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Abstract. We examine the interaction of near-surface
and near-bottom flows over bottom topography. A set
of asymptotic equations for geostrophic currents in a
three-layer fluid is derived. The depths of the active
(top/bottom) layers are assumed small, the slope of the
bottom is weak, the interfacial displacement is compa-
rable to the depths of the thinner layers. Using the
equations derived, we examine the stability of parallel
flows and circular eddies. It is demonstrated that ed-
dies with non-zero near-surface component are always
unstable; eddies localized in the near-bottom layer may
be stable subject to additional restrictions imposed on
their horizontal profiles and bottom topography.

1 Introduction

Flows with large displacement of isopycnal surfaces have
received a lot of attention over the past decade; however,
many important questions still have no answers. The
main difficulty is posed by a large number of governing
parameters, resulting in an extreme variety of “species”
in the large-amplitude geostrophic “zoo” - each behav-
ing in its own way. A classification of two-layer flows
over a flat bottom has been proposed by Benilov and
Reznik (1996), but flows over bottom topography seem
to manifest different properties. For example, most of
large-amplitude zonal currents over a flat bottom are
unstable (see Benilov and Reznik {1996) and refer-
ences therein), while the topography driven regime in-
troduced by Swaters and Flier] (1991) includes a wide
class of linearly stable near-bottom currents (Karsten
et al., 1996). Furthermore, Karsten and Swaters (1996)
demonstrated that some topographic flows are stable
with respect to both linear and nonlinear disturbances!

It should be noted, however, that asymptotic equa-~
tions like those used by Karsten et al. (1996) and Karsten
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and Swaters (1996) are always subject to criticism that
possible instabilities may have been “scaled out” of the
problem. In particular, oceanographic observations (e.g.
Cooper , 1955; Smith , 1976; Houghton et al., 1982; Zoc-
colotti and Salusti , 1987; Stasey et al. , 1987) show
that near-bottom flows often co-exist with strong near-
surface currents, but the equations derived by Swaters
and Flierl {1991) did not take into consideration the
above-thermocline layer of the ocean. This implies that
the passive middle layer “cushions” the surface/bottom
interaction. No estimates, however, have been made,
and it is unclear how thick the middle layer must be to
satisfy this assumption. Judging from a similar prob-
lem considered by Killworth (1983) and Killworth et
al. (1984), a layer becomes passive only if it is about
100 times thicker than the active layer, which does not
seem to hold in the ocean.

This paper examines the effect of near-surface motion
on the stability of near-bottom geostrophic flows over
topography. The simplest natural setting for this prob-
lem is the three-layer (f-plane) model: two active lay-
ers and a passive ! layer in between. The near-bottom
layer is assumed thin compared to the total depth of the
ocean (which is supported by all above-mentioned ob-
servations except Houghton et al. (1982)). The Rossby
number is small. A set of geostrophic equations is de-
rived in Sects. 2 and 3, using which the stability of cou-
pled near-surface, near-bottom flows and eddies is ex-
amined in Sect. 4.

2 Formulation
Consider a three-layer fluid on the f-plane (Fig. 1).

Introducing the spatial coordinates r. = {z.,y.), the
time t,, the densities p;., the depths h;.. the veloci-

‘Here and in what follows, the term “passive” means that the
flow in the corresponding layer is weaker than those in the active
layers. It may still influence, however, the dynamics of the system
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Fig. 1. Geometry of the problem.

ties Wiw = (Uia, Vis ), and the pressures p;. of the layers
(i = 1,2,3; 1 corresponds to the upper layer), we can
write the governing equations in the form

B 4 (s Vi + A Vpie = frie ¥ K, }

Bhie + V(up hia) = 0,

(1)

where u x k = (v, —u)}, f is the Coriolis parameter,
and pp is the average density of the fluid {the Boussinesq
approximation implied). The pressures are given by the
hydrostatic formulae:

P2x = P1a — §(p2s — pra)hus, } (2)
P3- = D2x — Q(PSt - PQ*)(hl* + h2*)s

where g is the acceleration due to gravity. We shall also
use the rigid-lid approximation:

hie + h2e + ha. = Ho + hB., (3)

where Hp is the depth scale of the ocean and hg,(r.)
describes the bottom topography.
Next we introduce

r=r./L, t=t,/T,
u; = /U5, Pi = pix/ B, hi = hu/H;, {4)
hp = hp./Hp,

where the new (non-dimensional) variables have no as-
terisks and the corresponding dimensional scales are de-
noted by capital letters. We assume that the flow is
geostrophic, i.e.

1 F
—— = fl; 3
g = (5)
Substitution of Eqs. 4,5 into Egs. 1-3 yields
3 X
ET% +e{w;Vin, + Vp; = u; x k, (6)
8h;
6']’"8—; + et-V(uih,;) =0, (7)

ereapy = €Le1py — pdihy,
€r€sps = €peape — v(01hy + 6aha), (8)
01 hy + bohy + 03hs =1 + (SBhB,
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where
U;
€= 7 (9)
H; Hpg
0 =—, dg=->*
3 HQ, B HO ?
S U 7
T Tf, L 9(;03* - Pl*)HU ’
P2 — P1x 03+ — P2+
S A R T L 10
M ,03* — Pl1x Pix — 1% ( )

(observe that u+v = 1). The only “crucial” assumption
in our analysis will be

er < 1, (11)

i.e. the flow is geostrophic. Observe that, in application
to flows with large interfacial displacement {(which we
are interested in), condition 11 also restricts the spatial
scale of the flow - see Subsect. 3.1.

Now we can expand Eq. 6 as follows:

Op; On; 32 ,
u; = —Fj’:} — €] (pi, %) — €T atg:: + O(e?, e%, €€T ),

€ & 17

Oy ap; ?p; .
v = 8_11: - E‘iJ (pia a_;) — €T Bta; + O(ﬁf, 6’%": e'iET):
and substitute it into Eq. 7:
h.
451"—5-]51 + e (pi, i)

_e,-V {hi |:€1'J(pi, Vpi) + E;T agtpl] }
= 0(6?,6,‘,6%,6?6'}‘). (12)

Next we shall combine Eqgs. 12 as Zf:] d:xEq. (12}, and
obtain

PR 3
irn ; dih; + ;Q&J(Pi, hi)

3
I {hz‘ |:f'i'](pi: Vpi) + er mangi] }
i=1

= Obi€}, dieser, bicfer).  (13)
Rewriting Eq. 8 as

€2 1
= £ —&h
n 51p2+'uq61 11, (14)
pa = E_2p2 - I/_(l +|5EhB hat 53h3}5 (15)
€3 €LE3
1
hy = g(l +8ghp — 61hy — 8aha), (16)

we substitute these equalities into the first two terms of
Eq. 13:

d38
—Vz—LBJ(hB, hs) + €28pJ(p2, hp)

3
OV p;
=Y sieV {hi [ﬁz‘J(Pz’, Vpi) +er p,] }
~ at
= O(éie?, 62'61'6%, 51'6,?67’). an
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This equation will replace the hs-equation in Eq. 12.
The remaining two equations can be rewritten, using
Eqgs. 14-186, in the form

8h
ETB—; + e J(p2, 1) = O(€2, erer), (18)

Oh ]
eTa—ts + €2 J (P2, hg) — uf](h_g,h;.;) = O(e2, e3er) (19)
Equations 14-19 form a closed system for p;»3 and

h1,2,3.

3 Asymptotic analysis

Geostrophic equations 14-19 are much simpler than the
original system (1) and can be, to a certain extent, ana-
lyzed for any values of the parameters involved. From a
physical viewpoint, however, further analysis would be
facilitated by fixing the orders of €;,§; etc. - otherwise
we shall be lost in tens of possible regimes.

First of all, we assume that

op < 1,

which means that either the depth variations are weak
compared to the average depth of the ocean, or the slope
of the bottom is small compared to the slopes of the
layers’ interfaces. If this condition does not hold, the
flow is dominated by topography (e.g. Pedlosky 1987)
and the problem becomes trivial. We shall also assume
the depth of the lower layer to be much smaller than the
total depth of the ocean:

‘53<<11

which is both relevant physically (see Cooper 1955, Smith
1976, Zoccolotti and Salusti 1987) and interesting math-
ematically (a thin layer is more “sensitive” to the bot-
tom topography, resulting richer dynamics). On the
other hand, the middle layer should be assumned thick:

ds =1, (20)

otherwise the upper iayer would be the only thick layer
and the flow would become barotropic. Baroclinicity of
the flow implies two further conditions: given that the
pressures in the layers are different, the last terms in
Eqgs. 14,15 must be of order one:

61
=1 (21)
b _ 1 or s _ 1 (22)
€1€3 €rca

(it should be recalied here that u, r = O(1) - see Eq. 1G}.

We need another 3 conditions to fix the parameters
involved. Purporting to derive the most general equa-
tions (i.e. retain as many terms as possible), we require
that
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(i) the last two terms in Eq. 15 be of the same order:
ép = b3; (23)

(ii) the topography and passive-layer terms in Eq. 19
be of the same order:

_ 9%,

= (24)

€2
(iii) the topography and the first two nonlinear terms in

Eq. 17 be of the same order:

dadp
€r

= 616% = 626%. (25)

{We do not require the nonlinear term ~ dze3 to be
necessarily retained in Eq. 17 — this equation “includes”
the third layer through the topography term.) Finally,
Egs. 18,19 show that

€T = €9. (26)

Solving Eqs. 20-26, we express er, €3 g 3 and &; 2 3 through
63:

er =0p, €L =1,
€ = 5;/3, €2 — €3 = (SB, (27)
(S]_ = (5;3/3, (52 = 1, (53 = (SB.

Substituting Eqs. 27 into Eqs. 14-19 and keeping the
leading-order terms only, we can rewrite the governing
equations in the form

%—FJ(pg,hl):(), (28)
azm + J(p2, V2p2) + 12V [k J(hy, V)]

= J(vhs +pa,hB),  (29)
% + J(ps — hp, hs) = 0. (30)

Eqgs. 28-30 form a closed set for hy, ps and hs. The set
used by Karsten et al. (1996) and Karsten and Swaters
(1996) in their stability analyses follows from Eqgs. 28-30
if hy = const, p =0, v = 1.

3.1 Discussion

(1) We also note that Eqs. 28-30 should not be expected
to correctly describe short disturbances. The reason for
that is that the condition of geostrophy 11 restricts, in
fact, the spatial scale of the flow. Indeed, substituting
Eq. 9 into Eq. 11:

U

E <1, (31)
we take into account the geostrophic relation:
0F;
Ui=—, (32)

Lf
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where 8F; is the pressure variation in the i-th layer.
It can be readily seen that conditions 31,32 are most
restrictive for ¢ = 1 (the flow in the top layer is the
strongest). Estimating

0P = g{p2. — p1.)0H), (33)
and further
5H1 = H_[ (34)

(the displacement of the interface is of the order of the
layer’s thickness), we can reduce condition 31 to

2
— > 1, (35)

g(p2s — pru) 1
7 .

Thus, the horizontal spatial scale of the flow must be
much larger than the deformation radius based on the
parameters of upper layer.

(ii) Finally, we note that the accuracy of Eqs. 28-30
is not very high: some of the omitted terms were only
dp times smaller than the terms retained, e.g.

Ry =

av
5161V (hl afl) was omitted,
BoeaV (hg BZ?) was retained.
Thus, the systemn 28-30 should be looked at as a rough,
qualitative model — we shall use it only to demon-

strate the importance of near-surface dynamics for near-
bottom flows.

4 Stability of parallel Aows and eddies

Introducing a new variable

2 .
fi= 3k, (36)

we rewrite Eqgs. 28-30 as

%?;_12'5“ J(p21.f1) =0,
B5B2 + I (2, Vipe) + 42 J (1, V2 1) (37)
- J(th + po, hB)!
83 + J(p2 — ke, h3) =0.
Egs. 37 admit a steady solution describing a parallel flow
over one-dimensional topography (“ridge”or “gorge™):
fu=F), p2 =D2(v), ha = haly), ke = haly), (38)

and a circular eddy over radially symmetric topography
(*mountain” or “dip”):

fi=A(r), pp=pa(r), hs = Pa(r), he = ha(r), (39)

where » = /22 + y* and the bar marks parameters of
the mean flow.

In this section, we shall examine the stability of solu-
tions 38,39.
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4.1 DParallel flows

We linearize the governing equations, i.e. substitute

fl = fl(y) +f{(x,y,t),
h3 = }_13(11) + h’S(zayat))

b2 =ﬁ2(y) +p§(m,y,t),
he = hp(y)

into Eqn. 37 and omit nonlinear terms:

Qﬁ.{,%ﬁﬁu.@ﬂaa—ﬁ—

at 8x By By Bz — 7
OVip, | Op 8V Fa _ 9p2 OV'D;
3 dr By By Bz
2 (2L 3VE gfﬁvﬁfi) - (,,?.ﬁﬂ%) 8hy
K\ 5z "By 3y az = Bz 3z | By
Bhy | Opy ks _ Bp2 Ohh | Bhp Ohh _
Tt PR~ R T BEGE =0

Assuming the harmonic dependence of the disturbance
on x and ¢:

f{ (z, Y, t) = ¢(y) exp[ik(d - E)]?
pa(x, y,t) = x(y) explik{ct — z)],
hy(z,y,t) = nly) explik(ct ~ )},

where k and ¢ are the wavenumber and phase speed, we
obtain

1
(¢~ Uz)d + ;le =0, (40)
dﬂx 2 d2U2 dzgﬁ 2
d*U
+ud—yz¢+5(vn+x) =0 (41)
1
(e—Uzs—S)n+ ;U3X=O: {42)
where
df-]. dﬁz d’—'t;; th
=—p2= === = —p—= =B
U, #dya 2 i’ Us de: &
Next, the substitution
1 1 (C - UQ)Ug
6= U, x=-(c-l, 1= Hl 2y (43)

reduces Eqgs. 4042 to a single equation for the new un-
known

d 27 4Y 2
dy {[(C— Ua)* + Uf] @} —{#* [(c - 2)* + 17]
S(C— Ug)U3

Py —S(chUg)}w:O. (44)

Eq. 44 will be considered in a zonal channel, i.e.
=0 at y=da, (45)

which follows from the no-flow boundary conditions at
the walls of the channel located at y = d, 5. If there is
no motion in the upper layers,

Uh2=0, S#0, (46)
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the solution to Eqs. 4445 is stable provided
U3 <0 (47)
{(Karsten et al., 1996). In the opposite limiting case,

Uiz #0, S=0, (48)
Us cancels out and Eq. 44 becomes equivalent to the
two-layer equation, which was found unstable by Be-
nilov (1992). Thus, in the general case, we have two
competing influences: bottom topography {sometimes)
stabilizes near-bottom flows, while motion in the upper
layers makes them unstable. Which influence prevails?

Unfortunately, this question cannot be answered rig-
orously, as the integral approach, which Karsten et al.
{1996) and Benilov (1992) used for Eq. 46 and Eq. 48
respectively, in the general case becomes inconclusive
(see a similar result for eddies in Subsect. 4.3. We can
observe, however, that the destabilizing term in Eq. 44
is proportional to k%, while the stabilizing terms {~ )
remain finite as k — oc. Thus it can be conjectured that
short disturbances are not “sensitive” to the topography
and are always unstable!

In order to illustrate this conjecture, we consider the
eigenvalue problem (44,43) with
U 2,3 = const, S = const,

i.e. the slopes of ho 3 and hp are constants, while the
depth of the upper layer is

h, = consty®/?

[see formula (4.1)]. The eigenfunction ¢, in this case,
is given by sine or cosine, and ¢ satisfies the following
dispersion equation:

(c—Us— S){K? [(c— U2)* + U]
=S(c—U2)} + S(e~Ua)Us =0,  (49)
where
nmy 2
K? =k + (ﬁ)

In the short-wave limit

S(e — Uy |Us|
K2 |— 1, — &8l
> i max{1, 0, — 51 (50)

the term in square brackets in Eq. 49 dominates the
other terms, and one of the three modes described by
Eq. 49,

ew Uy —i|U;], (51)

is unstable.
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4.2 Discussion

(i) Dispersion relation 51 was derived in the short-wave
limit of asymptotic system 28-30, thus we should ensure
that short disturbances satisfy the applicability condi-
tion 35 of the latter. First, we substitute Eq. 51 into
Eq. 50:

S| |Us|

k2 Bl 111

U ’ IZUl - Sl
Assuming for simplicity that all parameters of the flow
are of the same order: |Uy| ~ |Us]| ~ |5| (which is con-
sistent with our scaling), we obtain

K?»1,
or, in the dimensional form,
" A < R,
where A, is the wavelength of the disturbance and

*® *H
Ry = Y95 - p1x)Ho

is the deformation radius based on the global parameters
of the fluid. At the same time, A, should satisfy the
applicability condition 35. Rewriting the latter in the
form

AE > R§11

we see that Eqgs. 35 and 50 are consistent only if
R} < R,
Substituting Ruo and Rg1, we obtain

(p2x — pra)H1 < (p3x — p1s) Ho,

which agrees with our original assumption: the upper
layer must be thin. Note also that the instability is
proven only for a narrow spectral band characterized by

Ry < X < R,

which is, however, enough to prove the overall instability
of the flow.

(ii) Observe that the growth rate v = kIm(c) with ¢
given by Eq. 51 blows up in the short-wave limit:

Yy kUl =200 as k— oo

This is a general feature of asymptotic equations for
large-amplitude geostrophic flows with weak or no 8-
effect (see Tai and Niiler , 1985; Young and Chen , 1996;
Benilov and Reznik , 1996, and references therein). The
blow-up occurs because Eqs. 28-30 incorrectly describe
short disturbances — see restriction 35. In other words,
Eqgs. 28-30 enable us to establish the fact of instability,
but do not describe all of its parameters (i.e. the short-
wave cutoff).
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(iii) It is also worth observing that, although the in-
stability is caused by the flow in the top layer, the am-
plitude of the disturbance in the dottom layer is not nec-
essarily small. Equalities 43 demonstrate that

A _p Vazc &

Us vlg—c+ S U ’
and the disturbance has comparable amplitudes in the
top and bottom layers unless p|Us — e < v{5|.

4.3 Circular eddies

Our motivation for this part of the work is twofold:

- firstly, eddies can be used as a further test for the
hypothesis about the unstable nature of Eqs. 37.

- secondly, stable eddies could provide a possible “fi-
nal” result of the instability of near-bottom flows.
If no stable eddies exist, the energy of the flow is
subject to further depletion into small scales.

We shall assume the topography in Egs. 37 to be ra-
dially symmetric, which can model a dip or a mountain
on the ocean bed. (Intuitively, the former seems to con-
strain disturbances, while the latter seems to destabi-
lize them.) First we shall derive the stability eigenvalue
problem (similar to Eqs. 44,45) and discuss those lim-
iting cases where stability or instability can be proven
rigorously. Then, we shall illustrate the general conclu-
sions by an example.

Introducing polar variables (r, 8):

T =rcosh, y =rsind,

we linearize Eqs. 37 against the background of Eq. 39
and seek a solution of the form

J1(r, 8,8} = p(r) explin(ct - 6)],
pé(!", 91 t) = X(T) exp[ln(d - 9)]:
h’H (?‘, 91 t) = W(’”) exp[in(Ct - 9)]3
where n is the azimuthal wavenumber and ¢ is the angu-

lar phase speed. Reducing the resulting set to a single
equation by the substitution

=1 = _r{c— 1 (=)
¢ = HTQﬂ/J, x =-ric—{b)y, n= Mo O — QIL‘
where
Q= —,rdh __Llam
LT BT i
_ 1dhy _1ldhgp ,
13 = v ar Q_Fd—'r (52)
we obtain
d i
4 {Ts [(c— )7 + 02] E} [ - 1)rB
3 Qe — Qa2 )15 3 _
+ -0 —r'Qle—Qa)| =0, (53)
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The boundary conditions follow from the requirement
that the pressure ¢ be a well-behaved function:

rg -0 as r— 0,00, (54)

Next we multiply Eq. 53 by the complex conjugate of
9 and integrate over 0 < r < oco. Taking into account
Eq. 54, we obtain

/m {r [{c =~ ) + O] [r2
0

+r3Q(c —) (H?%Q - 1) [1,/)[2} dr = 0. (55)

If Q = 0 (flat bottom), Eq. 55 yields

/mi" {(C—Qg)z +QE]
0

&

which shows that ¢ may not be real (i.e. Eqs. 53,54 with
¢} = 0 may have only unstable solutions}. The opposite
limiting case

dy
dr

2
+(n? — 1)I¢I2]

2

di

dr

+ {n? — 1)|1,[;|2] dr =0,

Ma=0, S#O

{no current in the upper layers) yields

[ { [

d

dr

2
+(n* - 1)I¢?z]

+3Q ((2362 - 1) |¢|2} dr = 0.

Separating the imaginary and real parts, we obtain

o 2
(Ime) /D [r3 1+ 02 ~ Driwf
230 _
—r3m|¢l2:| dr = 0.

Evidently, a sufficient condition for stability (Ime¢ = 0)
is

Qf3 < 0. (56)

Eq. 56 is the exact analogue of condition 47 derived for
parallel flows. Substituting Eq. 52 into Eq. 56, we obtain

dhg dhy

dr dr 0. (57)
Examples of eddies satisfying and not satisfying condi-
tion 57 are shown in Figs. 2 and 3.

Thus, we have exactly the same situation as in the
case of parallel flows: a flow in the upper layer (al-
ways) destabilizes near-bottom eddies, while topogra-
phy (sometimes) makes them stable. In order to find
out, which effect dominates in the general case, we ob-
serve that the destabilizing term in Eq. 53 is (as be-
fore) propertional to the wavenumber. We conclude that
short disturbances (n — oc) are always unstable.
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Fig. 2. Stable eddies

/ N\

[T

Fig. 3. Potentially unstable eddies
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In order to illustrate this conclusion, we consider the
example of parabolic eddy over parabolic topography:

a3 — 2 2ar° i 7 <a,

fuopahs = { ar23 — 3Q1230® if 7>a, (58)
| 2 s
_ xg — —91,2,31" if r S ,
he = { ap — 591,2.3632 it r>a, (59)

in which case Eq. 53 can be reduced to Bessel’s equation.
(Egs. 58,59 imply that a4 3 > %01,302, so that fyand hg
are positive.} Introducing

W =1y, C=c—1, (60)
we substitute Eqgs. 58-60 into Eqs. 53,54:

(C? + 0% (r2% + ri—f — anI')

+CQ (0?36:2—1)&@:0 it r<a (61)
a2
(C? +Q2) (rzw—i-rdil'd'r-nz@) =0
if r>a (62)
=0 as r—0,00. (63)

The solution to Eq. 61-63 (for n > 0) is

V= Jn(l) if r<a, (64)
o
ry "

Q:A(—) if r>a, (65)
To

where J,, is the Bessel function, A4 is a constant, and

1 cqQ Qs

— = -1]. 66

ro  C?+ (C—Q ) (66)

Matching Eqgs. 64 and 65 at r = «

a a\" " 1 a 1 fa)\ "
ZORIORELORED
To 7o ro To o \ To

and using the standard identity for the derivative of a
Bessel function, we obtain

Jn_l(%) =0 (67)

The dispersion relation 66,67 can be rearranged as fol-
lows:

fnrm ). CQ (2
( a )‘02+n%(0—<@‘1)’ (68)

where &,_; n, 13 the m-th root of J,,.1{£). Given that

€n—1,m —> 00 a8 n — 00,
the three roots of 68 are

C— 0, @ as n— oo,
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which shows that the flow is unstable. Observe that,
if there is no flow in the upper layer: 3 = 0, Eq. 68
becomes quadratic and, for certain values of {13 and S,
can be shown to have stable roots.

Finally, we note that near-bottom eddies were ob-
served in reality: in an objective analysis of streamfunc-
tion maps, Stasey et al. (1988) concluded that there
was enough evidence for the formation of subsurface ed-
dies in the Strait of Georgia (Canada). Although the
eddies were observed in a “dip” (i.e. exactly where the
present analysis predicts them to be stable), we cannot
claim the agreement of the theoretical and experimental
results, as the eddies were not “sitting” in the dip, but
drifting across it.

5 Conclusions

Thus, we have examined the interaction of near-surface
and near-bottom large-amplitude currents over topog-
raphy. Assuming that the Rossby number is small, we
derived a set of equations 28-30 for geostrophic flows
in a three-layer fluid (Sect. 2,3. The depths of the ac-
tive (top/bottom) layers were assumed small, the slope
of the bottom was weak (otherwise the interaction of
the layers and topography would be trivial}. Using the
equations derived, we examined the stability of parallel
flows and circular eddies. It has been demonstrated that

- flows/eddies with non-zero near-surface component
are always unstable (Sect. 4.1,4.3);

— even in the cases where the instability is mainly
caused by the flow in the top layer, the unstable
disturbances may “penetrate” down to the bottom
(end of Sect. 4.1);

— flows/eddies localized in the near-bottom layer may
be stable subject to additional restrictions imposed
on their horizontal profiles and bottom topography
{conditions 47 and 56).

It should be emphasized that Eqs. 28-30 are inap-
plicable to disturbances with wavelengths comparable
to the deformation radius R4 based on the depth of
the upper layer (see restriction 33). Therefore, we could
demonstrate instability in a fairly narrow spectral band,
but were unable to calculate the wavelength of maxi-
mum growth (which seems to be of the order of Rgy).
Given that the quasigeostrophic approximation is also
inapplicable to the problem at hand (the displacement
of isopycnal surfaces in the flow is large), the wavelength
of maximum growth can only be found using the prim-
itive equations.
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