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Abstract. A one-dimensional form of the equation of motion
with forcing and dissipation is formulated in the spectral
domain and used to make long term integrations from which
the spectral distribution of the kinetic energy is determined.
The forcing in the wave number domain is determined in
advance and kept constant for the duration of the time
integrations. The dissipation is proportional to the second
derivative of the velocity.

The applied equation is made non-dimensional by selecting
a length scale from which the time scale and the velocity scale
may be determined. The resulting equation contains no
parameters apart from the forcing. The integrations use a
large number of spectral components and no approximation
is made with respect to the non-lincar interaction among the
spectral components. Starting from an initial state in which all
the velocity components are set to zero the equation is
integrated for a long time to see if it reaches a steady state.

The spectral distribution of the kinetic energy is determined
in the steady state, and it is found that the distribution, in
agreemenl with observational studies, may be approximated
by a power law of the form n? within certain wave number
regions. The wave numbers for which the -3 power law
applies is found between the region of maximum forcing and
the dissipation range.

The intensity of the maximum forcing is varied (0 see how
the resulling steady state varies. In addition, the maximum
nuimber of spectral components is varied. However, the
available computing power sets an upper limit to the number
of components.

Introduction

The spectral distribution of the kinetic energy has been inves-
tigated in observational and model studies. The author {1967)
found that the dependence on the longitudinal wave number
for the eddy kinetic energy could be approximated by a power
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law of the form n in a certain interval of wave numbers
between the wave number of maximum conversion of eddy
available potential energy to eddy kinetic energy and the
smallest wave number in the dissipation range. A simnilar
investigation by Horn and Bryson (1963) had suggested a
power law with a coefficient closer to -8/3. The -3 power law
was confirmed by independent data studies by Julian et al.
(1970), Kao (1970) and Kao and Wendell (1970). An
expansion of the observational studies to a spherical domain
using a two-dimensional index was carried out by Chen and
Wiin-Nielsen (1978).

Lilly (1969) made several numerical integrations of the
two-dimensional, nondivergent vorticity equation with forcing
and dissipation and found the -3 power law for wavenumbers
larger than the wave numbers for the forcing. He found also
a ditferent -1 power law for wavenumbers smaller than the
forcing wave numbers. The power laws have also been
investigated in otiter model simulations as for example by
Barros and Wiin-Nielsen (1974),

At aboul the same time as the first observational studies
were published Kraichnan (1967) and Leith (1968}
investigated the inertial or cascade ranges in two-dimensional
flow. Leith (1971) used the results to dectermine the
predictabilty of two-dimensional flows. Charney (1971)
generalized the theory to the large-scale, three-dimensional,
quasi-geotrophic tlow in the atmosphere and gave thus a
better reason for the observed -3 power law. Charney used g
continuous vertical variation of the parameters, but Merilees
and Warn (1972) pointed out that if one used a discontinuous
representation given by a finite number of levels the results
were modified, especially if the number of levels were at a
minimum of just 2 levels.

The interest in turbulence studies created by the papers by
Kraichnan and Leith (loc.sit.) continued by studies of a large
number of so-called shell models. These models and their
behavior are summarized by Ditlevsen (1995) and used for
many purposes by Jensen (1992). Since it is impossible for
practical reasons to include all the nonlinear interactions tfor
the full three-dimensional equations of motion and at the
same time include many spectral components, it has been
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attempted to reduce the interactions to those between a given
wave number and its immediate neighbors in the spectral
domain. At the same time it is attempted 1o include a very
large range of wave numbers by dividing the total in shells in
which the number of wave numbers in each shell is
represented by a single wave number, and in which the waves
numbers per shell increases by a factor of two when going
trom one shell to the next. These rather severe assumptions
may limit realistic applications of such models, but some of
the results are impressive.

In the present investigation we shall use a more direct
approach by including as many spectral components as
possible and make a full determination of all nonlinear
interactions. This is made possible by restricting the problem
to one dimension in space as was done in most observational
studies where the wave number is the number of waves in the
longitudinal direction. The other variations with latitude and
height were averaged out in the data studies.

The basic equation applied in this study is Burgers equation
with a forcing added to the classical cquation. Burgers
equation (Burgers, 1974, Fournier and Fritsch, 1983)} without
forcing may be transformed to a lincar diffusion equation
using a nonlinear transformation u=-2v¢ Y@ where the prime
indicates differentiation with respect to x, (Hopf, 1950). In
view of the fact that the transformed equation is linear,
solutions of the diffusion equation are easily produced. Some
of these solutions are produced without forcing, while others
include a forcing added to the diffusion equation.
Applications cover many physical areas as described by
Lesieur (1995).

In the present case we are interested in the spectral
distribution of the kinetic energy when forcing is applied in
Burgers equation. When the Hopf transformation is applied
the forcing term will appear in a term that is the product of the
integral of the forcing with respect to x and the new variable
. Due to this product the resulting equation must in general
be solved using a spectral approach similar to the procedure
described in the following sections. Nothing is therefore
gained by making the transformation in this case, particularly
because the transformation back to the original velocity field
is also nonlinear.

The basic equation.

As mentioned in the introduction we use a one-dimensional
equation. It has the form:

Su  Bu Yy Fu
g nt =ty
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The term ug/T has been written in this form to secure that ug
has the dimension of a velocity. T is the time scale. 1t will be
determined below. We may also mention that this particular
term is an expression for the gradient of a geopotential field
{-d¢p/6x) which is constant in time. Eq. (2.1) may therefore
also be considered as the equation for the velocily changes
created by advection and by the influence of a geopotential
field, constant in time, und modified by friction. To obtain the
equation in the spectral domain we write the series given in
(2.2). We could naturally include the cosine terms in the
series, but we have prefered to keep the equations as simple
as possible. It we prefer to think of the constant geopotential
field it would have to be given as a sum of cosine terms.

Inserting the defined series in (2.1) it becomes necessary 1o
pay special attention to the only nonlinear term: the advection
term. It has been calculated by Wiin-Niclsen (1976).

HRAX

U= Z u(n)sin{nkx)
n=1

ARAX (22)
U= Z u,(n)sin{sikx)

k=1

k=2n/L

The spectral equation is given in (2.3), see also the
appendix.

dil(:) =5 {n)-5,{n}+ ME—T(,H) ~vk*n u(n)

nmax-n

S, () =Yk E nul(gqiu(n+q) 2.3

n=l

n-|

S,0m= ’/zkz quieu{n-g)

n=1

In the equation k= 2 /L, where L is the length of the
channel. The next step is make equatdon (2.3) non-
dimensional. For this purpose we replace the variables by new
nondimensional variables as given in (2.4).

uln)=Un(n)u~ Lu {n) - Tt 2.4)

Note that we usc the same notation for the dimensional and
the nondimensional quantities. Making the replacements in
(2.3) we find that the coefficients become unity if we select
the values given in (2.5). The final equatton is given in (2.6).
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T=—~1r~;U=2vk (2.5)
vk?

du(n)
dt

S, (1) =S, (1) +u (1) -1 *u(n)

HIRCLX 1

§,(n)= Z nu(qguieg v (2.6)

g=1
-l
Sz(n):z qulqiu{n-q)
g=1

It is seen from eq. (2.1) that the mean value of u is
conserved over the interval [0:L] when u is either periodic
over the interval or u vanishes at both ends of it. The same
holds for eq. (2.6) because each term in the two sums is
cancelled by an identical term with the opposite sign. For
details of the cancellations see Wiin-Nielsen (1986). These
conservation laws are important for any comparison with
shell models in which conservation laws are used to
determine the coetficients in the equations, see for example
Wiin-Nielsen (1997} in which a shell model is designed using
the conservations of the mean value and the kinetic energy.
Another example may be found in Ditlevsen and Mogensen
(1996) in which a shell model is designed using the
conservations of kinetic energy and enstrophy.

Numerical integrations of the model.

The model requires a specification in advance of the
forcing ug[n]. It can be done in many ways. We shall mostly
use a definition in which ug[n| has a maximum for n=n,
simulating the scale of maximum conversion of cddy
available energy to eddy kinetic energy. It is known from
observational studies that this maximum is found in the region
of maximum baroclinic instability, say n=7, corresponding a
wavelength of about 4000 km in middle latitudes.

It is for numerical reasons impossible to cover all
wavelengths from the largest to the smallest in an integration
of eq. (2.0). As the largest wavelength we may select L =
10000 km. Such a wavelength is for normal vertical wind
shears in the region of weak baroclinic instability. Suppose
that we wanted to cover all scales down to 10 km. In that case
the largest wave number would have to be 1000. Such an
integration is very difficult to complete because it will take an
extremely long time. We shall rather adopt the same point of
view as used with three-dimensional prediction and climate
models which are restricted to the larger scales. For n,, =100
the smallest wavelength will be 100 km. Such an integration
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may be performed in a reasonable time. Most integrations to
be described will use the above or smaller values for the
largest n. The main point is that the largest value of n should
permit a sufficient interval between n, and n,,, in which we
would hope to find an inertial range.

The integrations of the ordinary differential equations is
carried out using the Heun scheme. Considering the scaling
1o non-dimensional equations it was found necessary to use
a non-dimensional time-step of the order of 107, Such a value
may be found by using the scaling value of T and L together
with a value of v=10" m* 5", Although the time step is small
it is only necessary to intcgrate to relatively small values for
1, defined as the time in which the integration has reached
a steady state. Expericnce shows that the steady state is
reached for a value of t,, of the order of 2 nondimensional
units.

In the first example we have used n,,,, =50 and n=7. The
forcing has a maximum at n=7 and has been obtained from
the following formulas:

mnax

(RS

] n
lengn u fn)=u, —(2-—)
T 4] ",

nax
R

n_:'sngnmux:uk'[n] :umux (3 1)
H—R
(I=( %)
1 —-h
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It is seen that ug[n] is zero for n=0 and equal to u,,,, for n
= n,, while the second formula shows that u[n,]=0. The
vatue of u,, in the example is 10.

X

Forcing with maximum af n=7

&
7
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Fig. 1 The logarithm of the kinctic energy as a function of the logarithm of
the wave number with 2 maximum forcing of u,,,=10 at n=7. The slope of
the straight line is -3.
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Fig. 1 shows the natural logarithm of the kinetic energy
k[n} as a function of the natural logarithm of n, when the
integration with respect to time has been carried to a steady
state starting initially from zero values of u[n] for all n. The
total integration time is t=2. The curve indicates a slight up
and down variation for smali values of n. Thereafter follows
a curve that can be approximated by a straight line with the
slope -3. For large values of In(n) we see a clear indication of
the dissipation term. To get an indication of the flux of the
kinetic energy in the spectrum we have defined a flux-
function. The definition is:

aF

-a’—l:—(Sl[_HI—SZIHI)MIHJ (3.2)

from which F[n] can be obtained by numerical integration.
The fluxfunction is given in Fig. 2 for the steady state. It
shows that the flux is from lower to higher values of n for
moderately large values of the wave number. For large values
of n the flux goes to zero. For small values of n the flux goes
in the opposite direction indicating a flux from larger Lo
smaller values of the wave number. Fig. 3 shows the values
of the two nonlinear sums and the difference between them.
The two curves with positive values are §,[n] with the smaller
positive values and S,[n] with the larzer positive values
giving a negative value of the difference as indicated by the
third curve in the diagram.

Forcing with maximum af n=7
05 -~ -

Flux funclion

-2

Fig. 2 The flux-functiion for the case considered in Fig. 1 as a function of the
wase numbr,

The maximum foreing in the first case was 10 m per s. In
the second case we increase the maximum forcing to 20 m per
~. while maintaining the maximum wave number at i, =50.
Fry. 4 shows tae kinetic energy as a function of wave number
i the steady state. The -3 power law is found again, but in
this case we are. in agreement with Lilly (1969), able to fit a

! power faw for the wave numbers smaller than n,. The two
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straight lines cross very close o the wave number of
maximum foreing (n =7, In(7)=1.95).

Forcing with maximum af n=7
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Nanlinear sums and their differences
[ 53

Fig.3 The nonlinear sums entering the hasic equation and the difference of
these sums. Note that S, [u] is the corve with the smaller positive values,
while §,[n] has the large positive valucs giving a negative value for most
wave numbers for the difference.

Integrations have also been carried out for various values
of the maximum forcing and for a total number of wave
components of 100 and 150. The results are in agreement
with those displayed in Fig. 4.

umax=20, nmax=50; ng=7

5 -

In(K{nl)
3

Q 0.5 1 1.5 2 2.5 3 35 4
In{n}

Fig. 4 The logarithm of the kinetic energy as a function of the logarithm of
the wave number with a maximum forcing of u,,,=20 at n=7. The slope of
the straight lines are -1 and -3, respectively.

1T

Conclusions.

For a sufficiently large value of the maximum forcing
(u,,,,=20) the experiments show a -3 power law in the wave
number interval between the maximum forcing and the
dissipation range (se Fig. | and 4). In addition a -i power law
can be determined for wave numbers smaller than the wave



Wiin-Nielsen: On the spectral distribution of kinetic energy

number for maximum forcing. These results are obtained with
a one-dimensional model based on the first equation of
motion. The flux of kinetic energy is from smaller to higher
wave numbers in the -3 range, while the flux is from larger to
smaller wave numbers for the smallest wave numbers.
These results are at variance with results obtained from
shell models. The author (1997} has designed a one-
dimensional shell model with the same conservation laws as
in the full spectral modet used in the present model, i.e. the
conservation ot the mean value and the conservation of the
kinetic energy. However, the shell model gives a good
approximation to the -5/3 power law, In addition, a shell
model designed by Ditlevsen and Mogensen (1996) stressed
the conservation of the kinetic energy and of enstrophy as in
quasi-nondivergent large-scale flow, and they obtained a -3
law. It would thus appear that the results obtained with the
various shell models are different from those obtained from
a direct integration including all the nonlinear interactions.

Appendix

The purpose of this appendix is to give a derivation of the
two sums appearing in eq. (2.3). The detailed derivation has
not appeared before, but it has been used in a number of
studies, Wiin-Nielsen (1976) and (Wim-Nielsen, 1986).
These reports are, however, not easily available. It is suf-
ficient to consider the basic equation without the forcing and
the dissipation, i.e.

ou du

— t1—={}

g dx (AL

As mentioned earlier the variable u is written as the series:

u= E u(m)sin(rekx);k=2n/L

n=1

(A2}

Inserting the series in (A.2) in (A.1) and using the three
counters n, r and q we may write the result in the form:

AN AL

A 23 Y (qhulrug)l) (A3)
dr r=1 g=1
where 1 is the interaction integral given by
[ L
[:z fsin(rk_x)cos(qlcc)sin(nkx)dx (A3)
0
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Using elementary trigonometric formulas for the sums and
differences of sine and cosines the integral I may be evaluated
with the result that 1=1/4 when r=n-q, 1=1/4 when r=n+q and
[=- 1/4 when r=g-n. Otherwise the interaction integral is zero.
We find therefore a spectral equation as given in (A.4).

nmax

@:yz Z gqku{g-n)u(g)
3

g=ntl

nANIX —H

- Y ghuln+q)ulq)
g-=1

(A4)

n-1

- 1/22 gku(n-¢gulq)y
g=1

The formula (A.4) could be used as it stands. A
simplitication can, however, be obtained by noting that when
a new counter ¢' = g-n is introduced in the first sum it is
transformed into the same summation as in the second term.
These two terms may therefore be combined to a singie term,

2 ok Y (g Un+q)
@ " AS
n-1 ( ) )
—‘/'zkz qu(qu(r-q)
q=1

The final equation is therefore as given in (A.5)

which is agreement with the sums as given in (2.3},
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