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Abstract. The complete mathematical and physical
characterization of nonlinear water wave dynamics has
been an important goal since the fundamental partial
differential equations were discovered by Euler over 200
years ago. Here I study a subset of the full solutions by
considering the irrotational, unidirectional multiscale
expansion of these equations in shallow-water. [ seek to
integrate the first higher-order wave equation, beyond
the order of the Korteweg-deVries equation, using the
inverse scattering transform. While I am unable to
integrate this equation directly, I am instead able to
integrate an analogous equation in a closely related
hierarchy. This new integrable wave equation is tested
for physical validity by comparing its linear dispersion
relation and solitary wave solution with those of the full
water wave equations and with laboratory data. The
comparison is remarkably close and thus supports the
physical applicability of the new equation. These results
are surprising because the inverse scallering transform,
long thought to be useful for solving only very special,
low-order nonlinear wave equations, can now be thought
of as a useful tool for approximately integrating a wide
variety of physical systems to higher order. I give a
simple scenario for adapting these results to the
nonlinear Fourier analysis of experimentally measured
wave trains.

1 Introdaction

The inverse scattering transform (IST) is a modern
method of mathematical physics which has been quite
successful for studying nonlinear wave motions in a wide
varicty of physical systems. The method was discovered
by Kruskal and co-workers about 30 years age (Gardner
et al., 1967) and has since been applicd to a large
number of physically interesting cases, including the
Korteweg-deVries (KdV}, the nonlinear Schroedinger
(NLS) and the Kadomtsev-Petviashvili (KP) equations
{Ablowitz and Segur, 1981; Calogero and Degasperis,
1982; Dodd, et. al, 1982; Novikov, et al, 1984; Newell,
1985; Drazin and Johnson, 1989). These nonlinear,
Hamiltonian wave equations are all derivable from water
wave dynamics in an asymptotic sense and are thus

"generic" or "special” and are known to be "completely
integrable” by IST. In spite of many remarkable
successes the inverse scattering transform has notf been
useful for probing the general structure of the
fundamental nonlinear partial differential equations
(PDEs) of physics. These PDEs include the Euler
equations for surface and internal wave molions in a
fluid, the WNavier-Stokes equations for general
driven/damped fluid motions, the Maxwell equations for
electromagnetic waves in dispersive media, the Einstein
equations for the description of the gravitational field
and for the propagation of gravitational waves, etc.
{Fordy, 1990). In all of these cases, together with many
others not discussed here, IST enables one to integrate
the dynamical motion only to leading order. The
integration by IST of physically important nonlinear
wave equations at higher order has thus been an iflusive
goal.

The focus of the present paper is to provide a new
approach which, for the particular case of irrotalional,
unidirectional motion in shallow water, allows one to
extend integrability to higher order using IST. The
method in this context is not the precise "asymptotically
integrable" situation which occurs at leading order, but
instead is an approximate integration of the second order
equation obtained by means of a multiscale ¢xpansion of
the fundamental nonlinear PDEs for water wave
dynamics. As shown herein, the results are quite
satisfactory from the point of view of the exploration of
many aspects of the phase space ol solutions of the
nonlinear water wave equations.

The Korteweg-deVries equation (Korteweg and
deVries, 1895), which describes small-but-finite-
amplitude waves in shallow water, is known to be
completely integrable by the inverse scattering transform
(Gardner et al., 1967). The higher order model of Kaup
(1975) is also integrable, although KdV is probably
preferable as a model equation for a number of reasons
(Kaup, 1986). More recently an extended KdV equation
has also been found to be integrable (the Camassa-Holm
(CH) equation) {Camassa and Holm, 1993; Camassa et
al., 1994), Thus the question arises: Can other higher
order nonlinear shallow water wave equations also be
integrable using IST? It has been suggested that this is
so (Kodama, 1985a,b; Fokas and Liu, 1996), although
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up to the present time I know of no other successful
efforts to carry out the integration of other particular
higher order, physicaily interesting wave equations in
the shallow water regime. In order to further explore this
possibility it is worthwhile discussing the main PDEs
which enter into the present discussion of shallow water
wave dynamics.

It is well known that an expansion of the water wave
equations near zero wave number (k ~ 0, long waves in
shallow water) gives the familiar KdV equation:

??r+%77x+anﬂx+ﬁnm=0 (1)

Here ¢, =+[gh, a=3c,/2h, B=c,h? 16, where h is
the water depth and g is the acceleration of gravity A
simple transformation (e.g. w' =An, x =x-cut,
t'=Pt, A =0/68) reduces KdV to standard form

u +oun, +uy, =0 {2)

where the primes have been dropped. The KdV equation
is referred to here as WI, i.e. the first nonlinear
equation which is obtained in the Whitham multiscale
expansion of the water wave equations (Whitham, 1974)
(see Section 4 for a discussion). The inverse scattering
technigue for solving the KdV equation may be viewed
as a generalization of linear Fourier analysis for solving
nonlinear wave equations. This means . that the
mathematical and physical structure of KdV may be
computed from the appropriate Lax pair (Lax, 1968;
Ablowitz and Segur, 1981; Calogero and Degasperis,
1982; Dodd, et al., 1982; Novikov et al., 1984; Newell,
1985; Drazin and Johnson, 1989: see also Section 6).

In the present paper the multiscale expansion of the
water wave equations depends upon two scales of the
motion, @=a/h, f=(h/D*, where for concreteness I
take O(a)~O(B)~O(e) (the Kruskal principle of
maximal balance), Here a and [ are the characteristic
wave amplitude and wave length, respectively. The
multiscale expansion of the water wave equations to one
order higher than the KdV equation gives (Whitham,
1974}

i+ Oul, ity +
(3a)

FE(OUsy + Ol + ORU U, + a4u2ux)+ 0(e?)=0
Herein this equation is referred to as W2; physically it
consists of the KdV equation plus O(g) corrections. In
the normalization used here (see Section 4) the
parameters ¢; are simple constants: o =19/10,
Uy = 10, 24} =723 and (241 =—6.

It is convenient to factor out ¢ in (3a) and to set

e'=ae, oaj=1, ay=ooyloy, aj=0cy/0; and
a3 =0y /. Then W2 becomes (after dropping the
primes):
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ty +Outey + i +
(3b)
+E(Us, + Calth g, + O3t 1y, + a4u2ux)+ 0e?)=0

The ‘rescaled constant coefficients are: o =1,
o =100/19, a3 =230/19 and oy =—60/19. It is this
particular normalization of W2 which will be studied
herein.

It is worth remarking at this juncture that (3b), for the
particular set of coefficients, oy =1, 0y =10, a3 =20
and a4 =30, is the integrable equation found by
Kodama (19835a,b):

y + Uty + i, +
(4)
+€(us, +10uty +20u,u,, +30uu, )+ O(£2)=0

Ideally one would like to extend integrability to
include the physical wave equation (3b) which describes
the dynamics of both surface (Korteweg and deVries,
1895) and internal waves (Lee and Beardsley, 1974),
and therefore requires different values for the
coefficients ¢; in each of these two cases, i.e. the o;
depend upon "environmental parameters" such as the
water depth, gravitational acceleration, density
stratification, etc. The main focus of this paper is to
show how one can approximately integrate (3b) using
the inverse scattering transform.

For the work given herein it is important to formally
state the definition of the "equivalence" of two different
partial differential equations. As a simple example
consider the KdV equation (1) and the related equation
due to Benjamin, Bona and Mahoney (BBM) (1972):
T+ Colly + NN = (B €)1 =0 (3)
This latter equation is found by using the leading order
linear behavior, n, =-(1/¢,)7n,, in the second order
dispersive term (77,,.) of the KdV equation. Thus KdV
(1) and BBM (5) are equivalent because one can be
obtained from the other by a simple, leading order
transformation. These equations are physically and
mathematically the same order of approximation, i.e.
they describe surface water waves to within the same
accuracy.

An equation like BBM is said to be "regularized”
because the presence of the time derivative in the
dispersive term in (5) improves the physical behavior of
the linear dispersion relation with respect to that for the
KdV equation {Benjamin et al., 1972). An alternative
perspective is that one might view BBM itself as the
generic equation and hence one can carry out a
"deregularization" process to derive KdV by using
1y = —c, 1}, in the dispersive term.

The historical view is that soliton theories (the inverse
scattering transform) work mainly at the leading order of
approximation and are not generally applicable to
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arbitrary physical situations with the exception of the
well-known asymptotically integrable cases such as the
KdV and nonlinear Schroedinger equations. Recent work
by Camassa and Holm (1993) has indicated that
integrable physical structure also exists at higher order.
By applying Hamiltonian techniques to the Green-Nagdy
equations they found the following intagrable soliton
system:

W+ 0uu, g, —E( H2un, +Au, )=0 (6)

An interesting feature of this equation is that there is a
time derivative in the ({g) term and thus the equation
is regularized. To compare the CH equation (6) with W2
(3b) (or with the Kodama equation (4)} one can replace
the O(g) time derivative by space derivatives using the
leading order relation from the KdV equation:
u, = —6uu, —t,,, . One finds

u, +6uu, ., +Elus, + A, 14w, =0 (7

Comparin% this deregularized equation with (3b) reveals
that the &“u, term is missing in (7) and the coefficients
differ somewhat from those in both W2 (3b) and
Kodama (4) (see Table 1). Therefore, the CH equation
may be viewed in some sense as being a regularized
equation lying between KdV and W2 in the infinite
Whitham hierarchy (see Section 10 for further discussion
and Fig. 15). Nevertheless, the CH equation, in spite of
the fact that it is not one of the traditional equations
from the unidirectional, multiscale expansion of the
waler wave equations, has physical properties which are
not inconsistent with the physics of higher order waves,
i. e. CH has a well-behaved linear dispersion relation
{(66) below) and peaked solutions for its limiting
behavior as the waves propagate into shallow water
(Camassa and Holm, 1993; Camassa et al., 1994)).

The main purpose of the present work is to present a
new procedure for approximately integrating nonlinear
wave equations to higher nonlinear order. While the
obvious target equations (those equations which one
secks to integrate} are those in the Whitham hierarchy,
Wn (n=1,2...), I am unable to integrate these equations
directly. I instead derive another class of wave equations
which are formally equivalent to an extended,
regularized Whitham hierarchy, exRWn (see Section 6

Us, Uy x Uyl uzux
Kodama I 10 20 30
CH 1 4 14 0
W2 1 ~5.3 ~12.1 ~-=32

Table 1. Comparison of the constant coefficients for each O(g) term
in the Kodama (4), the deregularized CH (7) and the W2 (3b)
equations.
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for details). By developing a universal wave eguation
associated with a universal Lax pair 1 succeed in
integrating the equation exRW2 ((59) below) using
inverse scattering techniques. It is found that exRW2 has
certain higher order space derivatives which are
replaced by time derivatives (due to the regularization
process implicit in the integration procedure given in
Section 6, here symbolically labelled "R"). Furthermore,
additional "extended" terms beyond the O(g)
approximation (symbolically labelled "ex") insure the
integrability of exRW2.

As with all nonlinear wave equations derived using the
method of multiple scales or other approaches, there is
no a priori assurance that the discovery of any new
equation (by whatever mathematical approach) provides
an improved description of the dynamical behavior.
Without appropriate testing {by numerical, analytical or
experimental means) one cannot be assured that any
higher order equation is better than, say, the KdV
equation. Physical "closeness" of exXRW2 to the water
wave equations is supported by comparison of their
linear dispersion relations and solitary wave solutions:
these tests provide evidence for the physical correctness
and robustness of the new integrable equation exRW2
(see Sections 7 and & below). A more severe test would
be to compare the (IST) spectral structure of exRW2 to
particular analytical or numerical solutions of the water
wave equations and to experimental data (see below and
Osborne et al, 1997).

I further discuss how the work presented here can be
viewed in the light of nonlinear Fourier analysis
(Section 9). In this context unidirectional, shallow water
wave trains are representable in terms of a basis function
which is a natural generalization of cnoidal waves to
higher order; these are the travelling wave solutions of
exRW2. At leading linear order (WO) the travelling
wave 1s a sine wave; at KdV order (W1) the travelling
wave is a cnoidal wave. At the order of the CH equation
the travelling wave takes the form of the "peaken™ as the
depth & — 0. Any spectral solution of the shallow water
problem, to arbitrarily high order, can be represented in
terms of a linear superposition of the relevant traveiling
waves plus nonlinear interactions among them. Typically
the higher order travelling wave varies over a range of
behaviors as it propagates adiabatically from deep to
shallow walter, i.e. from 1) a sine wave, 2) to a Stokes
wave, 3) to a (KdV) solitary wave, 4) to a wave form
which is narrower and higher than the sech? shape of the
solitary wave and 5) finally up to near the highest
(peaked) wave found by Stokes over a century ago. As is
well known the CH equation describes many features of
nonlinear water waves. However, while the results for
higher waves are good, they are not quantitatively
precise (see Section 8). Higher-order wave equations
discussed herein (such as W2 and exRW2) have
behavior which is gquantitatively closer to certain
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properties of the water wave equations (Sections 3, 9
and 10).

An outline of this paper is now given. In Section 2 I
briefly discuss nonlinear Fourier data analysis
techniques at the order of the KdV equation (Osborne,
1995). These techniques are the state of the art for the
nonlinear Fourier analysis of unidirectional, shallow
water wave trains. In order to provide physical
motivation for extending the procedure to higher order, T
discuss results from a laboratory experiment in Section
3. One finds experimentally that water waves, while
propagating into shallow regions, become quite higher,
narrower and consequently more nonlinear than the
cnoidal wave solutions of the KdV equation. These
results suggest the need for higher order (hopefully
integrable) theories for describing water wave dynamics.
In Section 4 I review the multiscale expansion of the
unidirectional, water wave equations due to Whitham
and in Section 5 I discuss the recent results of Fokas and
Liu (1996) for establishing the integrability of certain
higher order wave equations. In Section 6 I give a
systematic approach for integrating higher order
equations which are in some sense close to the Whitham
hierarchy. In particular I integrate the extended,
regularized equation 1 refer to as exRW2. The linear
dispersion relation of exRW2 is compared to the linear
dispersion relations of the KdV, CH and water wave
equations in Section 7. In Section 8 I compare the
solitary wave solutions of these equations. . The results
suggest that exRW2 is an improved integrable equation
for describing the evolution of unidirectional, shallow
waler waves, t.e. it has a number of physical
characteristics which are superior to those of the KdV
and CH equations. Section 9 discusses the consequences
of adapting nonlinear Fourier analysis methods to the
higher order of the exRW2 equation. The results lay the
groundwork for the narural extension to higher order of
nonlinear Fourier analysis procedures which have
previously used only cnoidal wave basis functions
(Osborne, 1991, 1993, 1995; Osborne and Petti, 1994:
Osborne, 1995). Finally Section 10 provides a summary,
a discussion of the results and a plan for future research.

2 Linear and Nonlinear Fourier Analysis

The main purpose of this Section is to provide physical
perspective for the nonlinear Fourier structure for the
unidirectional propagation of nonlinear waves in shallow
water. It is this perspective which leads to the design of
the experiments given in Section 3 and to the
subsequent developments for the approximate
integration of unidirectional wave dynamics to higher
order given in Section 6. In this Section I the discuss
nonlinear Fourier analysis of surface wave dynamics at
the order of the KdV equation.

Because of the nonlinear behavior of water waves in
general, it has been argued that nonlinear Fourier
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structure should be pursued and understood (Osborne,
1991; Osborne, 1995). Before addressing issues of
nonlinearity, however, it is worthwhile recalling the
Fourier analysis of linear waves, Fourier analysis allows

the .construction of linear wave trains, 7n(x,t}, by a
linear superposition of sine waves:

N
nx,0) =3y sin(k,x — @t + 9, ) (8)

n=1

In the present case there are N sine wawves which are
interpreted as “"degrees of freedom” or "Fourier
components” in the wave train. In (8) the 7, arc the
Fourigr amplitudes, the %, are the wave numbers, the
@, are the frequencies and the ¢, are the phases. The
relationship between the frequencies, ,,, and the wave
numbers, £, is given by the dispersion relation, written
symbolically: @, = @, (k,). For example, the dispersion
relation for long waves in shallow water

@ = c k - pk* )

has the associated partial differential equation (the
linearized Korteweg-deVries equation or W) given by:

m+e,m+ B0, =0 m

The coefficients ¢,, B are the constants given above
with regard to (1). The simplest periodic solution to (10)
is a travelling sine wave

nx.)=n, Sin(kox_wot"";b(?) ()

from which the general Fourier solution for an N
component wave irgin may be constructed by linear
superposition (8). The important point is that the
amplitudes of the sine waves and their phases are
constants of the motion, provided that the wave dynamics
are linear. In oceanic applications one is often
interested in the analysis of time series, i.e.
measurements of the wave amplitude, 77(0,7), taken at
a fixed spatial location over some convenient time
interval; this implies setting x =0 in (8) and (11).

In spile of the elegant simplicity of the linear theory,
ocean waves are known to be nonlinear. The simplest
prototypical shallow water wave equation for which
nonlinearity occurs is the Korteweg-deVries equation
(1}. This equation is the same as (10) except for the
presence of the nonlinear convective derivative term,
nm,. prefixed by the constant coefficient, a =3¢, /2h.
While the general solution of (10) for periodic boundary
conditions is easily found using the linear Fourier
transform (8), the general IST solution to the nonlinear
equation (1), for periodic boundary conditions, required
an additional 170 years of mathematical progress
(Whitham, 1974; Miles, 1980; Dubrovin, et al., 1976; Its
and Matveev, 1975; Flaschka and MacLaughlin, 1976
Date and Tanaka, 1970).
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The simple periodic travelling wave solution of KdV
(1) is the cnoidal wave, well known in shallow water
oceanography and offshore engineering (Munk, 1949,
Weigel, 1964; Whitham, 1974; Miles, 1980; Sarpkaya
and Isaacson, 1981):

4k 2 n(-1)"g"
nxn=— Y .

n=1

cosfak, (x ~U,0+¢,]=

_ q2n
(i2a)

= 2n,en® {(K(m) | m){k,x ~ @t + 9, i}

where X =a/68=3/2h" and g=e ™ 'K is the nome.
The associated dispersion relation (with nonlinear
correction) is given by:

@, = Uk, = c k{1421, 1 h= 2432 K (m) / 32 }(120)
The modulus has the following explicit form:

3 2
miC ="l =an’Ur Ur= 3o
(2}

sk

(12c)

N, is the amplitude of the cnoidal wave, Ur is the
Ursell number, &, is the wave number, ¢, =+/gh.
K(m) is the elliptic integral such that K(m)= K'(1—m)

22

211

20
Soliton

Stokes Wave

Amplitude - cm

15}  Sine Wave

13 [l 1 1 1 1 L 1 1 1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256
Distance - cm

Fig. 1. Examples of cnoidal waves. In vertical order (top to bottom)
are shown a solitary wave or soliton, a Stokes wave and a sine wave.
Note that each example has its own unique amplitude ( 17,,), wave
aumber { k. which controls the number of osciltations in a single
period) and modulus (m, which controls the shape of the wave).
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{Abramowitz and Stegun, 1964). Note that the series in
(12a), truncated to N terms, is the shallow-water, Nth
order Stokes wave. In the limit as the modulus m — 0
the cnoidal wave reduces to a sine wave; when m—» 1
the cnoidal wave approaches a solitary wave or soliten;
intermediate values of the modulus correspond to the
Stokes wave (see Fig. 1).

With regard to (1) (the KdV equation) and (12) (the
periodic travelling cnoidal wave solution to KdV) an
important problem in mathematical physics and related
practical applications remained open for a century.
While it is known that linear Fourier analysis (8) works
well for linear wave equations (such as (10)) with sine
wave basis functions (11), the more difficult question as
to whether there exists a generalization of linear Fourter
analysis (for nonlinear equations like (1)) with cnoidal
wave basis functions (12a) remained unresolved from a
theoretical point of view until about 20 years ago
{Dubrovin, et al., 1976; Its and Matveev, 1975; Flaschka
and MacLaughlin, 1976) and from a concrete point of
view until recently (Osborne, 1995). In this latter work,
noanlinear Fourier analysis has been formulated in a
physical and mathematical form simple enough that
practical oceanographic and engineering applications of
the method can now be made. This approach is based
upon the general periodic solution to the KdV equation
(1) in terms of the so-called 8—function representation:

(x t)=£—~ai~ln® (x,1) {13a)
e A ax? N
for A = /68 and
@N(I,I)-——
(13b)

oo

=M§_... 3

oo MN=—r:e n=I

N N
1
exp|i Y M, X, +— ¥, M,M,B,,

m,n=1

Here N is the number of cnoidal waves in a (broad-
spectrum) solution to the KdV equation. The summation
indices M, (1<n<N) are integers summed from —ee
to . The @—function phases have the same form as in
linear Fourier analysis: X, =k,x—w,?+¢,. Explicit
computation of the period matrix, B={B,,}. the wave
numbers, %, . the frequencies, w,, and the phases, ¢,,
is discussed elsewhere (Osborne, 1995). The period
matrix B is constant and negative definite and defines
the cnoidal wave amplitudes and meoduli (diagonal
terms) and their nonlinear pair-wise interactions (off-
diagonal terms). Equations (13) are discussed in detail
for the particular case N=2 by Boyd (1984). On the
basis of the @—function formulation (13) one can prove
the following theorem (Osborne, 1995):
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Theorem of Nonlinear Fourier Analysis: The 6-
function solution (13) to the KdV equation (1) can be
written in the following form:

2 3
r](x,t)=1$-1n®,v(x,t)=

(14)
Ten(®:2)  +

. L-“‘v_" v
Linear superposition
of cnoidal waves

Th‘m(JfJ)
[N —

Nonlinear interactions
among the cnoidal waves

The theorem essentiaily states that Shallow water wave
trains (governed by the KdV equation) can be represented
by a linear superposition of croidal waves plus their
mutual nonlinear interactions. How is this formulation
related to linear Fourier analysis? This is seen by letting
the wave amplitudes become so small that the cnoidal
wave components become sine waves and the nonlinear
interactions tend to zero. In this way linear Fourier
analysis is recovered from the nonlinear theory.

An important aspect of the above theorem is that the
amplitudes of the cnoidal waves und their phases are
constants of the motion, provided that the motion is
governed by the KdV equation. Tt is important to
recognize that the nonlinear interaction term in (14) is
generally not a perturbation. The interactions can, for
sufficiently nonlinear waves, make an (1) contribution
to the dynamics. One of the aims of the present paper is
to provide the theoretical underpinning for extending the
above theorem to higher order so that it reads: Shallow
water wave trains can be represented by a linear
superposition of higher order travelling waves plus their
mutual nonlinear interactions. These issues are discussed
further in Sections 6 and 9.

I now address the synthesis of shallow-waler wave
trains from their constituent cnoidal waves at the order
of the KdV equation. I give an example which illustrates
the generality of the approach. The N-cnoidal-wave
solution to KdV is given by (14), which can be written:

n(x, )=
(15)

N
= 22 nncnz {(K(mn )/ ﬂ)[knx - w,t+ ¢n];mn}+ Mine (X.1)
n=]

The explicit form for the interactions is (written in the
obvious vector notation (Osborne, 1995)):

2
Ming (X, ) = %a—lﬂ{l"'

F(X, C)}
ox?

F(X,D
where

M-X+1M7-D-M
F(X,C)=YCe 2
M
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Fig. 2. An example of nonlinear Fourier analysis using the periodic
inverse scattering transform. There are five cnoidal wave components
in the spectrum. Shown are the amplitudes, 1,,, and the moduli, m,,
of the cnoidal waves graphed as a functien of wave number, £, .

27
25k
L Cnoidal Waves My
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21| 2

M
¢+ F
s15F
'E- - Sum of Cnoidal
< 13 Waves

Nonlinear Interactions

- Constructed Shallow-
Water Wave Train

0 32 64 96 128 160 192 224 256
Distance - cm

Fig. 3. The cnoidal wave components in the spectrum of Fig. 2
(vertically ordered from small to large wave numbers) are shown,
together with the sum of the cnoidal waves, the nonlinear interactions
and the synthesized five-component wave train. The linear
superposition of the cnoidal waves plus interactions yields the
constructed wave train at the bottom of the panel.
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ZM7.0-M
C=e -1
The interaction matrix, B=D+ O, has been separated
into diagenal, B, and off-diagonal parts, O. The
vectors, X={(X,} and M=(M,), and matrices,
B={35,,}, 0={(0,,} and D={D,}, have the
definitions discussed above.

Figs. 2 and 3 give an example of the synthesis of a
wave train with N =5 cnoidal waves. The cnoidal wave
spectrum is shown in Fig. 2; both the cnoidal wave
amplitudes, 7, and the moduli, m,, are graphed as a
function of wave number, k,, 1< nr <5, The first cnoidal
wave (leftmost in Fig. 2), 7, has a modulus near 1,
my ~ 1, and hence can be interpreted as a solitary wave
(see uppermost curve in Fig., 3). The next cnoidal wave
has modulus .91 and is a Stokes wave. The remaining
three waves are small amplitude Stokes waves with
moduli 0.51, 0.37 and 0.23 respectively. Note that the
wave numbers of the various cnoidal waves have the
values k, =nAk=2an/L for L=256cm and n=12,
....5 (in complete correspondence with the linear
Fourier transform). The five cnoidal waves are shown at
the top of Fig. 3 in vertical order from the lowest wave
number (M;} to the highest (Ms). Below these are the
"sum of the cnoidal waves,” the "nonlincar interaction
contribution” and the "constructed shallow-water wave
train solution” of the KdV equation. The latter KdV
wave train consists of the summed cnoidal waves plus
the nonlinear interactions. This example constitutes the
direct application of the Cnoidal Wave Theorem given
above in (14}. In principle one can apply the theorem to
an arbitrary number N of cnoidal waves.

It is worth emphasizing that the nonlincar interactions
in Fig. 3 are not small with respect to the summed
cnoidal waves. Thus the interactions cannot in general
be thought of as perturbations to the nonlinear dynamics
in the present example. It is well known that the
nonlinear interactions of the KdV equation arise as a
consequence of the phase shifts occurring among the
nonlinear components in the spectrum. Therefore, the
large amplitude oscillations in the interaction
contribution are generally seen to apply a spatio-
temporal phase shift to the summed component cnoidal
waves.

3 Experimental Search for Higher Order
Nonlinear Effects in the Laboratory

As waves propagate into shallow waler regions their
periods remain constant while their wave lengths
shorten. As a result their crests close ranks so that a
shoaling wave is much steeper than its offshore
counterpart. Propagation into shallow water results in
the crests becoming increasingly higher and narrower,
while the troughs become shallower. All of these
nonlinear effects have been known for over a century,
but guantitatively assessing how important they are to
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all orders in the spectral analysis of nonlinear wave
trains is still an open question.

This Section is devoted to preliminary results from a
laboratory experiment which was designed to help
understand a few requirements that one might expect of
a higher order wave theory. An extensive analysis is
given clsewhere (Osborne et al,, 1997). The work has
been conducted at the wave tank facility at the
Hydraulics Section of the Department of Civil
Engineering at the University of Florence (Osborne and
Petti, 1994; Osborne et al., 1997). The wave tank is 46
m long with a cross section of 0.76 m by 0.80 ¢m and
has a ramp running almost the full length of the channel
with a slope of /100 (Fig. 4). The water depth at the
wave maker is - =40 cm.

For the experiments discussed here the programmable
wave maker generated simple sine waves with a height
of 5 cm and a period of 3 s. From Fig. 5 we see the time
series of measurements taken at the 10 shallowest of the
15 probes. The first 5 probes are not shown for brevity,
they are beneath Fig. 5. One sees that the first signal at
the bottom of the figure has already deformed into the
shape of a Stokes wave; as the wave train propagates up
the ramp (moving upward in Fig. 5) the waves distort
slowly, becoming narrower and higher as they evolve
into shallow water. The signals near the bottom of the
ramp are in relatively deep water and are small in
height (5 cm). Those at the top of the figure are larger
in height (8.6 cm) and occur in very shallow water. The
depths at each of the probes are indicated in the figure.
The probe time series shown in the figure extend from a
depth of 29.6 cm (bottom}, to a depth of 11.5 cm (top).
The probes are roughly evenly spaced along the ramp
with the exception of the last (at the top) which has
been placed at a point near where the waves reached
their maximum amplitude, just prior to overturning and
breaking. Considerable effort was extended to place the
last probe at the point of the "highest wave." A video

Wave
Propagation
B EESE—
. Programmable
Resistance
Concrete Ramp gauges Wave Maker

1/100 Slope . \

Gy Gy Gs Gy G, Gs Gy G, Gy G,

¥ o v O o M A
0.8m | ] \__r
I3 [T 1

I—.. 46 m =J

Fig. 4. Schematic of the wave tank at the Hydraulic Section of the
Department of Civil Engineering, University of Florence. The facility
is 46 m long and 0.76 m by 0.80 m in cross section. The test section
for the experiments lies above a concrete ramp with slope of 17100,
Fifteen resistance gauges {only ten are shown) measure the wave
amplitudes along the ramp as the waves propagate from 40 cm water
depth {at the wave maker) to [1.5 cm depth (a few moments before
the waves begin to overturn and to break).
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Fig. 5. Wave tank experiment in which a sine wave input (beneath
the figure in a water depth of 40 cm and not shown here) propagates
up the ramp with slope 1/100 and slowly deforms into highly peaked
wave forms (top) which occur just at the instant before breaking. The
water depths at each of the 10 probes are indicated in the figure.
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camera was used to determine the instance of incipient
wave breaking. This provided an estimate of the desired
probe position used for the measurement of the upper
signal in Fig. 5.

The wave heights in Fig. 5 are seen to nearly double
during propagation from deep to shallow water, while
the widths of the shallow pulses are more than a factor
of two narrower than those near the wave maker. Some
right/left asymmetry is visible in the recorded wave
trains of Fig. 5; this effect is due primarily to the
influence of the 1% bottom slope. Theoretically, this
kind of near-adiabatic wave propagation should yield, in
sufficiently shallow water, the Stokes highest wave,
well known to have a 120° angle at the peak (a result
which is computed for wave propagation governed by
pure potential flow on a flat bottom) (Whitham, 1974)
(see discussion below with regard to Fig. 8).

It is worthwhile estimating how the Ursell number
{Whitham, 1974; Miles, 1980) (an important measure of
nonlinearity in shallow water waves) changes during the
propagation from deep (40 cm) to shallow water (11.5
cm). The Ursell number is conveniently written in the
following form:

3 T 2

Here a is the wave amplitude and T is the period. It is
clear that the Ursell number increases by a factor of
@B 7cem/Scm)x{(40cm/1L5 cm)3 =73 as the waves
propagate from the first probe to the last. The period
remains constant while the amplitude increases and the
depth decreases; these changes result in nearly two
orders of magnitude increase in the Ursell number
during the nonlinear evolution observed in the present
experiment.

Let us now focus on the uppermost signal in Fig. 5. As
mentioned above the probe position for this signal
(water depth h=11.5 em) was moved to a particular
point along the ramp very nearly where the maximum
wave amplitude occurred, immediately before wave
breaking began. It is estimated that each highly peaked
wave (with amplitude 8.7 ¢m and amplitude-to-depth
ratio 0.76) was measured only a few hundredths of a
second before the wave form began to overturn and to
break. It is in this sense that these shallowest of signals
were the most nonlinear of those measured in the
present experiment. [ do not include here estimates of
the influence of the return flow on the measured signals;
this issue is addressed in detail elsewhere (Osborne et
al., 1997).

An estimate of the phase speed of the larger waves
can be obtained from the measurements at the last two
probes. The probe separation is Lj5_j4 =66 cm and the
time interval between peaks is 0.52 s. Thus the phase
speed of a single peak has the average value 126.9
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cm/s. The average depth for the two shallowest probes
was 11.9 cm for which the average linear phase speed
(@) was computed to be 108.0 em/s,

In order to assess some of the properties of these
"almost highest waves" [ make the following
decomposition of the measured wave train:

T8 = Ny + Nasym

where

Nsym = %[TI(I—FPH n("(l‘"fp))]

Nasym = ‘;"[n(t“‘!p) = (-t —tp))]

where 7, is the time corresponding to the peak of a
particular travelling wave. Thus the waves have been
separated into a symmetric part, Nyym» and an
antisymmetric  part, Tgey. The summing and
differencing in the above equations is made with respect

wh
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Fig. 6. Analysis of the "symmetric part" of a typical "almost highest
wave" which was obtained from the uppermost signal in Fig. 5. This is
a very nonlinear wave form, with an amplitude of 8.7 cmy, in only 11.5
cm water depth with amplitude-to-depth ratio 0.76.
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to the peak of a particular wave. The symmetric part has
been obtained by averaging the original signal with the
time-reversed signal (relative to a single peak). The
antisymmetric part results from the difference of these
two signals.

The above perspective has been motivated by
Svendsend and Hansen (1978) where it is shown to
leading order that solitary waves on a sloping bottom
have a symmetric part plus an antisymmetric part. The
symmetric part is an estimate of the "true solitary wave”
propagating on a {lat bottom; the antisymmelric part
occurs duc to the presence of the bottom slope. Using
the expression 1, = [R—1,)+ m—(t-1,))1/2 one
obtains a smoothed, symmetric estimate of a particular
peaked wave form, an example of which is shown in
Fig. 6, for a two second interval centered on a single
solitary wave. This figure emphasizes one of the most
important properties of the peaked waves measured at
the last two probes, i.e. that the waves rise very quickly
out of the background "radiation” to form a sharp peak
and then rapidly fall once again into the background.

Is this peaked-wave form close to the simple solitary
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Fig. 7. Expanded view of the wave in Fig. 6 (dots). Also shown is a
KdV solitary wave of the same amplitude (solid line). These results
suggest that KdV dynamics are not very precise for high waves in
shallow water.
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Fig. 8. Expanded view of the solitary wave in Fig. 6. Here an angle of
120° has been superposed over the measured wave near the peak. The
results suggest that the measured waves have a peak angle near 120°,
except for the region nearest the peak where natural excitations of a
hydrodynamic instability might contribute to erosion of the crest of the
wave,

wave (soliton) solution of the KdV equation? The
intuitive feeling that one gets by observing the waves as
they propagate from deep water into shallower water,
based purely on Fig. 5, is that the waves undergo
substantial nonlinear evolution. But, once again, is this
evolution very different from KdV evolution? In Fig. 7 I
compare the peaked wave of Fig. 6 with the KdV
solitary wave solution (the amplitude was taken to be
that of the measured wave (8.7 cm) for which the local
depth was 11.5 cm). On the basis of Fig. 7 the measured
wave form is seen to be substantially different than the
KdV solitary wave, a result which suggests that higher
order nonlinear effects influence the measured
dynamics.

It is not easy to quantitatively state whether the
measured waves correspond to the "highest waves"
found theoretically by Stokes. Further experiments will
refine this search, but for the present we may use the
uppermost signal of Fig. 5 as a good representation of
the most nonlinear waves measured in the experiments.
In Fig. 8 1 superpose an angle of 120° over the peaked
wave form of Fig. 6; the angle was shifted vertically as
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shown, to be consistent with the analysis of Section 8
below. The aim is to see whether the peak angle
predicted by Stokes for the highest wave is in any way
represented by the data. It can be seen that the
agreement between the wave form and the angle is
rather good, except very near the peak itself.

There are several possible reasons for this lack of
agreement. The first is that there is a physical instability
which occurs because the acceleration of a typical
water parcel near the peak is approximately equal to the
gravitational acceleration, g (Kinsman, 1965; Tanaka,
1986). Thus there are only small residual forces to keep
the water parcels on the free surface near the crest.
Consequently, for a small region near the peak of the
highest wave, the free surface is subject to disruption
from external forces of all kinds which are not normally
included in the constant-depth, unidirectional water
wave equations. These effects include the presence of
dissipation in the fluid boundary layer on the bottom and
the sides of the canal, the influence of air currents, the
possible presence of mechanical vibrations in the canal,
the reflections of waves from the bottom slope as the
waves propagate into shallow water, etc. Another
possible influence, often excluded in considerations
with regard to the highest wave, is the possible
generation of capillary waves and their resultant
excitations which may influence the large waves.
Consequently there are several external forces which
could excite the instability at the crest of the solitary
wave and which could possibly erase evidence of the
1209 Stokes peak angle. These and other considerations
would suggest that the 120° angle is a rather delicate
result, particularly for physical waves subjected to real
world conditions. On the basis of these experimental
observations (Fig. 8) it appears plausible that ~ 0.6 cm
of the wave height might have been eroded away due to
this instability.

Another reason why one might expect to lose
information about the behavior of the largest waves near
the peak is the fact that experimental uncertainties
might occur due to possible randomness in the phase of
the waves arriving at the last probe. These uncertainties
could possibly arise from errors in the control and
feedback loop used to generate the wave trains. The
influence of these errors has yet to be fully explored.

In consequence of these simple experiments it seems
reasonable to conclude that higher order theories might
be exploited to investigate some of the highly nonlinear
dynamics of shallow water waves at large Ursell
numbers. Many of these issues are explored
theoretically and numerically in the rest of this paper.

From a (potential flow) theoretical point of view the
evolution of a sine wave as it propagates into a shallow
water region (with small bottom slope) results in a slow,
adiabatic deformation of the wave shape from the sine
wave itself to a Stokes wave to a solitary wave (the
soliton solution to the KdV equation) to a narrower and
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higher solitary wave up to the highest wave studied by
Stokes. This adiabatically varying periodic wave train
corresponds approximately, at any particular instant, to
a travelling wave solution of the water wave equations.
As discussed below in Section 9 the study of the
nonlinear evolution of a sine wave in decreasing depth
reveals many of the physical properties of a single
degree of freedom solution of the nonlinear water wave
equations. From the point of view of the inverse
scattering transform this travelling wave form is a basis
function of the nonlinear Fourier transform of a higher
order wave equation. These waves depend strictly on
two parameters, the amplitude-to-depth ratio and the
depth-to-wave-length ratio. When these small
parameters change due to propagation up a linear slope
the travelling wave deforms as shown in the
experiments of Fig. 5. As discussed in Section 9
solutions of higher order wave equations with periodic
boundary conditions consist of the linear superposition
of these travelling waves plus interactions among them
{Osborne, 1997). It is therefore quite important to fully
characterize the travelling waves in the context of
nonlinear Fourier analysis; this effort requires
exploration of higher order, integrable wave theories as
discussed in the following Sections,

4 Multiscale Expansion of the Shallow Water Wave
Equations for Unidirectional Motion

In this Section I follow Whitham and summarize his
formal expansion of the equations of motion for
unidirectional, shallow water wave motion (Whitham,

Y
. nx,7)
h \—/ l
Free Surface
h
Bottom ’

Fig. 9. Definition sketch of the coordinate frame used herein for
shallow water wave motion.
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1974). 1t is convenient, but not necessary, to assume that
the fluid is irrotational and to thereby introduce a
velocity potential. The domain of the wave equations is
rectangular, (x,Y), where x is the horizontal coordinate
and Y is measured from the bottom up to the small-but-
finite-amplitude free surface, A+ n(x,t} (see Fig. 9);
77(x,t) is the wave amplitude relative to the undisturbed
free surface. In this domain one seeks to solve Laplace’s
equation for the velocity potential ¢:

Oyt Oyy =0, O<Y<h+n (16)
where ¢p=0 on Y=0 (i.e. the vertical velocity
component is zero on the bottom). It is physically
intuitive that for shallow water waves the horizontal
velocity, ¢,, should depend (roughly) linearly on the
height of the waves (recall that for KdV ¢, is
proportional to the wave amplitude 7(x,¢)). Thus one
might generally expect an expansion for the velocity
potential which depends on Y in the form of a simple
power series:

= SV (x0) an

n=0

an expression which suggests possible rapid converge in
the shallow water approximation. Substituting (17} into
the Laplace equation (16) and applying the boitom
boundary condition one finds

] Y?.m aZMf
= -1 — 18
¢ mz;'o( ) (2m)! 3x>™ {19
where f=f,.

In order to proceed further one needs the full Euler
equations, including the nonlinear surface boundary
conditions. The original variables in the problem are
normalized in the following way:

x=1Iv, Y=hy, (=
CO
(19)
, la ,
n=an, =524
C()

Here [ is a length scale and a is a characteristic wave
amplitude. The small parameters «=a/h and
B =(h/l)2 are used in the multiscale expansion which
follows. The water wave equations in normalized form
are thus given by:

(20a)

B +dyy =0, O0<¥Y<l+an

py =0, Y=0 (20b)
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Mo+ 9, — g by =0
Y=1+an (20c¢)

1 2,1
N+ @+ 5095 +5 507 =0

The primes have been dropped in the final scaled
equations. The last two equations in (20) are the
kinematic and dynamic surface boundary conditions
respectively, The goal is to make a multiscale expansion
of (20) in terms of the parameters ¢, . Here I take
O(ar) ~ O(B) (Kruskal's principle of maximum balance),
but this may be neither necessary nor advisable in other
circumstances. In this way one finds the hierarchy of
equations, Wn, to arbitrary order n.
The solution to Laplace's equation now has the form

m (L+ am?" 92" ¢
(2m)!  9x2™

¢= 2 (-B) Q21
m=0

which is essentially an expansion in powers of the small
parameter f3. Substituting (21) into the surface boundary
conditions in (20) (the third and forth equations) gives:

1
M +wy + O_’(T]W)x _gﬁwxxx —%aﬁ(ﬂwm)x +

~ 302 B(P W), + O(B2) =0
(22)

1
Wy Ty + Oy o+ 3 BT + QBN + W3, +

02 B2wE + 2120 +O(B%) =0

for w=f,. Assume at this point that O(a) ~ O(f), and,
without loss of generality, let o=2¢/3 and B=6¢
(with Fokas and Liu, 1996) to find at O(g?):

m, +Wx+%£(nw)x —ew,,, +0(e?)=0

(23)
w, + 1, +%£wwI =3ew,,, +O(£2)=0

Assuming further that the waves are unidirectional one
has:

o+ N, +EK(N)}+
(24)
+£2 (0 N e + O Mgx + 3T Tl + Q47211 ) +

+0(eH)=0

where the constant coefficients
«; =10, o3 =23 and a4 =—6 and

are o =19/10,
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K(m =Ny +6777, (25)

Note that the linear phase speed has the value ¢, =1 in
the present normalization of the variables in (24).

By moving to the obvious Galilean frame (propagating
with speed ¢, =1) and rescaling x and ¢ (24) becomes:

m+Km+

+£(al Moo ¥ O My T 03T My + 054772 nx)+
+0(e%)=0

which is W2, i.e. KdV plus O(g) corrections (3a). Note
that in the limit £ —5 0 one gets the KdV equation. This
asymptotic property of the KdV equation was pointed out
many years ago by Martin Kruskal, ie. that KdV
describes the generic nonlinear wave motion as £ —0.
By extending the above multiscale expansion to 0(82)
one obtains W3, which is not addressed further herein.

5 Establishment of Integrability for Higher
Order Equations

Fokas and Liu (1996) have recently established the
asymptotic integrability of certain higher order wave
equations. I address two of their "propositions” which are
relevant in the present case for the possible integration
of W2 (3a, b), namely:

Proposition I: Let v solve the KdV equation (.2),
v+ K(v)=0. Let

u=v+ el A + Aave + Av, 37+ A 2K (V)] (26)

Here 9~! indicates integration with respect to x,
Ay =118/57, Ay =44/57, Ay =52/57 and
Ay =—1/3.Then u solves W2 (3a).

Proposition 2: Let v solve the Camassa-Holm equation:

VoW, +v — BV F 2 +4v v, =0 (27)
Let
u=v+£[l]v2 +lzvxx+l3vxa_]v] (28)

where A;=14/19, A, =2/19 and A, =-8/19. Then
u solves W2 (3a).

What can we conclude from these propositions? That
by adding some (non trivial) function (see (26) or (28))
to the solution of an integrable wave equation (namely
KdV (2} or CH (27)), we solve a higher order equation
W2 (3a) to O(g). Note that in both cases (3a) is
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solvable in the sense that the simple transformations
(26), (28) lead to higher order terms which are
neglected in the analysis, i.e. they occur at O(g%) and
are hence not included in the specific O(g) terms given
in (3a).

It is also worth noting that the time derivative which
appears in (27) at O(g) is "deregularized” when
applying the transformation (28) by using the leading
order behavior governed by the KdV equation:
u, = —(6uny, +u,, ). These ideas are important for the
integration of higher order equations as discussed in
Section 6.

The above propositions are based upon the following
observation (Fokas and Liu, 1996). Let v solve the
following wave equation:

v+ Mo (v)+ M (v) =0 (29)
Let u be defined by

u=v+EP(v) (30)
Then u solves

i+ Mo (u)+ M () + [P, My (1) + O(e2)=0  (31)
where the commutator [.,.]; is defined by

[A,B]y =A'B-F'A

(32)

dA oA 0A .o
SOA S WAy,
% ow, T, *T

AI

We thus have a formal way to transform from an
integrable equation, v, + My(v)+eM|(v)=0, to some
other integrable equation (31) via a simple
transformation (30). Depending upon the choice for the
function P(v) one obtains a specific integrable equation.
As suggested by Fokas and Liu {1996) an appropriate
choice for the function P{v) is the master symmetry of
the integrable equation, v;+My(v)=0, where the
master symmetry is defined by [P, My]; = 1\711, such that
M, is the next commuting flow of the hierarchy of
integrable equations {Fuchsteiner and Fokas, 1981).

For the particular choice of the KdV equation we have
My =K and M, =0, for which one has

P=/llv2 +}l,2vn+ﬂ.3vxa_lv+ﬂ.4xK(v) (33)
Then the equation of motion becomes
u, + K(u)+ Ky (1) =0 (34)

For the particular choices
Ay=2/3 and A, =1/3, one has

ll=8/3, 3.2:4/3,
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K () =us, +10uu, . +20v.v  + 30u2uJt (35

which gives the integrable equation found by Kodama
(4). This equation bears some resemblance to W2 (3b),
but differs in the values of the constant coefficients. In
order to arrive at the results of Propositions 1 and 2 it is
natural to let the coefficients 2; in (26), (28) be
arbitrary and to hence compute the corresponding
o; = ¢;(A;) to agree with the values in W2. In this way
one selects particular values of the A; in (33) to give
the proper coefficients «; for W2 (3b). The appropriate
values of the A; are given Proposition 1.

In Proposition 2 one has the CH equation such that
My =K and

Ml ==V 20V + 4V Ve )

where P = Alvz + AV, +)L3vxa"lv. The time derivative
in M! is deregularized using the KdV equation in all
subsequent calculations. Again the coefficients A, are
adjusted appropriately as before and are found to be
those given in Proposition 2.

We are now lead to the following question: Can W2
(3a, b) be integrated exactly, or even approximately, by
the inverse scattering transform? This is a nontrivial
question, since asserting integrability (as was done
above) is quite different from the process of carrying out
the integration itself. An attempt to address an approach
leading to the approximate integration of W2 is the
focus of the next Section.

6 Systematic Approach for the Integration of
Higher Order Equations

This Section is dedicated to describing a series of ideas
leading to the concept of universal Lax pairs and their
associated universal nonlinear wave equations. Here the
term "universal” indicates that the formulation depends
upon an arbitrary function which can be appropriately
selected to integrate, or approximately integrate, a
particular higher order wave equation.

I first discuss integrability for the KdV equation and
then give a generalization of the requisite Lax pair for
KdV, which is subsequently applied to integrate the CH
equation (27). On this basis I then formulate the
universal Lax pair ((51) below) and apply it to the
approximate integration of W2 (3a, b).

6.1 The Korteweg-de Vries Equation

The KdV equation (2) is integrable by the Schroedinger
eigenvalue problem

Vo +u(x,0)+Ely =0 (36)
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(E ~ k% is the eigenvalue and % is the wave number)
together with the time dependence for the eigenfunction

v, =a(u; E)y —b(u; EYy 37

where b=2u—-4FE. Equations (36), {37) are referred to
as a Lax pair (Lax, 1968; Ablowitz and Segur, 1981;
Calogero and Degasperis, 1982; Dodd, et. al, 1982;
Novikov, et al, 1984; Newell, 1985; Drazin and Johnson,
1989). The compatibility condition V., = W, yields
the KdV equation, which is of course independent of the
spectral parameter, E, a requirement for integrability (it
further follows from the compatibility condition that
a~b, /2-u).

6.2 Generalization of the Eigenvalue Problem

Is there some way to extend the applicability of the
spectral problem (36) to other physically interesting
equations? To this end [ suggest a generalized
eigenvalue problem

Vi + A E)y=0 (38)

where Q(x;E) is specified in (40) and (45) below for
the problems of interest herein. Applying the
compatibility condition to the Lax pair (37), (38) gives
the nonlinear wave equation:

Q,+2b,Q+bQ, +%bm =0 (39)

In the computation of this equation one eliminates a(F)
via the derived relation: a,.. =b,, /2. Should {39) be
independent of the eigenvalue E then the Lax pair (37),
(38) is said to integrate (39) and the full mathematical
machinery of the inverse scattering transform can be
brought to bear in order to understand the physical
behavior of (39) and to compute its solutions for various
selected boundary conditions. Thus, specification of
appropriate functions for Q(u,u,....E) in (38) and
b(u,u,...,E) in (37) could possibly lead to an integrable
wave equation of physical interest for (39). The
functions u and @ are here assumed to be well-behaved
differentiable functions which go to zero sufficiently fast
as |x| > e on the infinite line (—ec<x <), or are
pericdic (u(x,#) =u(x+L,1)) on the interval 0 x < L.

6.3 The Camassa-Holm Equation

Consider a transformation of the KdV Lax pair ((37),
(38)) to a new variable, u — u+ gP(i), where P(u) is
to be chosen below and ¢ is a small parameter. In order
to search for the associated wave equation arising from
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this transformation one might chose as a candidate for
Qi u,...,E) in (38):

Q= a(Eym(x,0)+ y(E) (40)

where m=u+ eP(u) with associated time-dependence
coefficient b=2u—B(E). Note that this procedure is
similar to that for the KdV equation, but is modified by
including additional possible spectral dependencies in
the functions o(E), B(E) and y(E) (for € =0 the
results reduce to those for the KdV equation and the
above functions are 1, 4E, E, respectively). Use (40)
and b=2u—fB(E) in (39) 1o gel:

a{E)=1+4¢cE

4v(E 4E

o(E) 1+4¢E

(41)

YE)=E
P(v)=—uyy
for which the wave equation is computed to be
m, +4muty +2um, + iy, =0 (42)

Note that P(u)= —u,  is the most obvious choice here,
but not the only one (see discussion in Section 10
below). Using m = u+ eP(u) = u—€uy, in (42) gives the
familiar Camassa-Holm equation (27) (1993; Camassa
et al., 1994):

sy +6uty + it = EQugy + At + 20ty ) (43)
with Lax pair

Wy +{(1+4€E) 4 — Uy |+ E}y =0
(44)

_ 2 2E
Yy =u, - [u_1+4£E}WX
where, in appropriate variables, €= K 13.

Thus by adding a particular function P(u) to the
solution of the KdV equation we obtain and easily
integrate (by generalizing the Lax pair for the KdV
equation) a well-known water wave equation (43) which
has a physical basis (it arises in the study of the Green-
Nagdy equations for small-but-finite-amplitude waves in
shallow water (Camassa and Holm, 1993)). Letting
£-50 in (43) and (44) gives the KdV equation (2) and
its Lax pair (36), (37). It is in this sense that the CH
equation may be viewed as a natural extension of the
KdV equation.
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6.4 A Universal Wave Equation and Its Lax Pair

Can the procedure given above for adding an appropriate
function (—&u,,) to an existing wave equation solution
(u(x,t) of the KdV equation} be applied once again in
order to integrate other physical wave equations of
interest?

To this end T extend (43), (44) by letling u = u+uN,
where g 1s a small number which is O(g) (but for now
it will be left distinct) and N(x,?) is assumed, for
concreteness, to be a well-behaved differentiable
function which goes to zero sufficiently fast as |x]=» oo
on the infinite line (—w<x<e) or is periodic
(N(x,t)=N(x+L,t)) on the interval 0<x<L.
Specifically the dependence N=N(uu,,u,,...} is
assumed throughout. Hence, in analogy with (40), it is
appropriate to define

C=(EYM(x)+ y(E) (45)
where
M(xy=u—e€uy, +p(N—eN,) (46)

and 1o generalize the coefficient & in the time
dependence of the eigenfunction in the obvious way:
b=2u—-PB(EY+2uN 47
Equations (45)-(47) together with (37), (38) constitute a
possible candidate Lax pair for this problem. Use (45),
(47) in (39) and find that the first three equations of (41)
hold once again in the present case. The eigenvalue E is
eliminated easily from the formulation and the following

nonlinear wave equation arises (in the particular
shorthand notation):

| M, + C(M,u+uN)=0 (48)

- where the operator C(u,v) has the definition (see (42))

Clu,v) = 4uv, +2vu, + vy, (49)
It is useful to note that C(u,v) has the properties:
Clu,v+w)= Clu, v+ Clu, w)
Clu+v,wy=Clu,w)+ Clv,w)—w,

(50

Clu,av)=aClu,v)
Clu,0)=0; ClO,w)=w,

for a constant. This leads to an alternate form for (48)
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M +C(Mu)+pC(M,N)=0
Setting =0 gives the CH equation (42),
m, + C(m,u) =10, in the operator notation of (49).

It follows that the equation of motion (48) is
integrable by the inverse scaltering transform using the
following Lax pair (use (45), (46) in (38) and (47) in
37):

[ W + {0+ 4€E)u—uy, + (N — N )]+ E}y =0

(51)

2E
v

v, =[ux+,uNx]yf—2[u+,uN— vy

Thus specification of any well-behaved function N in
the Lax pair (51) yields an integrable wave equation
(48). Stated differently, simply by adding an arbitrary
function UN(x,t) to the solution of the CH equation
(43), and to its Lax pair (44), we obtain a new
integrable wave equation (48) with Lax pair (51).

Can (48) also be a physically important wave
equation? To this end note that as g — 0 (48) reduces
to the CH equation and if, further, £ > 0 (48) reduces
to KdV. Hence (48) may be viewed as a wave equation
which is the third step in a procedure that leaps from
KdV to CH to some other equation at the same and
higher order.

A remarkable property of the new nonlinear wave
equation (48) is that it is integrable for arbitrary N; it is
for this reason that I refer to (48) as a universal wave
equation and (51) as its universal Lax pair. By picking
the function N one is able to integrate an infinite number
of nonlinear wave equations. By picking the correct
function N one might also be able to integrate certain
physical wave equations of interest. Furthermore, by
picking the appropriate function N, together with its
specified parameters (which [ typically call
A;. i=1,2...) one can attempt to "tune” or to “match at
O(g)" the universal equation (48) to a wave equation
such as (3b) in order to infegrate or approximately
integrate the nonlinear wave motion. This procedure is
discussed in detail in the next Subsection.

Expanding (48) yields the new integrable, universal
wave equation in terms of the arbitrary function N:

Uy + Outty + ity = Eliyy du ey, + 20 ]+
+it[ Ny +6(uN, +u, N)+ N 1+

(52)
—HEIN o + N ity + ity Ny )+ 20Ny + uN o )]+

O NN, ~2u2E[2N Ny, + NNyyy ]

This is the CH equation plus O(i), O(ue), O(u?) and
0(,u2£) terms. Without loss of generality one can
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assume U ~ &. Then (52) can be mterpreted in terms of
the CH equation plus SpﬁlelC N E), O(z—: ) and O(E )
terms:

Uy +Gun, +u .+

+E[N, +0{uN, + U, NY+ Ny — gy —duu . —2uie, ]
(53)

~&% [Ny + 4(N gty + 1, N, )+ 2(Nttg, + N3, ) - 6NN, ]

232N _N_ + NN

I.l’.].‘]

Application of the compatibility condition to the Lax
pair {51) directly gives the integrable equation (53). The
first two lines in (53) can be interpreted as being related
to particular target equatwns such as (3b); the remaining
terms at 0(82) and O(s ) are "corrections” to (3b)
which must be made in order to insure integrability by
the Lax pair (51). In what follows the O(&) terms in
(53) must be rendered "equivalent” to the O(g) terms in
(3b). This consideration is addressed in the following
Subsection.

6.5 Targeting and Matching the Second Equation
in the Whitham Hierarchy (W2) to O(&)

At this point one must presumably make a choice for
the function N{x,t) in order to obtain a concrete wave
equation for (53). One could be tempted by the many
interesting forms which might be selected for N (all
infinity of them) but instead T use (28), on the basis of
Proposition 2, to provide an appropriate choice:

N =Aw? + Aquy, + Agu 0 lu (54)

The next step is to insert (54) into the O(g) terms in
(53) to find the resultant wave equation:

U +Out, +uy, +

+E[2Aust; + (Ag — Vit + Aqth@ 't + Aqu, @, +

FA3K () + g +

(35)
+(2A‘l +6/12 +3I‘L3 "2)““

IXX
+ 2(3‘11 + 33.2 + 23.3 =2ty +
+6(3A) + A3)uu, )+

+0(e?,e%)=0

Osborne: Integration of a higher order water-wave equation

Note that the terms 0(82,83) have been left out in this
expression as they are not necessary to complete the
targeting operation. These higher order terms are given
in {59) below.

The next goal is to force the O(g) terms in (55) to
match the O{g) terms in the target equation (3b). This
operation thus insures the equivalence of (55) and (3b)
to O(€). To do this one computes the &; in (3b) in
terms of the A; in (54). In order to determine the
matching, the time derivatives in the @(g) terms in (55)
are replaced by spatial derivatives using the leading
order approximation from the KdV equation:
u, = —(6un, +1u,,, ). The resultant deregularized form of
(55) is then found to be:

w, F0UN, U, +

+E[U ey + (B3A3 + Sutit, +

+(64; =125 +345 + 14 u, . + (56)
+3(2A; + A )uuy ~ BAyu, )+

+0(52,£3)=O

where ¢ 1s an integration constant; in the present
application for surface waves it can be set to zero.
However, for internal waves ¢ has a finite physical
value (Lee and Beardsley, 1974; Osborne, 1997). The
expression (56) at O(£) can be used to provide
equations for the o; = a;(A;). This is done by comparing
{56) with (3b):

al =1
oy = 313 +4

(57)
241 =6ﬁ,1 —12/12 +3A3 +14
0y =3(2A +43)
Inverting these equations allows the coefficients 4, in
(54) to be computed in terms of the physical constants

@; in (3b):

A =%(a4 —ay +4)

A=y -y +14) (58)

Ay=1(o-4)
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The inverted equations A; = A;(o;) provide the precise
coefficients in (54) to match equation (55) with the
target equation (3b) to O(g). The resultant values of
A; = A;(a;) are then used in the O(¢) and higher terms
in (55) to insure integrability (see (59) below).

Note that for the values ¢; in (3b) one finds from
(58) the coefficients Ay =-14/19, A,=-2/19 and
A3=8/19. These values of A; have opposite signs
relative to those found in Proposition 2 (28); this is
because the transformation used here (u— u+ gP(u))
for determining the universal Lax pair is equivalent to

u=v=elAy? + Ay +Aq, 7]

rather than (28), i.e. there is effectively a minus sign in
front of the €. Thus the results given here are
completely consistent with Fokas and Liu (1996).

In summary, one can view (55) in light of Section 5
and the procedure discussed for establishing
integrability of W2 (3b). By discarding terms at O(g%)
and higher in {55) and by deregularizing the O{g) term
one arrives at W2 (3b) with the appropriate coefficients
given by (57). Thus (53) is an extended and regularized
version of W2 which is a completely integrable wave
equation (here referred to as exRW2, (59) below). The
integrable equation (55), to O(g), is formally
equivalent to (3b) to O(g). More precisely the
integrable equation (55) contains particular regularized
terms (e.g., with time derivatives, ¢, in place of certain
space derivatives, x), plus terms at 0(&‘2) and 0(83 3.
which insure integrability. Tt is in this way that one
integrates the higher order equations from the multiscale
expansion of the water wave equations.

It should come as no surprise that (53) can be written
in the form of Section 5:

u, + K(u)+ eC(u)+ €[N, K], +O(e2,8%)=0

where

K(u)=6uu, +u,,

Clu)=~(tyyy + du e+ 200,

and

[N, K1y =22 uuy + Aoty + Aqui 00w+ A0 ', +
F 3K (037 + Aty +

F(2A + 64y +3A3)uu,, +

+2(3A’1 +33.2 +2;L3)uxun +

+6(3jvl + 3.3)u2ux]
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it is not hard to show that the commutator [N,K]; is
given by this explicit form (with an obvious extended
definition to include time derivatives in the
formulation); to match this result to W2 one must of
course deregularize the equation as previously
discussed.

Finally, I note that for a particular choice of the
parameters in the master symmetry (54), 4, =4,
Ay =2 and Ay =2, one gets the integrable Kodama
equation (4). Likewise from (7) we have for the
deregularized CH equation that =1, a;=4,
oy=14 and oy;=0 so that (58) gives
A=A, =A3;=0, as expected. This operation is
equivalent to setting the function N(x)=0 by instead
setting all the parameters A; equal to zero in (54).

For completeness [ give the final asymptotically
matched equation for (55); here the appropriate values
of the A;=24;(e;) (58) are assumed (4;=-14/19,
Ay =-2/19 and A3 =8/19):

i, +6un, +u,,, +

+E[2A ety + (Mg = Dty + Agthg 0 Ltk + Aque, 0ty +
+A3K ()07 + Aty +
(24 +64q + 345 - Dun +
+203A; +345 + 243 - Dy, +
+6(3A; + Ay )ulu, ]+

—£2(2(Aq + Ax utt gy + 2(A1 + Ag gitgy + 2220 + A3ttty
Aoty gy + Aty 0 i+ Ayu 07
284 +2043 — 645 (24, + Ay )it gthpy +
(A + g = Adg s, + 424, + Agud +
+4Aou 1y + 2 Aouus, — 641 (24) + Ay )iy +
~6A3u, 1 (37 W) + (59)
H[6A5 (1= Ao gty +2A3(2 = 325 2, +2 Aquitty,, +
64 Aqu’ Uy, —645(2A) + Ay )uu? 107 )

~£2 (2843 + 324,45 + 84w, +
225 (64 + TA3 Ul yylh g + 2A7 (22) + 343 0 Ug, +

+4112(3;‘Ll +2}s.3 )uxuit + 2/11}»2112”51. +
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2450, ug, + 420, + A3) uul +

42 (2Ay + Ag)uluyy, + 44,24 + Agduuyuy, +
47305 g, +

HBA3 (A + A used, +4A3(5A; + 343 ulu, +
H Ay gty iy +2A2(64 ) + 543 uu . +
42y Asti, +2A0 Aqit s, +

24 Aguugy +2A0 Aqu g o 1070 +

+(4/l%uxxu3x + 22.%uxu4x)(a_lu)2}

This is the new nonlinear wave equation, exRW2, found
and integrated herein. It is the main result of this paper.
It has 52 terms and is found by evaluating (48) using the
master symmetry (54) for particular coefficients A;
found in the targeting operation of (3b). Eq. (59)
illustrates the power of the new approach introduced
herein, the method of universal Lax pairs, for integrating
higher order wave equations. How else could one
integrate a wave equation with 52 terms?

6.6 Other Interesting Nonlinear, Integrable Wave
Equations

In the above results I have targeted the higher order
wave equation W2 and thereby neglected other nearby,
integrable wave equations. It is straightforward to take
only certain terms in the master symmetry (54) and to
arrive at other wave equations which have interesting
structure. Some of these results are given in Table 2.

In the left column I show only the coefficients A; for
which finite values were chosen and, for simply chosen
numerical values of the A;, I give the coefficients of the
terms in the resultant deregularized wave equations, «;,
in the remaining columns. Note, for example, that if onfy
the coefficient A, is retained (which means only the
”2“,: term in the master symmetry (54) is used) one
finds an equation with coefficients 1, 4, 11 and -3,
results which are not very far from W2 (which has
approximate coefficients 1, 5.3, 12.1, —3.2). Formulas
(57) give the o; coefficient values in Table 2
corresponding to this case: A, =-1/2 and A, =4,=0.
The simple resultant wave equation is then found by
choosing A finite (and A, =45 =0) in (55):

uy+Ouu, tu,, +

Osborne: Integration of a higher order water-wave equation

; s Wl e Uyl uzux
Kodama 1 10 20 30
CH 1 4 14 0
w2 1 ~5.3 ~12.1 —32
Ay 1 4 1 -3
As 1 4 12 0
A 1 1 1l -3
Al Ay |1 4 12 -3
AL Ay |t 5 11 -3
Ar. A5 |1 1 15 -3

Table 2. Comparison of the constant coefficients ¢; for each term in
the Kodama (4), the deregularized CH (7) and the W2 (3b) equations,
together with a number of simpler equations obtained using only
certain choices for the terms in the master symmetry (54). In the left -
hand column particular coefficients A; are given and are assumed to
have certain finite values; those not specified are assumed to be zero.

+E[2Amuy — Uy + 2(A — Dttty +

+2034, = Duu,, +18A4u%u, 1+ O(E2)=0

The linear dispersion relation for this equation is
identical with that for the CH equation, (64} below. This
new equation is surprisingly simple and resembles the
regularized equation W2 (55). [ have not given the
higher order terms here, but when appropriately
computed they render the equation integrable. One can
of course build up any number of integrable equations in
this way as shown in Table 2.

7 Linear Dispersion Relation of the New Equation
exRW2

The universal wave equation (59} is 'regularized' in the
sense that certain space derivatives are expressed as
time derivatives. This is an automatic consequence of
the universal Lax pair (51), i.e. behavior of this type is
guaranteed by application of the compatibility
condition, ¥, = ¥,,. Therefore, with regard to the
discussion in Section 1, it is not surprising to find that
the linear dispersion relation for (59} is well behaved.
The expticit form for the linearized exRW2 equation is
found to be:

Uy + gy + E[(Ag = Dty + Aqus, 1= 82 Aquge =0 (60)

Note that as A; — 0 this equation reduces to the
linearized CH equation ({64) below); furthermore as
£—0 we get the linearized KdV equation
(uy +uy, =0). To tansform (60) into the laboratory
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Fig, 10. Comparison of the linear dispersion relation for the lincarized
water wave equations with those for the linearized KdV, the CH and
the exRW2 equations.
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Fig. 11. Comparison of the dispersion relations for the KdV, the CH
and the exRW2 equations refarive to the water wave dispersion
relation.
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coordinate frame in dimensional units (7, x",¢") the
following expressions are applied:

n=ulA
t=t'/f3 (61)
x=x"+c,t
for i=a/68, a=3c,/2h and f=c,h?/6.

Subsequently the primes are dropped and the linearized
equation of motion for the exRW2 equation in the
laboratory frame, in dimensional units, is then given by:

M+ ol +B2A2 =Dy = €(1- A0y —
(62)

~EAy BN, — € Ap Ny =0

The dispersion relation for this linearized equation then
follows:

2,2
1+ (1-24,)h%k% 16 } 3

w=c,k
v 1+(1—A4 )h2k2/3—l Rt ra
2 2

where A, =-2/19.
These results should be contrasted to those for the
linearized CH equation:

Uyt =8y (64)
which has the dimensional form
ety — ﬁnm — &Ny = 0 (65)

with the dispersion relalion

1+h%k% 16
W = ¢ k| ———— 66
¢ [1+h2k2/3} ©o

Note that the lincar dispersion relation (63) reduces to
(66) in the limit A, — 0.

A graph of the linear dispersion relations for the KdV,
CH, exRW2 equations and the water wave equations,
w =+ gk tanh ki , is shown in Fig. 10. Strictly speaking
these tesults should be graphed only out to the
Benjamin-Fier instability, kh=136, because wave
motion to the right of this value is modulationally
unstable. Note that KdV dispersion falls substantially
below that for the other three. Furthermore CH
dispersion is greater than that for the linearized water
wave equations at high values of kh, while the
dispersion for the exRW?2 equation is somewhat below
that for the water wave equations. It is clear that the
dispersion for exRW2 is more nearly in agreement with
that for linearized water waves than are the other cases
considered here.
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In order to bring out the relative dispersion of the four
cases [ show in Fig. 11 the ratios of KdV, CH and
exRW2 dispersion relative to that for linearized water
waves, i.e. the function @/+/ghtanhkh is presented for
all four cases. In this graph the water wave relative
dispersion is 1 for all values of kh. CH dispersion is
somewhat above this value, ¢xRW2 dispersion is
slightly below and KdV is substantially below.

8 Solitary Wave of the New Equation exRW2

In this Section the focus is on the computation of the
solitary wave solution of exRW2 (59), the solitary wave
for the CH equation, the highest wave for pure potential
fiow (Evans and Ford, 1994) and the comparison of all
three with laboratory data. In order to obtain the solitary
wave of (59) (obvicusly not a simple task due to the
large number of terms in the equation) it is best to work
directly with {53) and (54). To this end note the
following simple results:

(uN) =uN, +u N

(N )y =t Ny +u Ny

(UN) oy =uN +u N+ 20 N,

UN ppp + e N = (UN) g =3, N (67)
6NN, =3(N?),

IN Ny =(N,% )x
_ ] 2
NN e = (VN ) =S (N2),

Using these in (53) gives an alternative form for the
integrable equation of motion in terms of the function
Nix.,t):

U, + O, + l o +

ELN, + 6Nty + N gy =ty = (12 )y = 2ttt ) 1+
{68)
—€2[ Ny + 20aN) gy — 200 N, )y —3(N?), ]+

~[(N2)y +2(NN ;)]

This equation is important because it is transparently
integrable with respect to the spatial variable x. To find
the travelling wave solution move to a frame of
reference in which the wave is stationary and write:

w(x, )= F(x"), x'=x~-Ct (69}
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Fig. 12. Comparison of solitary waves for the highest wave {(potential
theory, solid peaked line), KdV soliton (dotted line), CH peakon
(dashed line), exRW2 (graphically indistinguishable from the highest-
wave curve). The difference between the highest wave and the CH
solitary wave is shown as the double lobed curve near zero amplitude.
The difference between the highest wave and the solitary wave for
exRW?2 i3 the horizontal line at zero amplitude (zero to 4 decimals}.
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so that

d 9 _ 9. 9 __
R a Car s CVx
where

N(u)= N{u(x,r)]= N[F(x")]=
(70)
= lle + 2‘2Fx'x’ + /13Fx:a"lF

Use (69) in (68) (dropping the primes) and integrate
once with respect to x to find:

2
~CF+3F°+F, +

+e[6NF—CN+ N, +CF,_ - F2-2FF 1+

(71}
+82[CN,, —2(FN),, +2F N _+3N?]+

~&3[N2 +2NN,, 1+ C =0

where C) is an integration constant, Note that by setting
N =10 we have the solitary wave for the Camassa-Holm
equation; furthermore, by setting £€=0 we get the
solitary wave for the KdV equation. Further analytical
integration of (71) requires specification of the function
N(x,t). It is useful for numerical calculations to solve
(71) for F,.:

Fo ={{A@)F -3F> +eF2 + 26N, F, ]+

+&[CN =N, 1- e2[CN,, +3N? ]+ (72)
+€ (N2 2NN 1}/ D(u)
where

A(u)=C~6eN +2e*N,,
D(uy=1+eC—-2eF - 28N

Numerically (72) is a second order equation which is to
be integrated twice to obtain the solitary wave F(x).
Clearly the initial conditions F(0), F,(0} need to be
specified:
F(0)=a, F.(0)=5
where a is the wave amplitude and 5 is the slope at the
peak. A standard fifth-order Runge-Kutta routine has
been employed for the numerical integration.

In Fig. 12 I show the solitary wave for the highest

wave (solid line} as computed by the method of Evans
and Ford (1994). Note that normalized coordinates are
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used, i.e. the wave amplitude and the spatial variable, x,
are normalized by the depth. The highest wave
computation is based upon a numerical solution of the
full potential theory for water waves, e. g. equations
(20) (see also Byatt-Smith, 1970; Longuet-Higgins,
1974; Byatt-Smith and Longuet-Higgins, 1976). This
wave has of course the 120° Stokes angle at the crest.
The solitary wave for the exRW2 equation is also
graphed in Fig. 12; however, the results are equivalent
to those for the highest wave to within graphical
accuracy (four decimals). Thus, for practical purposes,
with regard to the highest wave, the solitary waves of
exRW2 compares well with the full water wave
equations. Also shown in Fig. 12 (dashed line) is the
peakon solution of Camassa and Holm (1993). This
latter solution is found to have a peak angle somewhat
less that the Stokes value (~109°) and to have tails
which are somewhat higher than the highest wave for
large x/h. For comparison I also give the soliton solution
of the KdV equation (dotted line). These three
theoretical solutions have much to say about the
relative influence of nonlinear effects as one goes to
higher order. It is surprising that the results for CH and
exRW?2 are so close to the highest solitary wave. One
might not expect such good agreement in view of the
large value of £ used in these calculations. This suggests
that the lower order equations CH and exRW2 are
perhaps more physically robust than one might have
otherwise thought. Of course it comes as no surprise that
the exRW2 equation is considerably more precise than
the CH equation.

In Fig. 13 are comparisons of the theories with the
wave data of Section 3. Shown are the theoretical
curves given in Fig. 12 and the data (I have left out the
soliton solution of the KdV equation as not being
relevant for this highly nonlinear comparison). Note that
the dara points fall quite nicely on the curve for the
highest wave (and for exRW2) except near the peak
and for the small amplitudes in the tails. Note that no
fitling process has been applied here; the theories and
data have been simply graphed in normalized
coordinates (amplitude/depth vs. x/depth) and a simple
vertical shift has been made to improve agreement
between theory and experiment. The difference between
theory and data in the tails could easily be due to the
presence of background radiation in the measured wave
train. In this region there are physical effects which are
not easily controllable in an experimental context.
However, the discrepancy near the peak could well be
due to the physical instability discussed carlier in
Section 3. Water particles near the peak are susceptible
to various kinds of external forcing not included in the
water wave equations which could tend to erase the
sharp peak predicted by potential theory. However one
interprets the results given in Fig. 3, it seems plausible
that one is addressing a physical situation which is
rather more nonlinear than that described by the KdV
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equation, To within our ability to measure the shape of
the "highest wave,” the model equation exRW?2
provides results which are consistent with our
understanding of the water wave dynamics.

9 Extending the Order of Nonlinear Fourier
Analysis Procedures

I now discuss extending the nonlinear Fourier analysis
procedures discussed in Section 2 to include both the
CH and the exRW2 equations. The approach is shown
schematically in Fig. 14. The boxes labelled 2-5 contain
the KdV nonlinear Fourier analysis procedures of
Section 2. The spectral eigenvalue problem in box 2 has
been modified, however, to include a factor (1+4€E) in
front of the potential function M(x). Thus by setting
£=0 and M(x)=u(x,0) in box 2 reduces the spectral
algorithm to that for the KdV equation. The preprocessor
in box 1 shows this fact under the label "For KdV." In
order to implement the CH equation one sets £= R?/3
and M(x)=u{x,0)—&u,, (x,0). Likewise, to implement
¢xRW2 one uses M(x)=u—ceu,, +u(N-eN, )} for
N=/’Llu2+12um+l3uxa_1u. Note that boxes 6, 7 are
postprocessing steps which are necessary for recovering
u{x,t} from M(x,t).

It is clear that extending the nonlinear Fourier
analysis approach from the KdV equation to the CH
equation and then to the exRW2 equation does not
require much additional work in the computer
programming. In particular the preprocessing step is
quite simple as shown in box 1. Most of the work lies in
the postprocessor steps 6, 7 where some knowledge of
hyperelliptic and theta functions is required. I do not
give here the details for these developments. However,
it is important to point out that it is these results which
lead to the fundamental superposition law discussed
herein: Spectral solutions of exRW2 can be represented
as a linear superposition of the travelling waves plus
their mutual nonlinear interactions (Osborne, 1997).

Thus the approach given here for increasing the order
of nanlinear Fourier analysis algorithms requires little
additional mathematical and numerical effort compared
to the fifteen-year long effort required to develop
algorithms solely for the periodic KdV equation
(Osborne, 1991; Osborne, 1995),

10 Summary and Discussion

I have suggested an approach for approximately
integrating the second equation (W2} in the multiscale
expansion of the Euler equations in the special case of
irrotational, unidirectional surface wave dynamics in
shallow water for 1 space and 1 time dimensions. A
particular inverse scattering transform (IST) universal
Lax pair is motivated on the basis of physical
considerations and laboratory experiments; choice of
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For KdV: £=0, M(x)=u(x0)

For CH:  €=h%/3, M(x)=u(x0)- Euyy

For exRW2: £=h%/3
M(x}=u(x,0)—Euyy + U(N—£Ny,)
N:llu2+).2u}x+ﬁ.3uxa_lu
A =(oy—op+4)/ 6
Ao = (g —o3+14) /12
Ay=(op—4)/3

i 2

Spectral Eigenvalue Problem
W H+4eE)M (X} + Ely =0

Hyperelliptic Function Representation

M {(x,1) is expressed in terms of hyperelliptic functions

4

Algebraic Geometric Loop Integrals

Theta Function Representation

M(x,1} is expressed in terms of theta functions

I

Postprocess Hyperelliptic
Functionsto get
u(x,t)

Postprocess Theta
Functions to get
u(x,t)

Fig. 14. Schematic of nonlinear Fourier analysis for the KdV, the CH
and the exRW2 equations. Note that only cne line of computer code
{box 2) need be changed to render the KdV spectral algorithm capable
of also computing spectra for the CH and exRW2 equations. One adds
a preprocessor (box 1) to prepare the appropriate "potential,” M({(x),
for the spectral eigenvalue problem and two postprocessors (boxes 6,
7) for recovening u(x,¢) from the hyperelliptic and theta functions
representations.
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an arbitrary function in the formulation integrates a
specific water wave equation. The particular equation
W2 in the multiscale expansion is integrated formally to
that order by IST, but, in order to insure integrability,
the equation is appropriately regularized and inciudes
precisely calculated additional terms at even higher
order. The universal Lax pair allows computation of
these results by application of the compatibility
condition,

It should be pointed out that there are no guarantees
that the integrable equation exRW2 is as physically
useful, for example, as the KdV equation, In order to
assess whether exRW2 has physical merit I have
studied its linear dispersion relation and solitary wave
solution and compared these results to those for the
water wave equations. The comparison is sufficiently
favorable so as to suggest that future research should
focus on this new equation or on related equations. For
example, study of the full spectral structure of exRW?2
will reveal whether it is in some sense close to the full
unidirectional water wave dynamics (Osborne, 1997).

Here is a list of observations of the new approach
given herein for approximalely integrating nonlinear
wave equations to higher order:

(1) The universal wave equation (48) is completely
integrablc by the inverse scattering transform universal
Lax pair (51) and hence exRW2 (59) (constructed using
(48}, (54)) is also integrable by IST,

(2) The expanded form of the universal wave equation
(53} contains both the KdV and the CH equations. This
is seen by letting N — 0 to get the CH equation and by
subsequently letting € =0 to get the KdV equation.
The coefficients A; have been adjusted in (54) to give
precisely the «; in (3b) after the wave equation (59) is
deregularized and truncated to O(g) (see (57), (58)).

(3) The fact that one uses the CH equation as a spring
board to higher order integrability via the Lax pair (51)
suggests that the CH equation is itself a generic wave
equation from the point of view of the mathematical
physics. As seen in the example above, adding an
arbitrary function to solutions of the KdV equation
{while maintaining integrability) is not simple, i.e. one
is forced to use —é&u,, or more generally (26). For the
CH equation, however, one is able to add an arbitrary
Junction N(x,1) which easily leads to a higher order
integrable wave equation (48). It may therefore be
worthwhile in future efforts to seek out universal Lax
pairs of the form (51) for other physical applications
such as the NLS equation and for searches for higher
order integrability in higher dimensions.

(4) While it is possible to integrate exRW2 using the
Lax pair (51) it should be noted that the resultant
regularized wave equation (59) contains specific higher
order terms at 0(82) and 0(83) which insure the
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integrability. Thus, using the method given here one is
able to integrate (3b) only by adding particular terms at
0(e?) and O(g’) and by retaining the appropriate
regularized structure given in (59) (see Fig. 15 and
discussion below).

(5) The results presented here are completely consistent
with Kodama (1985a,b) and Fokas and Liu {1996) in
which they suggest that higher order equations should be
asymptotically integrable. Particular exploitation of
these ideas is pursued here by formally integrating
nearby nonlinear wave equations. [ develop an approach
for forcing integrability via generalization of the
relevant Lax pair. 1 have integrated an equation
equivalent to (3b), namely (59). Furthermore, the
approach appears formally extendible to vet higher order
by an appropriate selection of the function N in the
universal equation (48).

The advantage of addressing the integrable wave
equation (48), is that we have the complete spectral
structure (51) to give us understanding of the underlying
physical behavior. The fact that the actual equation
under study, (3b), is not very far away from the
integrable behavior of (59), for suitably chosen &,
indicates that we have approximately integrated the
higher order wave motion. In this way we are able to
study (3b) by addressing the exacily integrable structure
of (59). These issues are discussed in detail in Osborne
et al. {1997) where the appropriateness of (59) as an
approximate descriptor of the water wave equations is
addressed in full detail.

A schematic of the Whitham hierarchy, Wn, and the
integrable hierarchy, exRWn, is given in Fig. 15. In
columnar fashion, along the left hand side, are the
members of the multiscale expansion W0, W1, W2 and
W3. On the right hand side are the members of the
hierarchy addressed herein, namely, the extended,
appropriately regularized multiscale expansion which
interleaves the sequence Wn, although the existence of
integrable equation exRW3 has yet to be established.

How can a wave equation which is as complicated as
(59), even though it is integrable, be useful in the study
of the nonlinear dynamics of water waves? Are not the
requisite necessary mathematical analyses too
complicated and lacking in transparency to be useful for
physical understanding? To fully address this question it
is .worth pointing out that many of the properties of the
integrable wave equation (59) which are of interest here
are determined from the associated spectral problem
(513, which can be summarized as

Yo 1+ 4eEYM(x)+ Ely =0 ()]
where

M(x)=u-eu,, +U(N—¢eN) (74a)
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N =2 + Agttye + Aqu, 07 (74b)
with ) =(ay—ap, +4)/6, A; =(as— o3 +14)/12 and
Ay =(0a ~4)/3. Thus (73) and (74) (together with the
sccond equation of (51)) integrate equation (59). By
selecting the appropriate values for «; one can, for
example, approximately integrate the surface wave
equation W2 or the related equation for internal wave
motions (Lee and Beardsley, 1974).

As noted above, by setting u =0 in (73), (74), one
gets the spectral problem for the CH equation (44); by
further setting £ =0 we have the KdV spectral problem
{36). Future studies of the Lax pair (51) will likely
reveal much more about the integrable properties of
exRW2 (59). The simplicity of these results means that
the requisite implementation of (73), (74) as a tool for
spectral analysis is straightforward, in spite of the
complexity of (59).

Note, further, that T have interpreted the above results
(73), (74) as arising due to the simple transformation
u—»u+dN(uy in the CH Lax pair (44). However, an
alternative interpretation is that one makes the
transformation u — u—€u,, + (N —€N,,) in the KdV
Lax pair ((36), (37), where one also has to introduce
the spectral term (1+4gE) which multiplies the
potential M{x} in (51)). From my own point of view the
use of the CH equation as a route to higher order
integrability is preferred due to the transparent
simplicity of the derivation given in Section 6.4; this
perspective provides the spectral representation (73),
(74) via the route given by proposition 2 and (28). One
may alternatively discard this point of view and
interpret (73), (74) as a single leap to higher order from
the KdV equation itself; this perspective provides the
spectral representation (73) via the route given by
Proposition 1 and (26).

Finally T would like to briefly summarize the method
used here to approximately integrate the unidirectional
water wave equations to higher order. The approach
proceeds as follows. First begin with a particular seed
equation, i.e. the leading order nonlinear wave equation
integrable by the inverse scattering transform, namely
the KdV equation. Consider the Lax pair for this
equation and make the transformation: u — u+ eP(u);
€ is some arbitrary parameter whose physical value is
to be established later on the basis of the multiscale
expansion. The function P(u) is established during
application of the compatibility conditions in order to
insure integrability. By generalizing the Lax pair for the
seed equation in a simple way one succeeds in deriving
and integrating the Camassa-Holm equation. This
equation, which is of higher order than the seed
equation, is deficient in certain terms necessary for
matching te the higher order equation W2 obtained from
the multiscale expansion of the water wave equalions. A
property of the Camassa-Holm equation is that one is
able to add any arbitrary function to its solution and to
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WO [linearized KdV equation]

W1 [KdV equation]

———— Camassa-Holm = KdV +O(g)
W2 [KdV + 0(€)]
— = cxRW2 = Reg(W2) + O(¢%, €°)

W3 [KdV + O(e)+ 0e™) ]

— B cxRW3=Reg(W3)+0(e’ %, &%)

Fig. 15. Schematic of the relationship between the Whitham hierarchy
for the multiscale expansion of the irrotational, unidirectional water
wave equations (Wn) and the associated extended, regularized
hierarchy (exRWn) discussed herein.

thereby obtain an integrable wave equation. I call this
approach the method of universal Lax pairs. The latter
relations can then be used to targefr on a particular
higher order equation from the multiscale expansion. In
this way one obtains an integrable wave equation which
matches at a particular order an equation in the
multiscale expansion. This integrable equation is
regularized and has higher order terms, beyond the order
of the target equation, which insure integrability. One
then checks the physical validity of the new integrable
equation. Some important tests are: (1) compare the
linear dispersion relation to that for linearized water
waves, (2) compare the solitary wave solution to that
for the full water wave equations, (3) compare to
laboratory data and (4) compare the behavior of the
inverse scattering transform spectrum using results from
a numerical code for the full water wave equations (this
work is in progress).

The method presented here appears formally
applicable for integrating the equations in the
multiscale expansion for water waves to arbitrary order.
However, it is presently unknown as to whether the
approach will fail at some particular order, say due to
the possible presence of inelastic effects, chaos or other
unforeseen nonlinear phenomenology. Should the
method eventually be found to extend to arbitrarily high
order, then it goes without saying that, in some sense,
complete integration of the appropriately extended and
regularized Whitham multiscale expansion of the
unidirectional, water wave equations in the long wave
regime (i.e. for wave numbers smaller than the
Benjamin-Fier instability, kh=1.36) would be virtually
assured.
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