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Abstract. The dynamics of weakly nonlinear wave
trains in unstable media is studied. This dynamics is
investigated in the framcwork of a broad class of dy-
namical systems having a Hamiltonian structure. Two
different types of instability are considered. The first
one is the instability in a weakly supercritical media.
The simplest example of instability of this type is the
Kelvin-Helmhoaltz instability. The second one is the in-
stability due to a weak linear coupling of modes of dif-
ferent nature. The simplest example of a geophysical
system where the instability of this and only of this
type takes placc is the three-layer model of a stratified
shear flow with a continuous velocity profile. For both
types of instability we obtain nonlinear evolution equa-
tions describing the dynamics of wave trains having an
unstable spectral interval of wavenumbers. The trans-
formation to appropriate canonical variables turns out
to be different for each case, and equations we obtained
are different for the two types of instability we consid-
ered. Also obtained are evolution equations governing
the dynamics of wave trains in weakly subcritical media
and in media where modes are coupled in a stable way.
Presented results do not depend on a specific physical
nature of a medium and refer to a broad class of dy-
namical systems having the Hamiltonian structure of a
special form.

1 Introduction

I'he methods of Hamiltonian formalism are extremely
fruitful for investigating wave field dynamics in stable
media. By using the Hamiltonian approach Zakharov
(1974) investigated the processes of evolution and in-
teraction of wave trains in dispersive media for a broad
ctass of physical systems. He considered these processes
from a general point of view, no matter what the spe-
cific nature of a medium is. The principal idea of the
theory he developed is a transformation from physical

variables of a problem to normal canonical variables.
This transformation is related to a fundamental system
of eigenvectors of the corresponding linearised problem.
Tor description of weakly nonlinear dynamics and res-
onant interaction of wave trains one should calculate
first several coefficients in the expansion of the Hamil-
tonian in powers of normal variables. Ignatov {1984)
and Goncharov and Pavlov (1993} applied this Hamil-
tonian approach for investigation of waves in instable
media. Romanova (1994) developed Hamiltonian meth-
ods for investigation of waves in the region of marginal
stability. She considered the weakly nonlinear wave dy-
namics in the framework of a broad class of dynamical
systems subject to some constraints. She showed that
the transformation to normal variables is improper in
the region of marginal stability, for it leads to a break-
down of the accepted approximation of weak nonlinear-
ity. It is due to normalization of eigenvectors by the

quantity \/%2, where DHw, k) is the left-hand side of
W

the dispersion equation, and w is the cigenfrequency re-
lated to a certain mode, and this quantity tends to zero
in a vicinity of the points where the two eigenvalues co-
alesce. The paper by Romanova {1994) suggest the way
to introduce appropriate canonical variables in the re-
gion of marginal stability, where different roots of the
dispersion equation are close or equal. Based on these
variables the evolution equation for a wave-packet of
marginally unstable waves is obtained. Bul consider-
ation of marginally unstable wave-packets 1s of purely
theoretical interest, since they are usually masked by
more rapidly growing modes with wavenumbers in the
linearly unstable range. Of greater interest 1s the con-
sideration of unstable wave trains in weakly unstable
media, when the range of wavenumbers is narrow, and
the growth-rates of these unstable modes are small. In.
this case we can investigate the wave dynamics within
the weakly nonlinear framework.

The aim of our investigation is the derivation of evolu-
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tion equations for weakly unstable wave trains in weakly
unstable media. We assume that wave-packets are nar-
row and belong to the range of linear unstable wavenum-
bers. For the derivation of the evolution equations it
is important to distinguish between two types of linear
instability. The first type is the instability caused by
weak supercriticality of a medium. In this case a small
parameter depending on characteristic parameters of a
medium enters into equations for wave perturbations.
This parameter can be positive as well as negative. The
basic state of a medium is unstable for negative values
of it, and stable for positive ones. At the critical point
of instability when this parameter is equal to zero, we
have algebraic instability, i.e. the perturbations grow
linearly with time.

The other type of a weak instability occurs due to a
weak coupling of modes with different energy signs. In
this case a small parameter specifying weak coupling of
modes enters into equations. If this parameter is equal
to zero, we have two intersecting modes, and no alge-
braic instability takes place. The consideration below
will be carried out for two well-known geophysical mod-
els exhibiting these types of instability, although, obvi-
ously, it can be generalized to other cases as well. The
cxample of instability of the first type is the Kelvin-
Helmholtz instability of a plane vortex sheet. Consider
the basic flow of incompressible inviscid fluids in two
horizontal parallel infinite streams of different velocities
and densities, one stream above the other:

_ Uz, Z'>O, - P21z>0:
U_{ U1,2<0, p_{ pl:z<03

where u)  are flow velocities, and py » are densities in
the lower and upper streams respectively, and z is the
vertical coordinate. Here and in what follows we assume
the Aow disturbances to be two-dimensional. The hori-
zontal coordinate along the flow will be denoted by z. It
is well-known that if the surface tension ¢ is taken into
account, the condition for instability of the basic flow is

— 1
Uy : w2y V2= 5 (M) Vil =)o (1)

prpz

If (1) does not hold, the waves are neutrally stable. If
the value of |u; — us| only slightly exceeds the critical
value 2V, (weakly supercritical regime), the growth rate
of this instability is small, and the interval of instability
in the k-axis is narrow.

The second cxample is the three-layer model of an
inviscid stably stratified shear flow considered in detail
by Gossard and Hooke (1975), Goncharov (1986), and
Romanova (1996). The profiles of the unperturbed flow
are

fa, z > h: U, > hs
p=14 pu, lzl<h, U=< uzfh, |z|<h, (2)
Pl, 2 < #h': —u, £ < _ha

where p3 < p» < g1, which means that the density
stratification is stable. The velocity profile is contin-
uous in this model but the vorticily experiences jumps
at the interfaces. The instability in this model 1s not of
the Kelvin-Helmholtz type. As will be explained later,
it occurs owing to the coupling of two stable modes
with different energy signs (see Ostrovskiy et al. (1986),
Whitham (1974)), Ignatov (1984). As one can see in
Figure 38.4 by Gossard and Hooke (1975), the region
of instability is narrow, and the growth rates of pertur-
batjons are small, if the model parameters having the
sense of the Richardson number are large enough. We
show that the dispersion equation in this narrow region
of wavenumbers k has approximately the same form as
that for the K-H weakly unstable waves. However the
evolution equations describing the weakly nonlinear dy-
namics of a wave-packet with the wavenumber spectrum
comprising the narrow interval of instability are differ-
ent in those two cases. The matrix which determines
solutions of a linearised systern has the form of the Jor-
dan box in the first case and is close to a diagonal one
with equal eigenvalues in the second one. It leads to the
different canonical structure of equations for these two
cases.

The rest of the paper is organised as follows. In Sec-
tion 2 the nonlinear Klein-Gordon equation is derived on
the basis of the developed Hamiltonian approach. This
equation governs the evolution of weakly nonlinear and
weakly unstable supercritical wave-packets in sub- or
supercritical media of K-H type. Section 3 conta'ns the
derivation of equations governing the nonlinear wave-
packets in the region of weak coupling between modes
with the same of opposite energy signs. Section 4 is con-
cerns with the algebraic instability in the media of the
K-H type.

2 The derivation of the nonlinear Klein-Gordon
equation describing the dynamics of a weakly
nonlinear wave-packet in a weakly sub(super)
critical Kelvin-Helmholtz flow

The dynamical equation for nonlinear wave-packets in
the Kelvin-Helmholtz model was first obtained by Weiss-
man (1979). Here we present a new Hamiltonian ap-
proach to the derivation of evolution equations for the
wave-packets in the region of instability of the K-H type.
Clearly, all the results are valid not only for the K-H
instability, but for all the systems where the weak insta-
bility takes place for a single mode.

Benjamin and Bridges (1997) have shown that the sys-
tem of evolution equations describing the Kelvin-Helm-
holtz instability has the following Hamiltonian form:

dH §H

= = ——, 3
"= Sty L on(tz) @
where 7(t,z) is the height of the disturbed interface,
which we assume to be a single-valued function of the
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horizontal coordinate z, and ®(t, z) = (p1¥1—p2¥2)|z=x,
where p1 2 and ¥, 3 are density and velocity potential
in the lower and upper layer respectively. In terms of
the Fourier-transform system (3) is written in the form:

S 8k =~ (4)

where the dot indicates the time derivative. The dynam-
ical system (4) can be rewritten in the form considered
by Remanova (1994):

J(k)y (k) = —5—;%, 5)

nk ) = z5r

where y(k,t) = (®(k,1), n(k,t)). The condition that
the initial variables n(t,z) and ®(¢,z) are real can be
written as y*(k,t) = y(—k,¢).

The matrix J(k) has the canonical form:

(V5

It is the particular case of the general class of the
Hamiltonian systems considered by Romanova (1994}
with the structure matrices J (k) subject to the following
conditions:

J(ky = J(=k), J7(k) = —J'(k) (6)

The first term in the expansion of the Hamiltonian
with respect to dependent variables has the following
form:

Hy = § [{A(k)®(k)2" (k) + 2iB(k)D(k)n" (k) -
7
+C{k)n(k)n™ (k) }dk.

Here and in what follows the region of integration is the
entire real axis. The quantities A(k), C(k) and B(k)
are rea) and are subject to the following conditions:
A(k) = A(-k), C(k) =C(=k), B(k) = —B(—k).

An alternative form of equation (7) is

Hy =g [(y( k0 BRI (E Ok, (8)
where
) Alk)  —iB(k)
h =
iB(k)  C(k)

The dispersion equation related to the linearised prob-
lem is

det (h — @wJ) =0, (9)

and the solutions of this equation are

ul;'z:B(k):l:\/A(k)C(k). {10}

In the case of the Kelvin-Helmholtz model the coeffi-
cients A(k), B(k) and C(k) are
B(k) = pPrtitpats gy _Hﬂ:
P+ p2 p1L+ P2

i _ 2
Clk) = _—_Plp‘;}fi p:‘z) k| + gAp + ok?,

where Ap = p1 — p2. The eigenfrequencies for the K-H
linear problem are

Pt patg
wiz = k————
p1+p2

prpz(uy — ta)? ) |&|
é = Ap+ ok? — k .
\/(g P M+ e d AN

In what follows we use the Boussinesq approximation
to simplify calculation. Under this approximation we
have the following expressions for the eigenfrequencies

+ 4,

(11)

wip= kLE 02P K+ TR ViR, (12)
' 2 2p 2p

where

K=1k|, Ap=p1-p2,

U — U _ Pt

g PT T

The eigenfrequencies wj  are complex if the radicand
is negative. Let us consider expression (12) for the fre-
quency w at the point kg where the radicand is equal to
zero. This is the critical point of instability. The point
ko is equal to \/gAp/e, and the critical valuc of the
shear flow velocity V. is defined as V2 = \/goAp/p*.
Let us introduce a small deviation AV = V - 1, of a
shear flow velocity from its critical value V.. We con-
sider the region of wavenumbers close to wavenumber
ko. Let k = kg + %. Then for small values of k/ko and
AV/V,. the frequency w in a vicinity of the wavenurnber
kg is given by the following expression:

V =

w1,2 :wgd:signké, wp = wo + VK, (13)

where

) + Uz
2

If the flow is weakly subcritical, then AV < 0, and the
eigenfrequencies are real. If it 1s weakly supercritical,
wi 2 are complex conjugates in a vicinity of the critical
wavenumber ky and the K-H instability occurs. The
growth-rate of this instability is small, and the region of
instability in the k-axis is narrow. The following results
concern the general systems described by equations of
the form (5) and having retained the first term of the

=

1. .
, 8= \/ﬁchmz —2V.AVEE, wo = vko.
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Fig. 1. Dispersion curve for the Kelvin-Helmholtz flow: a) a
weakly subcritical case; b) a weakly supercritical case, exponential
instability

Hamiltonian expansion in the form (8). Returning to the
dispersion equation (10), we assume that the radicand
turns to zero at a certain point &y and in a, vicinity of this
point the dispersion relation has the form (13), where

d = /Alko + 5)Clke + £} &/ VE (52 — bk2).

Here & = k — kg, and b is a small intrinsic dimensionless
parameler of a wave systemn which can be varied. Posi-
tive values of b refer to the unstable casc, and negative
values to the stable one. For the K-H problem this pa-
rameter is equal to b = 4AV/V, ie. itis proportional to
the deviation of a shear velocity from its critical value.
The two typical forms of the dispersion curve for the
K-H problem are shown schematically in Figure 1. The
first one corresponds to a weakly subcritical, and the
second one to a weakly supercritical flow.

Following the approach suggested by Romanova (1994)
we Introduce the new variables a(k, t) by using the fol-
lowing transformation:

(14)

y(k,t) = Z(k)a(k,t) + Z*(—k)a" (—k,1), (15)
where the vector Z(k) is defined as

[ Z k>0,
=) = { Za k<0,
and

Z; + 2. 71— 2
o= lgl,zﬂ:aIQQ, (16)
where o = . Here wy o are eigenfrequencics that

Wy —wp

are determined from the linearised problem (3) and Z1,2
are eigenvectors related to these eigenfrequencies and
determined from the following system of linear algebraic
equations:

(fl - ?:UJI’QJ)Z]_IQ =0 (17)

H

Romanova: Hamilronian approach to the derivation of evolution equations

We are going to consider wave-packets with a narrow
interval of wavenumbers centred on the point ks, We
assume the flow to be slightly sub or supercritical. The
eigenfrequencies are governed by equation (13), where &
is defined by equation (14). One can easily see that w, —
wz = 2signkd. Eigenvectors of the lincarised problem
are

21,2 = ((Lidsign k/A) ey 2, c1,2),

where ¢y ,3 are arbitrary constants. We assume that the
eigenfrequencies are closc to each other in a vicinity of
the point %y, i.e. the radicand Alkg)C(ko) = 0 at the
central point. We use the following properties of eigen-
frequencies and eigenvectors: in the stable case, when
w1, are real,

wi2{—k) = —wi2(k), 2] (k) = 71 2(k),
and
(2], J23) = (23, Jz1) =0,

2id sign k

®

(Z;,JZ1)= 2 c1cy, (18)
2idsign k
(53, J72) = ———F""cse;

in the unstable case when w; and wy are complex con-
Jugated,

Wi (k) = ~w(k), 73(=k) = 7 (k).
and

(23, J21) = (23, Jz2) = 0,

24dsign k

(23, J22) = ———=—c{ez, (19)
2idsign k
(25, Jzy) = — 22BN E

A

On substituting the transformation (15) into {5) we
obtain the following system:

a1
bll bl? d(kst) m
= — , (20)
bo1  bao d'(—k,f) i
da* (k)

where the coefficients b;; of the structure matrix are
equal to

bii(k) = (2(-k), JZ(k)),
bl?(k) = (Z(*k)» JZ*(_'I")),
bar(k) = (Z7(k), JZ(k)),

baa(k) = (Z*(k), J Z*(—k)),
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or, otherwise,

’ C(*
— (7 = 23), Tz + 22)), k>0,
bll(k’) =
44
| i@ +23), J(z1 — 22)), k£ <0,
“E (@ 7), lm —2)), k>0,
bia(k) = .
[ 7 +23) I (21 +22)), k<O,
. (22)
2z +23), J (21 + 22)), B> 0,
bak) =4
T2 - 23), (3 —m)), k<0,
o * *
_Z((Zl +Z2), J(Zl - Zz)), k > 0;
boafk) =

a*
(= 23), T (a4 22), k<0,

Using the properties of eigenvectors (18}, (19), and as-
suming the arbitrary constants to be ¢; = ¢} = iV A, we
abtain that the coeflicients of the structure matrix are

b11 = bgg = 0, b]g = b21 = —'iSig[lk, (23)

for both the stable and unstable regions. Here we as-
sumed that the quantity A is positive, as it takes place in
the K- model. If A is negative, the coeflicients bya, b2
would change sign. Tt follows from (23) that system (20)
can be written in the form:

o §H ‘
G.[k) = —s1gn k‘m (24)

This equation was obtained by Goncharov and Pavlov
(1993) for unstable waves and by Romanova (1994) for
marginally unstable ones.

The first term of the expansion of Hamiltonian H in
powers of dependent variables a(k) is

- () (e

Our next step is the calculation of components h; ; of

the transformed matrix ky,. By using equations (17) we
obtain the following equations:

- + & . %1 + Z1 —Z

ftal 9 Z—IJ [Lu‘()( 12Z2)+6< ! 2 2)]:0,
2 . Z) + %2 z) — 72 _
h 5 —1J[5< 5 >+wg( 5 )]—0,

w1+ wa

W) —Wwa .
where wp = and § = ——-=_ Turning to new

variables (16), we obtain

hZ, — iJ(woZ. +822,) = 0,

. (26)
hZ, — iJ(woZa + 2} = 0.
It follows from equations (26) that
(27, hZ.) = two(Z:, JZe) + 102 (2], T Za),
(22, hZe) = iwe (22, JZ.) + (27, J Zs),
(27)

(22, hZ.) = iwo(Z2, J Z) + 18227, T Z4),

(22, hZ,) = iwo(Z2, JZa) + i( 25, T Z.).

The components of the transformed matrix hye are

—(Z2,hZ,), k>0,
h{k) =

(ZX hZ,), k<0,

(2%, hZ,), k>0,
hlg(k) —_

(2} hE,), k<0,
(28)

(22 hZ.), k>0,
hyy (k) =

(2 hZ,), k <0,

—(Z5,h2,), k>0,
hzg(k} =

(Z3 hZ.), k< 0.

Using equations (19) and (27), we obtain the follow-
ing expressions for the components of the transformed
matrix ke that define the quadratic Hamiltonian H,
written in new variables a(k):

hn = hgg =Wy sig;n k,

1,k >0,
hig =— §2 k<0

82 k>0,
hn==3 | k>0

Let us introduce the quantity (k) such that:

8%k > 0

hai (k) = hia(—k) = Q(k) = _{ Lk<?

Then the expression for Hy (25) becomes:

Hy = [ P(k)dk,

N . (29)
P{k) = —égsignka(k)a(—k) + e+ Q(k)a* (k)a(k).
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Our next step is in taking nonlinearity into account.
As was shown by Zakharov (1974), the nonresonant cu-
bic terms Hj in the expansion of the Hamiltonian H
can be eliminated by an appropriate canonical transfor-
mation. Assume that this transformation is performed
and the third-order terms in H are absent. The fourth-
order term describing self-action of a wave-packet has
the following form:

Ha= [ W(ki, ko, ks, ka)a(ky)a(ka)a® (ks)a® (ke)s
(30)
(5(1&‘1 + ko — kg — k4)dk1dk2dk3dk4

To obtain the coefficient W (k1 k3, k3, k4) one should cal-
culate the third-order as well as the fourth-order terms
in the expansion of I7. The other terms of the fourth or-
der in our expansion of the Hamiltonian are nonresonant
and can be omitted.

So, we present the Hamiltonian H in equation (24) as
the sum of the term H» of the form {29) and the term
Hy of the form (30). As a result we have the following
equations;

-

—
by

~—
N

~iwy(kYa(k) — isign kQ(~k)a" (k)

—sign k—m— 6H4
(31)

—iwg(k)a™(—k,t) — isign kQ(k)a(k)

isign k §H

—isign k———,

o S ()

where the last terms describing the self-action of the
wave-packet we write down as

§H,

ot (k) Wl(ko)/P(kxklakz,ka)dkldkgdk;.;,

§H
J___a(_-ak) = W2(k0)fp(k,k1,kz,k3)dk1dk2dk3.

Here

P = a(kl)a(k-z)a'(kg)d(kl + kg - k3 - k)

Hy
da(-k)
dH, .

and ;SE(“-T')’ for they are of smaller order with respect
to the parameter of nonlinearity, as is shown in what
follows. By expanding wg into a series with respect to
# I a vicinity of the point ky and leaving the two first
terms of ihe expansion we write wg = g + Vk. Then
we extract the central frequency Wwq by introducing the
new variable A(k, t} in equations (31):

We omit the other terms in the expressions for

a(k,t) = exp (—dwgt)A(k,1),

a’(—k,1) = exp (—dwyt)A* (—k,1).
Now we introduce the new designations A({(k¢+ ), 1) =

Ar(x), A*(—(ko + &), 1) = A3(x), and assume kg to be
positive. Then equations (31) can be written as

a . )
(at + 1V|‘C) Al = 2A2 — 'EWQ*
fA] (kl)Al (kQ)AI(ks)J(E + k‘] — kg - kd)dkldkgdk&

8 - ,

8t+2VK. Aq =16 Ay — W x

[ Az (kYA (ko) Ay (k3)d(ky

where

- kQ - )'C3 - K)dk‘ldkgdke,,

6% = VE(x? — bk2).

The inverse Fourier transform of A, A, with respect to
& leads to the following equations:

((fz + Vaa ) Ar(x) = idy = 2miWa| A Ay,

(E?t Vo ) Az(z) = -1V (6822 + boko) (32)

- 27F'iW1 |A1 izAl.

The small dimensionless parameters in our dynamical
systern are those of sub or supercriticality b and of non-
linearity e. In the case of K-H instability the latter is
g = nkg Let the relation beween these parameters be
b s e?. Then we introduce the suitably scaled variables:

Al IEﬁl, Ag =62A~2, X =£r, T:E't, b:EQbO.

Equations (32) can be rewritten in these variables as

8 8 - o
( + 8X) Al(X T) IAQ - Eﬂ'EngAl'zAl,

(—63-+v£(>,42(x T) = (33)

2
*1V2 (8?{2 + bgk ) Al - Q?TEW”A IzAl

All the terms are of the same order in this systemn. The
last term in the first equation of (32) is omitted in (33)
being of higher order in . This makes it possible to
exclude one of the dependent variables and to obtain
the well known nonlinear Klein-Gordon equation:

a a 5, a - -
(ﬁ—FCla_X:) (6T+Cz )Al—ﬂ/h

—27TW1 Ifil |2/i1 = 0,

(34)
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where C1 =V — Vo and Cy = V + V), and 3 = kZViého.
Here 7" and X are slow temporal and spatial coordinates
respectively. Equation (34} was obtained by Weissman
{1979) for the K-H instability. It arises also in the prob-
lem of the buckling of elastic shells. For details see Dodd
et al. (1982) and Craik (1985).

Returning to the K-H instability, we obtain the fol-
lowing expressions for the coefficients in the linear part

of (34):

O = uy (1—%)+1¢2(1+%),

1 i
Co=w [1+—= ) +u (1——),
T ( ﬁ> ARV
where u; — 12y = 2V, and 3 = 2V.k3AV/e?. To ob-
tain the nonlinear cocflicient Wy, the calculation of the

Hamiltonians Hs and [{4 in terms of variables a(k) is
Necessary.

3 Nonlinear evolution equations for weakly cou-
pled modes

Now we turn ourselves to investigation of another type
of weakly unstable media, where the instability is'caused
by a weak coupling of modes. Our consideration is based
on the second example of a geophysical model described
in Section 1. This is the three-layer model of an inviscid
stably stratified shear flow with continuous velocity pro-
file considered in detail by Goncharov (1986), Romanova
(1994), and Romanova (1996).

As was shown by Romanova (1994), the dynamical
system in this case can be written in the form (5) with

Y(k) - y*(_k) - (‘Dl(kat)> nl(kﬂt): CD?{kat)t n2(klt)):

where 7;(k,t) is the Fourier transform of the j—th dis-
turbed interface, and ®;(k,t) is the Fourier transform of
the difference in velocity potentials in two neighbouring
layers taken at the j-th interface. The structure of the
matrix J(k) is not canonical

J{k) = ( Jlék) J?_[()k) )

where the second-order matrices J;(k) are

0= o)

where vy = —V/h,v; = V/h. One can easily see that
J(k) obeys the constraints defined by equations (6).
Note that the Hamiltonian structure of the system
written in these variables is not canonical. In the case of
weak nonlinearity the Hamiltonian H can be expanded
into a series with respect to n; and @®;, and the first

term of this expansion Hs, corresponding to the linear
problem, is specified by equation (8), with the matrix A

kl/2  —iVik 4 0
R 'lVlk g.)\'i —+ Vli/l 0 0
i = (35)
Y 0 lk|/2 —iVok
0 0 iVak  gAz + 10 Ve

Here

A= (p1 = pa)/p1, Az = (p2 — p3}/p2,
and Vi, = =V, V5 = V. The parameter < is equal to

1
v =5kl exp (=2lklh).

The fourth order dispersion equation specifying the eigen-
frequencies w of the linearised problem is described by
equation (9) with the matrix h given by equation (35).
This leads to the following dispersion equation:

ig, Tk _k"‘Ql 0 0
=0, (36)
¥ 0 |%1/2 {2,
0 0 _ig, P2 _k""Q?

where (1, 2 = w — V) 9k. The eigenvectors of the lin-
earised system can be determined from the following
system of algebraic equations:

(il — iij)ZjZO.

It is easy to see that dispersion relation (36} can be
written in the form:

Dl(w‘k)DQ(w)k) = 72(k)! (37)
where
. _(IE %
DJ(W)k) - ( 2 E )
and
9N Y
bJ - Qj L (38)

The equation D;{w, k) = 0 is the dispersion relation
for the mode related to the j-th interface when the cou-
pling is neglected. It could be checked that if the roots
of dispersion equations D} = 0 and D; = 0 are well
apart, the mutual influence of modes is negligible and
the dynamics of wave trains can be considered without
taking into account the mode coupling. Now let us see
what happens if the dispersion curves related to each in-
terface treated separately intersect at the point (wq, ko),
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Le. if Dy(wo, ko) = 0, and Dy(wp, ko) = 0. We consider
equation (37) in a vicinity of the point (wo,ks), and
let w = wp+ A, and k = ko + «, where Afwy « 1 and
k/ko € 1. Also we substitute k = &q into the right-hand
side of equation (37), and take into account that the dis-
persion curves cross in the region of large wavenumbers,
Le v (ko)/kE < 1.

Expanding the functions Dy and /24 into a series in a
vicinity of the point kg, we obtain the following equa-
tion:

e

A? — Aterean?— — 1
(c1 + ca)kA + erean DDy

=0, (39)

which has the solution:

¢j = =Dy (wo, ko)/ D, (wo, ko)

is the group velocity of the j-th mode treated separately
without coupling at the point (wo, kg). One can easily
sec that the frequencies Ay 5 take complex values if the
quantities [y, and Dj, have different signs. As was
shown by many authors (see (Ostrovskiy et al., 1986),
etc), the sign of the gquantity Dw specifies the sign of
wave energy for the modes described by the equation
D=0

So, instability occurs if the dispersion curves for indi-
vidual modes crossing at the point (wg, ko) correspond
to modes of different energy signs. If the signs of I,
and Ds,, are the same, i.e. the wave energy is positive or
negative for both waves, the roots of the dispersion equa-
tton are real and the waves are stable, but the modes
change their identities.

Let us denote
e atke) )

'\/-Dlw (kU)DQM (k‘o)

The dispersion relation of the complete system in a vicin-
ity of the point {wg, kg) can be written as

2
fc:l:\/(cl—2~c—2> k2 + 5%, (42)

where the minus sign in the radicand corresponds to
the unstable coupling of modcs, and the plus sign corre-
sponds to the stable coupling which leads to the change
of modes identities (See Figure 2).

The approximate dispersion relation in a region of
weak instability has the same form as the dispersion
relation for waves in the Kelvin-Helmholtz model (see
{13)} in the case of weak sub or supercriticality. Nev-
ertheless the evolution equations describing the dynam-
ics of a wave-packet in the spectrally narrow intcrval of

¢+ ¢
Wi = wg + 7

A
w

+
X
|
v +

Ry
N

Fig. 2. Figure 2. Dispersion curve for a weak coupling of modes:
a)the stable coupling, modes change their identity; b) unstable
coupling; the signs are those of wave energy

instability is quite different from the nonlinear Klein-
Gordon equation, as we will show below.

It is clear that in the case of weak coupling between
modes the normal variables are inappropriate because
of the instability, as was shown above, and the variables
connected with the notion of the adjoint vector are inap-
propriate also. To construct the appropriate canonical
variables we will introduce the variables connected with
the eigenvectors of the linearised systemn where the weak
coupling is ignored. The canonical variables obtained in
such a way are not normal ones, i.e. the quadratic part
of Hamiltonian A, docs not have a diagonal form in
these variables, but the discreapancy of H, from diago-
nal form is small. Let us denote the matrix & defining
the Hamiltonian H; in the absence of coupling (v = 0)
as hg, and consider the elgenvectors z; of the linear prob-
lem without accounting for mode connection:

(ho — tw; J)z; =0 (43)

The four linearly independent cigenvectors of the linear
algebraic system (43) have the following form:

20"y = ($M(wrs), "V (wi2), 0, 0)
= (ei'), icl"}/bi(wi), 0, 0),

2.) (0, 0, 6@ (wy, 2 7 (g 2))
(0, 0, ‘3(1251 1'Cl 2/52 (w1.2)),

(e} are arbitrary constants and b, are delined by

. We introduce the Vectors

where ¢
Fquatlon (38

Z: (k)= {
2% k>0

) k< 0.

It is easy to show that

() , k>0,
(k) = { (1) k<o,

k>0,
(1) k<0,
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(2)
w zZ, ', k>0,
ZZ( k) { %A} k<0

The coordinate form of these vectors 1s

2, = (zil), zgl), 0, 0),

= (0,0, 27, 2.

The transformation from the vector of dependent vari-
ables y(k) to the vector a{k) connected with the eigen-
vectors of the uncoupled problem has the following form:

y(k) = Zy(k)ar(k) + Zi(—k)ai(—k)

+Zy(k}as (k) + 25 (—k)az(—k),

or otherwise

y(k) = Z(k)a(k),

where

a(k) = (a:(k), a7(—Fk), az(k), az(—k)}).

The transformed matrices defining the Poisson structure
and the Hamiltonian Hg have the following form in the
new variables a(k):

Jor = Z (=) J(R)Z(R), hee = 2 (—k)R(K)Z(R).
The transformed matrix Ji, is

/By 0
Jtr - ( U B;g ) '
where components of the matrices B; are
Zi(—k), J; (k)Z; (k)

bY) = (Z;(=k), J;(R)Z3(=K)),

bgjl) =

b5 = (23 (k). J;(k)Z; (k)),

b = (23 (k), J;(R)Z; (k).

7

Using the properties of eigenvectors corresponding to
uncoupled modes, we can show just as il has been done
by Romanova (1994) that

aDP (P)
an

where J}; 1s the Kronecker delta, and

(277 (K), TP (k)2{" (K)) = Prone,

oD, 2% 4 @)k

B bg.” 2

If we assume the arbiirary constants to be

(v __ (9Dp "
EA (3%') ’ (44

the matrix Ji, takes the canonical form, and

BI:B2:<_OI. 6) (45)

It follows from (45) and (5) that the dynamical system
written in the variables a(k) has the standard form

§H

sk =ty

(46)

Dynamical equation (46) is quite different from equa-
tion (24) which describes the dynamics of weakly unsta-
ble wave-packets in the K-H model. This equation was
obtained by Zakharov (1968) to describe the dynam-
ics of the stable waves in normal variables. However
the matrix hy. which defines the quadratic Hamiltonian
H, written 1n new variables does not possess the nor-
mal form, for the eigenvectors zt(Q) are not normal with
respect to our complete system, where the small param-
eter of mode connection + is taken into account. Omit-
ting calculation, we write down the matrix b in the
following form:

ril . niltl) ‘YFl
tr — 7F2 ]'_‘1(2) 3

where the matrices F; and F1 are

SRICBRI0)
Fi(k) =

20" (k)P (k)
Fy(k) = F}(—k).

Using equation (44), which leads to

j 1
(k) = ———,
Dy, (k)

we obtaln
( fir fiz )
Fl(k)i -
far o fon
(47)
( VILERDLE /DB )
Di |

k) Dy, ()

Nate that all the terms in the matrix F(k) are real,
for we always choose those branches of the dispersion
curve for which signs of adiabatic invariants are positive,
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i.e. Dw'(k) > 0. The matrices AY) have the following
components -~

R = (Zi(—k), RO (k)25 (k) = 0,

RY = (Zi(—k), RO (R)Z3 (=)

. iwg{)(zgj:),lf(j)zgj:)), k>0
w2 7020 k<0
(J)

RS = (Z3(k), RO (k)25 (k)
iwg‘f)(zg), J(j)zgj:)), k>0
ing)(zgj),.](j)zg”), k < 0

_ wi(f), k>0 _ ()
- { walf), k<0 = Q0 (k),

R = (Z3(k), D (K)Z2 (k) = 0.

As a result the quadratic part of Hamiltonian Hs has
the form

Hy= [(3;_, QU (k)a;j(k)al (k)+
(49)
(i (Kaz(R)ar (~k) + for (K)aa(k)a (k) + c.c.))dk
On substituting the Hamiltonian H in the form
H=Hy+e*Hy+ .,

where H; is defined by equation (49), into equation (46),
we obtain the following system:

—iy[fa1 (k)az (k) + faa(k)as ()],
. (50)
az(k) = —i2(k}a; (k) — zcia;(k)
—iy[far(k)ai (k) + fri(k)a} (—k)],
and
aj(—ky = i(—k)ai(—k) + iaaf{f}k)
+i‘r[f1l(k)a2(k) + le(k)ag(_k)]r
(51)
a5(—k) = in(—k)ag(—k)+iWi(fffk—)

+ir[Frz(k)ar () + fra(k)as (—k)].

The cubic term Hj in the expansion of the Hamilto-
nian is omitted for we assume that there are no reso-
nant terms of this order. We also assume the canoni-
cal transformation excluding nonresonant terms to have
been performed. But the resonant term H4 of the fourth
order responsible for the self-action of a nonlinear wave
Is always present. The transformation excluding the
nonresonant tcrm H3 does not change the structure of
the resonant term H. but tnfluences the interaction co-
efficients. We consider the case when the coupling of
different modes is weak, and as a consequence the terms
with coefficients proportional to the small parameter of
connection -y can be neglected in the nonlinear terms.
It follows then that H4 can be written in the form:

Hy =5 [(Wi(ky, ko, k3, ka)ar (k1)ar (k2)a] (ka)ad (kq)
+Walky, ko, ks, ka)as(k1)aa(ka)ay(ka)ad(ka))*

d(ky + ko — k3 — ka)dkdkodkadk,

Apparently, if we take a wave-packet centered on a cer-
tain point where dispersion curves of the linearised sys-
tem are far apart, we can neglect the terms propor-
tional to 4 for their consideration does not contribute to
the slow modulation of a wave-packet in this case. As
a result we obtain the standard nonlirear Schridinger
equation from equations (50) and (51) for each mode.
The matter changes if we consider the dynamics of a
wave-packet from the interval of wave-numbers where
the linear resonance between modes takes place. There
are two types of such a resonance. The first one cor-
responds to the case when the eigenfrequencies of the
two modes considered separately coincide at a point kg:
(ko) = (ko) = Q. The second type of a resonance
takes place when the equality € (ko) = —$2(—ko) = Q¢
holds.

Let us consider the first case. We introduce the new
variables A; (&, t) by extracting the central frequency §2g:

a;{k,t) = exp(—iQt)A; (k, 1), {(52)

and write down the equations for A;(k,t) which foliow
from equations {50, 51):

- : . dH,4
A(k) = =i (k)AL (k) — i
1( ) 1 lk( U)K' 1 ) z&AY(k)
—i7 21 (ko) Az(k),
(53)
- : . §H
Ag(k) = = i, (ko)rAa(k) --zm(‘*k)
2

—iyfa1 (ko) A1 (k).

Here we neglecied small linear terms that are not reso-
nant and all the terms but linear in the expansion of the
functions €2;(k) in a vicinity of the intersection point k;
with respect to k = k — k;. We denote the quantitics
£2., (k) as ¢jgr. They have the sense of the group veloci-
ties at the point kg for each mode considered separately.
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Now let us turn to the coefficient fi;(kq). As was
shown by Romanova (1994), the method we have used
for the construction of our canonical variables demands
the expressions 1] (ko) and 77, (ko) to be positive. Re-
call that these quantities have the meaning of adiabatic
invariants for each mode considered separately. It fol-
lows from (47) that

1 1

= V/Diu (ko) /Dy (ko)

Let us introduce the quantity s = - fa; (ko). On sub-
stituting the expression for Hy4 into equations (53), we
obtain the following system of equations:

Far(ka)

Ak, 1) = —icigerdy (k, 1) — is Ay (k, 1)

— Wy [ Ri(ks, ks, k3, &)dk; dkodks,
Aslk,t) = —icagrAa(k, 1) — isAL(k,1)

— Wy [ Ra(ky, k2, ka3, &)dk dkodks,

where
Ry = Ay (k) A (k) AT (ka)d(ky + ko — k3 — &),
Ry = Aa(ky)Aa(k2) AT (ka)d{ky + ko — k3 — &),
and
Wi,2 = Wi al(ko, ko, ko, ko).

Now we assume the small parameter s defining the weak
coupling of modes to be of the order of €2 and con-
sider the “slow” time T = te? and the "slow” coordinate
X = ze?, where ¢ is the small parameter of nonlinearity.
We perform the inverse Fourler transform with respect
to the variable K = x/¢%?. Then we introduce the pa-
rameter S = s/e? and as a result we obtain the final
system, all the terms of which have the same order:

aA aA . :
TFI + Clgra—)(l et ﬁSAg — 27{'1W1|A1|2A1 = 0J
(54)
3Aq dA; ,
F =+ C’Qgr—af — ESAJ_ — 271'2W2|A2|2A2 =0.

As can be easily seen, the dispersion equation related
to the linearised system (54) has the form (42) with the
sign "plus” in the radicand. This case corresponds to
the stable situation when the coupled modes interchange
their identities.

In quite a similar manner we obtain evolution equa-
tions in a vicinity of a point ky in the second case, when
the equation €1 (ko) = —Qa(—k¢) = € holds. Then the
coupling of modes causes instability, as will be shown
later. In this case it follows from equations (50) and

{51) that (the nonresonant linear terms are omitted}):

a(k) = —ih(k)ai(k) - iéi?;:)
—iy faz (ko)ah(—k),
aj(—k) = —i(—Qa(-k)}as(—k) + i(jai(i_qk)

+iv faz(ko)ar (k).

The following procedure for deriving the evolution
equation is quite similar to that performed above for
the stable case. By analogy with the transformation
(52), we extract the central frequency €2 and introduce
new variables A(k,t), B(k,t) having the sense of slowly
varying amplitudes of our wave-packets:

ay(k,t) = exp{—iQot) Ak, 1),
ay(—k,t) = exp(—1Qdot) B(k,1).

As a result we obtain the following evolution system:

dA
o= T Cigr

77 —iSB - 2niW1|A|*A = 0,

dA

10,4
(55)

aB 8B . 9

W + ngfa—X + iSA + 2W1W2|B| B =10

Here we introduced the quantity S = 7 fa2(ko)/e? where

the coefficient fqsp is

1 1
fulko) = = Vo ko).

The group velacities of uncoupled modes at the point kg
are

~ Qs (—ko).

So, the evolution equations (55) describe the dynam-
ics of wave-packets in the region-of unstable coupling
between modes, when the uncoupled modes which cross
at the point kg have different energy signs.

Clgr = Qik(—ko), Cogr =

4 Algebraic instability in the framework of a
single mode

As we can have demonstrated, the evolution equations
have quite a different form in the case of the Kelvin-
Helmholtz instability and in the case of the weak cou-
pling of modes. The reason is that the intrinsic structure
of dynamical equations in a region of weak instability is
quite different for these two cases. In both of them we
have a small parameter, in the first case it is a devia-
tion of a velocity jump in a shear flow from its critical
value (parameter b), and in the second case it is the
parameter s defining the weak coupling of modes. In
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both cases the two eigenfrequencies coincide at the cen-
tral point of a wave-packet if the parameters are equal
to zero, but the structure of eigenvectors turns out to
be quite different. In the first case we have the eigen-
vector and the adjoint eigenvector corresponding to the
multiple value of the eigenfrequency, and in the second
one two independent eigenvectors belonging to different
subspaces correspond to this eigenfrequency, i.e. the in-
tersecting modes become uncoupled and independent.
In the first case (the K-H instability) two waves remain
coupled if b = 0, i.e. when the parameter of supercri-
ticality is equal to zero, and they cannot be considered
separately. That is why we can speak about mstability
in the framework of a single mode. From mathematical
viewpoint, we cannot find the appropriate transforma-
tion reducing the matrix & which specifies the quadratic
part of the Hamiltonian, to the diagonal form. It has
the form of the Jordan box at the point kg and the form
close to it in a vicinity of the wavenumber ko, Any other
transformation will lead to a bad normalization and will
destroy the approximation of weak nonlinearity.

So, if we consider the instability in the framework of a
single mode, as is the case with the Kelvin-Helmholtz in-
stability, we perform the transformation connected with
the eigenvector and the adjoint eigenvector. This trans-
formation results in the canonical structure in the form
of (24). Note that if the matrix describing the Hamilto-
ntan in the linearised system has the form of the Jordan
box at the point kg, the result is an algebraic insta-
bility, when one of dependent variables grows linearly
with time. It leads to the different order of variables
with respect to the small nonlinearity parameter when
we consider the nonlinear problems. But if we consider
the instability due to the weak coupling of modes, the
situation is quite different. If the parameter of coupling
1s equal to zero, the matrix defining the Hamiltonian
of the linearised system is diagonal with equal eigenfre-
quencies. There is no instability in this case.

Now we turn to an algebraic instability. Let us con-
sider the linearised Kelvin-Helmholtz weakly subcritical
problem problem in the stable case for a single harmonic
component. Then the equations follow from (32):

Ar(k, 1) = iAy(k, 1),
_ {56)
Ag(k t) = is® Ay (k,1).
The linearised problem for the waves in the region of a
stable coupling of modes is
Ay (k,€) = —isAy(k, 1),
. (37)
Aok t) = —isA; (k,1).
Both the cases give us the same equation:
Al + S%A] =1.
The sclution of system (56), subject to the initial data
A1(0) = Ajg, Az(0) = Ase,

has the foliowing form:

Ay(t) = Aygcos(st) ~ +Ag sin(st),
(58)
Az(t) = sAygsin(st) + Ay cos(st).

As we can see, the quantity 4,(t) grows up to a defi-
nite value having the order of s=!, and the second vari-
able A.(t) does not grow with time. The first variable
A;(t) grows until the fraction Az(t)/A1(£) has the order
s, then it stops growing. So, at the initial stage the so-
lution grows linearly with time up to a definite value,

“and if 5 tends to zero, we obtain the lincar growth up

to infinity. In the casc of the stable wave coupling the
solution of system (57) has the form

A1(t) = Argcos(st) — Aggsin(st),
(59)
Ag(t) = _AIO Sin(.‘if) - Azg CDS(SI).

No growth is observed for the case of stable coupling of
modes. There is no threshold instability in this case.

5 Discussions

In this paper we have outlined the general approach to
the derivation of evolution cquations for weakly nnsta-
ble wave-packets propagating in unstable media. Three
types of weakly unsiable wave-packets could be distin-
guished. The first type is a wave-packet centered at the
point of marginal stability, when the instability in the
medium is strongly supercritical, and the neighbouring
interval of linear instability is large compared to the
spectral width of the wave-packet. In the general case
the evolution equation for such wave-packets was ob-
tained by Romanova {1994). For the Kelvin-Helholtz
type of instability this cquation was derived by scveral
authors {see Craik (1985)). This equation has the samc
form as the well known nonlinear Schrédinger equation,
but with the roles of X and T interchanged:

2

The second case which was considered in this paper
1s the case of a weak intramodal instability of Kelvin-
Helmholtz type. The purpose of our investigations was
the derivation of evolution equations governing the non-
linear dynamics of wave-packets enclosing the spectrally
narrow interval of unstable waves. This derivation was
performed based on the introduction of canonical vari-
ables valid for the region of a weak instability in the
framework of a single mode. As a result we obtained
the well known nonlinear Klein-Gordon equation,

The third case also considered is : weak instability due
to weak coupling of modes having different elergy signs.
The evolution equations have a quite different form in
this case. This is the system of the two coupled nonlin-
ear Schrodinger equations. We cannot exclude one of the
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dependent variables for they have the same order with
respect to the parameter of nonlinearity. T'he suggestion
made by Romanova (1994) that the unstable waves in
the region of weak coupling of modes are described by
the nonlinear Klein-Gordon equation is erroneous.

The purposc of our further investigations is the deriva-
tion of evolution equations for three-wave resonant in-
teractions involving the weakly unstable mode. The case
when this moede in marginally unstable is considered by
Romanova (1998). In this case the three wave resonant
amplitude equations have the form:

A.I.T = A; :';1
A'ET = AIASJ
Azrr = —iATAY — T|A3]%As,

where A; » are the amplitudes of stable waves, and Ag
is the amplitude of a marginally stable wave.

The amplitude equations in two other cases 15 the sub-
ject for further investigation.
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