergo an initial astage of exponential growth.
Therefore, in spite of sBome quantitative
differences, the underlying dynamics must be
equivalent in both cases and must be dominated
by the autonomous terms. After this initial
stage the behaviocur of both types of systems
is, also qualitatively, different. Instead of
the saturation =stage typical of autonomous
systems we cbserve in some nonautonomous models
an oscillatory behavicur. Note that the model
considered in Sect. 2 does not show these
oscillatione. Thig behaviour can be easily
understood taking into account the type of
temporal forcing introduced. The temporal term
multiplies the right hand &#ide of the
differential egquation and, conseguently, the
equation can be factored. We can see the
temporal term as a modification of the
mathematical measure of the variable time. We
cannot expect that this simple modification of
the system can modify qualitatively the error
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dynamics.

The oscillations exhibited by nonautconomcus
systems can be explained by the contribution of
several terms to the error dynamics. The
autonomcus terms contribute to the dynamics
gtabilizyng the error and constraining the
error variation to a finite interval {instead
of a saturation level). On the other hand, the
nonautonomous terms introduce an ocscillatory
temporal dependence on the error growth. A
parameterization of the error growth that
reproduces its main properties at this stage is

E, = ESL + Acos (9n + ¢), (24)
where ESL is the effective saturation level,
defined as the level around which the error
ogcillates. Q,¢ and A are the freguency, phase
delay and amplitude of the oscillation.

For persistence forecasts and n_=0 and n,-m
Egq. {(24) reads 1.19%+0. 22coa(n/7+2 43) and
1.194+0.22coa{n/7+2.86) . The two following
features are noted:

(a) The effective paturation level differs
from the saturation level of the autoncmous
pystem. This difference reflects the coupling
between the autonomous and nonautonomous terms
in the error dynamics. This coupling is a
consequence of the nonlinearity of the system.

(p) The phase delay depends on the initial
time. This dependence can be viewed as a
manifestation of the fact that the system
reachs the second stage at different times as
a function of the initial time.

The parameterizations of the error growth in
ensemble-mean forecasts at this second stage
for n,~0 and n,=n are 1.86+0.34cos(n/7+2.14)
and 1.6+0.34cos(n/7+1.57). Now, the effective
saturation level differs for different initial
timeas. This difference reflects that the
coupling between autcnomous and nonautonomous
terms depends on the choice of the initial
time. In the case of persistence forecasts, the
forecast is always the same, Y., £for any
initial time; the coupling is independent of
the initial time. On the other hand, in the
case of ensemble-mean forecasts the members of
the ensemble are, in general, different and the
coupling can depend on the initial time.

The c¢onclusions obtained with the simple
models here presented must be tested with more
complex and realistic systems. In particular,
the amplitude of the error oscillatione
obtained in this paper are large because of the
large ratio b/a (deterministic
autonomous/nonautonomous terms) used. In
realistic models we must expect amaller
amplitudes. Also, we must study systems with
geveral simultaneous periodic forcings, as it
ie the case in atmospheric and climate
dynamics.
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