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Abstract. The propagation of large- amplitude
internal waves in the ocean is studied here for
the case when the nonlinear effects are of cu-
bic order, leading to the modified Korteweg - de
Vries equation. The coefficients of this equation
are calculated analytically for several models of
the density stratification. It is shown that the
coefficient of the cubic nonfinear term may
have either sign (previously only cases of a
negative cubic nonlinearity were known). Cubic
nonlinear effects are more important for the
high modes of the internal waves. The nonlin-
ear evolution of long periodic (sine) waves is
simulated for a three-layer model of the density
stratification. The sign of the cubic nonlinear
term influences the character of the solitary
wave generation. It is shown that the solitary
waves of both polarities can appear for either
sign of the cubic nonlynear term; if it is positive
the solitary waves have a zero pedestal, and if
it is negative the solitary waves are generated
on the crest and the trough of the long wave.
The case of a localised impulsive initial distur-
bance is also simulated. Here, if the cubic non-
linear term is negative, there is no solitary
wave generation at large times, but if it is posi-
tive solitary waves appear as the asymptotic
solution of the nonlinear wave evolution.

1. Introduction

Large-amplitude internal waves are observed
very often in different regions of the world
oceans, mainly in coastal waters. Sometimes
the solitary wave character of these waves can
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be determined, in particular, such a analysis
was done for the Sulu sea (Apel et al, 1985),
the North-West shelf of Australia (Holloway,
1987), the Okhotsk sea (Nagovitsyn et al,
1991), the Biscay Bay (New & Pingree, 1990),
and the Canadian Shelf (Gan & Ingran, 1992,
Sandstrom & QOakey, 1995). Interpretation of
the observed data is usually produced from a
weakly nonlinear wave theory, and the
Korteweg - de Vries equation is the basic
equation for the description of long nonlinear
internal waves in the coastal zone. The coeffi-
cients of this equation are determined through
the vertical structure of the density field and the
shear flow in the ocean, which may be variabie
in space and time. Analysis of the variability of
the coefficients of the Korteweqg — de Vries
equation for the eastern part of the Mediterra-
nean (Pelinovsky et al, 1995), the Baitic Sea
(Talipova et al, 1997a), the North-West shelf of
Australia (Holloway et al, 1997) has shown that
the coefficient of the quadratic nonlinear term
can very significantly, and it may even change
its sign in the coastal zone. The effect of the
changing of the sign of the quadratic nonlinear
term is well known for the idealised theoretical
model of a two-layer fluid, in particular, it is
negative if the pycnocline is close to the sea
surface, and positive if the pycnociine is close
to the seafloor. In general, the coefficient of the
quadratic nonlinear term may vanish for certain
critical combinations of the parameters of more
complex models of the fluid density stratifica-
tion. This changing of the sign of the quadratic
nonlinear term leads to interesting features of
the solitary wave transformation in such zones.
In particular, to the destruction of the initial
solitary wave of one polarity, and the genera-
tion of terminal solitary waves with the opposite
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polarity (Pelinovsky & Shavratsky, 1976;
Djordjevic & Redekopp, 1978; Knickerbocker &
Newell, 1980; Helfrich et al., 1985; Talipova et
al, 1997b; Grimshaw et al, 1897). This is evi-
dence that the role of the next order nonlinear
terms in the evolution equation is increased in
the zones with a weak quadratic nonlinear
term, and both, cubic and quadratic nonlineari-
ties maybe of comparable significance. Such
corrections were obtained for a two-layer fluid
(Djordjevic & Redekopp, 1978: Kakutani, Ya-
masaki, 1978; Miles, 1979, 1981; Koop & But-
ler, 1981) and the extended Korteweg - de
Vries equation for the vertical displacement of
the interface between layers with two different
densities has the following form

on .,

§+(c+an+a,q) ﬁ =0, (1)

where its coefficients are (in the Boussinesq
approximation)
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Here Ap/p is the density jump between the
upper layer of thickness h, and the lower layer
of thickness h, (total depth H = h, + h,). As can
be seen from (5), the coefficient of the cubic
honlinear term is always negative for either
depth of the pycnocline location while the quad-
ratic nonlinear term may be either, positive or
negative depending on the pycnociine location.
The extended Korteweg - de Vries equation
(1) with the negative cubic nonlinear term can
be reduced to the “classic” Korteweg -- de
Vries equation and solved by the inverse-
scattering method (Miles, 1979, 1981). The
main result here is the generation of solitary
waves and oscillatory tails as in the “classic”
Korteweq - de Vries equation, but the solitary
waves have a limitation to their amplitude, and
the solitary wave with an amplitude close to the
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limiting wave has a large width. Because a two-
layer model of the density stratification is a very
particular case, it is important tc know the pos-
sible signs of the cubic nonlinear term in more
general models of the ocean stratification. A
general expression for the coefficient of the
cubic nonlinear term for a fluid with arbitrary
stratification of the density and shear flow was
obtained by Lee & Beardsley, 1974 and Lamb
& Yan, 1996, but it is very complex so that it is
difficult to obtain a conclusion about possible
signs of the cubic nonlinear term in the general
case. Lamb & Yan (1998) considered one
example of the density stratification with a
pycnocline near to the sea surface, and this
gives again a negative sign of the cubic nonlin-
ear term. A more detailed analysis of the cubic
nonlinear effects for a solitary wave is given by
Gear & Grimshaw (1983). In particular, for the
examples considered in this paper (for in-
stance, flow with a constant shear, or with a
linear buoyancy frequency), the second-order
correction to the solitary wave speed is nega-
tive as for a two-layer fluid. But the solitary
wave speed correction is a product of several
second-order terms (cubic nonlinearity, nonlin-
ear dispersion, and higher-order linear disper-
sion) and it is difficult to select in the numerical
calculations the contribution of the cubic non-
linear term alone.

Here we will show that the cubic nonlinear term
may, in general, have either sign (or can be
equal to zero) depending on the density stratifi-
cation. Several models of a fluid density stratifi-
cation are considered in Section 3. The main
feature of the density stratifications considered
is their symmetry which leads to a zero value of
the quadratic nonlinear term, and then the ex-
pressions for the cubic nonlinear term have a
simple form. One of the models is a three-layer
fluid with a symmetrical location of the identical
density jumps friim the middle layer. The cubic
nonlinear term (as for all other coefficients of
the modified Korteweg - de Vries equation) is
calculated in explicit form for several models of
the density stratification. It is shown that the
cubic nonlinear term may have either sign, and
that cubic nonlinear effects are more important
for high modes of the internal waves. The
steady-state solitary wave solutions of the

- modified Korteweg -- de Vries equation for

different signs of the cubic nonlinearity are
summarised in Section 4, and then used for the
calculation of the nonlinear vertical structure of
the internal solitary wave. Some results of nu-
merical simulations of the evolution of a peri-
odic wave are given in Section 5, and they
show the influence of the sign of the cubic non-
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In our paper a key part of formula (10) on page 239 was missing. The
correct formula is,
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Here a; is the coefficient of the cubic term in the modified KdV equation
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linearity on the solitary wave developing on an
initial long wave. Results of the numerical
simulation of the evolution of the initial localised
disturbance are presented also.

2. Basic model

The nonlinear theory of internal waves in a
stratified ocean, with an accuracy of up to the
second order on the wave amplitude, was de-
veloped by Lee & Beardsley (1974), Gear &
Grimshaw (1983), Vlasenko (1994) and Lamb
& Yan (1998). For simplicity we wil| discuss
here only the case, when the quadratic nonlin-
ear term in the Korteweg - de Vries equation is
equal to zero. This occurs for certain critical
combinations of the parameters of the fiuid
density stratification, when (in the Boussinesqg
approximation)

H
[(c-U) (@D /dz)’dz=0. ()

0

Here @(z) is a modal function for the vertical
displacement of fluid particle and ¢ is the long
wave phase speed which is an eigenvalue of
the problem,

d ar]
El:(c—U) ~ :’+N(z)d) 0,

O0)=D(H)=0, (7)

and N(z) and U(z) are the buoyancy frequency
and the background shear flow respectively, H
is the total depth, the axis z is directed upwards
from the seaflcor, and the modal function @©(z)
is normalised at its maximum value.

When the quadratic nonlinear term is zero, the
evolution of the large - amplitude internal
waves is described by the modified Korteweqg -
de Vries equation

an
a

on

+(c+a,ry )

+ﬁ . (8

Here n is the wave profile (on multiplying by the
modal function ¢¥z), it gives the leading order
term for vertical displacement of the stream-
function), x is the horizontal coordinate, ¢t is
time, p is the dispersion parameter in Bousi-
nesq approximation),

1 fe-Uy @z
2 fe-Uxd®/dzy*dz

p=

and o, is the coefficient of the cubic nonlinear
term,

W =2(dd/ dz)" =3(dT / dz)(d®D / dz)z,
where both integrals are from the seafloor to
the sea surface. The function T(z) determines
the nonlinear correction to the vertical structure
of the wave mode in the second approximation,
and it is the solution of the ordinary differential
equation

gz—[(c—U)z d—T]+ N2(2)T

3d dd
S]] o

with zero boundary conditions. The expression
(10) for zero quadratic nonlinearity was pro-
duced by Gear & Grimshaw (1983), and it is
follows also from Lamb & Yan (1896).

3. lliustrative examples

First of all, let us consider interfacial waves in a
three-layer model with two symmetrical density
jumps Ag/p on each interface, the width of the
upper and lower layers is h, and the total depth
is H. There are no shear flows, and the con-
figuration is shown in Fig. 1 (this example is
described in the short note by Talipova et al,
1997¢). For a such configuration two modes of
the internal waves can be calculated, but only
the first mode has a symmetry which provides
a zero value for the quadratic nonlinear term
for any relation between H and h, see (6). The
vertical structure of the first mode can be found
easily

Qz)=z/h (O<z<h)),
D(z) =1, (h<z < H-h),
o=2-2 (H-h<z<H), (12)

as well as the solution of the equation (11)
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(H-h<z<H).
(13)
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h
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!H @(z)
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Fig. 1. The geometry problem.

Both functions are shown in Fig. 1 also. Using
(12) and (13), the coefficients of the modified
Korteweg - de Vries equation (8) are calculated
as

c=4gh, ﬂ:%(H-ﬁJ, (14)

3

a, = —362—[13 —2"1) . (15)
4h 2h

where g = gdp/ p is the reduced accelera-
tion due o gravity.
Let us to analyse the expression (15) for the
coefficient of the cubic nonlinear term. The
function a,(h/H) is presented in Fig. 2. When h
= H/2 (a three-layer model transforms to a two-
layer model) the expression (15) coincides with
(5) as excepted, and gives the negative sign for
the cubic nonlinear term. It is negative also if
the thickness of the intermediate layer d = H -
2h is less than the critical value
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4
d=—H, 16
3 (16)

and it is positive if the width of the intermediate
layer is more than this critical value. Therefore,
the cubic nonlinear term can be both positive or
negative for internal waves in a stratified fluid.
The possibility of a positive sign of the cubic
nonlinearity for internal waves seems not to
have been previously noted. It is interesting to
mention that for a fluid of large depth, both
coefficients, dispersion and nonlinearity, are
proportional to the total depth H, and therefore
this scale can be eliminated. Thus, the nonlin-
ear wave dynamics in deep water (but for the
condition that the wavelength is more than total
depth) does not depend on the total depth,
which affects only the time-scale of the devel-
oping nonlinear processes.

« (HY ¢

20 —

1 i !
02 0.3 ¢4 0.5

b/ H

Fig. 2. The coefficient of the cubic nonlinear term for in-
terfacial waves in a three-layer fluid.

The next example is again a three-layer fluid,
where the upper and lower layers are stratified
with a constant buoyancy frequency N and the
intermediate layer is not stratified, while there is
no density jump at each interface. We will con-
sider again only the symmetrical modes for this
model of the density stratification when the
quadratic nonlinearity should be zero. The mo-
dal structure is found in the following form,

®,(z) = sin(-’25+ ﬂn)%, (O<z<h),
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o (2) =1, (h<z<H-h,

H-z
h
(H-h<z<H), (17)

D, (z) = sin(% + 7I1)

where 2n + 1 is the mode number. The nonlin-
ear correction term is calculated from (11) in
the lower layer

1 (= "z
T =-—(—-+ )s'n1+2 —+
(z) e | 81 ( n P

,,+,[7r jzh—H/Z . (,x Jz
+=D)"'| =+ m| ————sin| =—+m |-
2 . 2 h

(18)

in the middle layer

() =hl—2(§+7m)2(%— ] (19)

and in the upper layer, txe same expression as
tn (18) holds, with z replaced by z-H.

The coefficients of the modified Korteweg - de
Vries equation for this model of the density
stratification are calculated in the explicit form

2Nh
¢, =—, (20)
T+ 2mn
Bo  HH-B) - 21)
¢, Aml/2+ mm)
a 6(nm ‘(H
-L=-7(—-—+7mj (———hj. (22)
c, h\2 2

H

It is interesting to point out here the coefficient
of the cubic nonlinear term is positive for all
values of the parameters, except in the trivial
case h = HI2, when the buoyancy frequency is
constant. In this degenerate case the nonline-
arity is absent to all orders of the asymptotic
theory (in the Boussinesq approximation). It is
interesting to note that the dispersion coeffi-
cient is decreased for the high-order modes,
meanwhile the nonlinear coefficient is in-
creased. Therefore the role of the cubic non-
linearity for modes with the high numbers will
be more significant. Also, here the ratio of the
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noniinear coefficient to the dispersion coeffi-
cient tends to a constant value for deep water,
and therefore, the nonlinear wave dynamics
does not depend on the total depth.

The third example is a three-layer fluid as in the
second example, but the buoyancy frequency
in the middle layer has the value N, which
differs from the buoyancy frequency N, in the
upper and lower layers. For simplicity we will
consider here only the first mode. The solution
of the eigenvalue problem (7) can be found in
terms of trigonomedtric functions, so that in the
lower layer,

O(z) =4 sm(ﬁ) , (23a)
44

where

sin(ﬂ (H/2- h)]
A=—"2% ¢ : (23b)

T o]
(4

in the middle layer

2| =

D(z) = cos(—& (z—-H/ 2)] , (24)
c

and in the upper layer, the same formula (23)
with z replaced by H-z. This solution satisfies
the normalisation condition &,,, = 1. The long
wave phase speed is the soiution of the alge-
braic {ranscendent equation,

N,h (Nzh(H D N,
tan ——tan —=1||=—=. (25)
c ¢ \2h N,

Introducing new variables

N
o2 ¢=N1h. 9=£_1‘ (26)
N, c 2h

the transcendental equation (25) can be re-
written as

= Latan(—m—l—«—) .27
op otang

and defines the total depth as an explicit func-
tion of the long wave phase speed. This is very
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convenient for the analysis of these expres-
sions. In particular, the limiting case ¢ — #o2
corresponds to the one-layer fiuid with the con-
stant buoyancy frequency N,, total depth is H =
2h (8 = 0), while ¢ = N,HIx. Another limit ¢ — 0
corresponds to a fluid of large depth (8 — «),
when ¢ = N,H/n and there is no influence of the
thin layers with the buoyancy frequency N,.
The function ¢(H) obtained from (27) for differ-
ent values of the parameter NN, is shown in
Fig. 3.

5/ 2 1
i 0.5
6 —
-:—
Z 4
B
5 0.2
0 — 1 T
0 5 10 15 20 25
(H - 2h)/ 2h

Fig. 3. The long wave phase speed for the three-layer
stratification with different values of the buoyancy fre-
quency. The numbers on the curves are the ratio &,/ N,.

The dispersion coefficient can be obtained as a
function of the long wave phase speed,

ch* I,
B=—>=, (28)
2 I
where
o? sint (o6 sin(2
4 =§-{ cosz( 2 e+ (2(0)].4.
@

+J[09¢ - M}} . (29)

_ sin(2gp)] N

20| cos? @ 2

1 {o’sin? (o0
L= { ( w)[(p
@

+ 1 i:o'ﬁgo + __sm(Zo-ng) ]} . (30)
o 2
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In the limit case ¢ — 2 (a one-layer fluid with
buoyancy frequency N,) we have the asymp-
totic values:; /, — (2*/8), and {, — 1/2, and in
the other limiting case of deep water (p — 0)
we have /; = (zog/d), and I, = (r/4op). In both
these limits, we have the expression for the
dispersion coefficient

cH?
p= 277

(31)

which can be easily obtained from the definition
for a fluid with a constant buoyancy frequency.
The function p(H) calculated from (27) and (28)
is shown in Fig. 4 for different values of the
parameter N./N,.

8—

0.2

T | T l —1

2 4
(H-2h)/ 2h

Fig. 4. The dispersion parameter for the three-layer strati-

fication with different values of the buoyancy frequency.
The numbers on the curves are the ratio ¥, / ¥,.

The solution of equation (11) satisfying the
condition T(H/2) = 0 is, in the lower layer,

2
T@)= IV g 22 OV o Nz
2c < < <
(32a)

and in the middie layer,

T(z)= %sin(%(—g— --ZD —

(1)
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where the constants Q and R are found from
the condition of the continuity of T and d7/dz on
the boundary z = h;

Q=A,/A, R=A /A, (333)

and
A = —c* sin pcos(chp) —
—ocosesin(cfp), {33b)
A, =-0’P, cos(cp) — oP, sin(cbp)

(33¢)
Ap =P, sinp— P cosp, (33d)

2
P = % sin(2oBp) — AT sin(2¢), (33e)
P, = -0’ cos(2aBp) — A cos(2p) . (33f)

As a result, the nonlinear coefficient in (10) can
be expressed as

__3c 23-304

34
13 2h Il ( )

where

3
I = %{A‘[%o 2si 2¢)+ ':;sin(4¢):|+

.,.0-3[% obp — sin(2cbp) + é—sin (4o 9¢):|} )

(35)
and

2

I,=4 Zqo}{%—[qo +sin(2¢) + %Sin(“ﬁa)} +
+Q[sin @ - % sin’ 60]} + +a3¢'3[% o0 -

- % sin(2c6p) + %sin(lio*@qo) +

+£§-sin3(0'9¢)] . (36)
w_ i
/
/
20 —| : 0.1
o /
N; i :
-
10 0.2
| 0.4
e A B
0 2 4 6 3 10
(H-2h)/ 2h
a)
. (H-2h)/ 20 3
o_lx_ . | . | 4 J
[#)
+
-
3

b)

Fig. 5. The nonkinear parameter for the three-layer stratifi-
cation with different values of the buoyancy frequency.
The numbers on the curves are the ratio N/N,.

The expression for the coefficient of the cubic
nonlinear term is relatively compiex. In both the
limiting cases considered above (H = 2h, and H
— x), it is zero, because the density stratifica-
tion tends to a single stratified layer with con-
stant buoyancy frequency. In the general case
we calculated it for different values of the pa-
rameter N./N,, see Fig. 5. The nonlinear term is
positive for the case N, < N, (Fig. 5a). If this
ratio is very smail, we have the second exam-
ple of the density stratification, when two strati-
fied layers are separated by one non-stratified
layer. In this case according to (22), the nonlin-
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ear coefficient grows linearly with the depth,
and this function is shown in Fig. 5a by the
dashed line. Any (even weak) stratification of
the middle layer leads to the existence of a
maximum for the nonlinear coefficient at inter-
mediate depths. If N; > N,, the nonlinear coeffi-
cient is negative (Fig. 5b), and its extreme
value moves to the y - axis when N,/N, in-

creases. In the limit case N, = 0 the nonlinear

coefficient decreases as the total depth in-
creases and this case is similar to the “classic”
two-layer model, see (5) at h, = h,. Here we
can see a large difference belween the values
of the modulus of the nonlinear coefficient in
the negative and positive regions, where the
positive values of the cubic nonlinear term can
be much more than the modulus of the nega-
tive values of the nonlinear coefficient
(compare the first example (15)).

4. Solitary waves

The modified Korteweg - de Vries equation is
an integrable equation and its solutions can be
obtained by the inverse scattering method
(see, for instance, Ablowitz & Clarkson, 1991).
Let us give here a brief summary of the solitary
wave solutions which will be used later for the
calculation of the full two - dimensional struc-
ture of solitary internal waves, and for the in-
terpretation of our results from numerical
simulations of the modified Korteweg - de Vries
equation.

The solitary wave solutions for both signs of
the cubic nonlinear term were obtained by
Perelman et al (1974a) and Ono (1976a,b).
They can be written in the general form,

26’ - )
1y * beosh[y(x V)]’

2
b=Jn§+§£1—. (38)
2a,

and the speed is given by,

n=1,+ (37)

where

V=c+am + Py’ (39)

Here + corresponds to the different branches of
the solitary wave. This solution defines a two-
parameter family of solitary waves which de-
pend on the pedestal n, and on the character-
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istic wavenumber y We introduce the solitary
wave amplitude A (relative to the pedestal)
where

A=2Axb-1n,). (40)

Let us now consider separately different signs
of the cubic nonlinear coefficient 4.

a4 > 0 {positive cubic nonlinearyty)

For this case, yf r, > 0, it is easy to show from
(38) and (40) that the “+" branch defines a
solitary wave of positive polarity, which exists
for all A.> 0, but the “-" branch defines a soli-
tary wave of negative polarity only for |A| > 47,
This result can be explained by considering
small-amplitude solitary waves on the pedestal.
In this case the modified Korteweg - de Vries
equation transforms to the “classic” Korteweg -
de Vries equation with a positive coefficient of
the quadratic term, and its solution is a solitary
wave of positive polarity, but not negative po-
larity. In the limit case of |A| = 47, the “-"
branch transforms to the algebraic solitary
wave,

4

n=1o 1= —— " )
14 25070 _ a,nit)’

38

This algebraic solitary wave is unstable
(Pelinovsky & Grimshaw, 1997). If the pedestal
is negative (7, < @), the *-" branch exists for all
A < 0, and the "+" branch only for amplitudes A
> 41,]-

If there is no pedestal (or the wave amplitude is
very large), the solution (37) transforms into

A
n= - .
cosh a4 (x =V
65
2
p s Bf , (42)
6

and exists for both branches. It is important to
note the solitary wave may have either polarity
for the positive cubic nonlinearity, but the non-
linear correction to the speed is positive for
either pofarity,
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N-soliton solutions of the modified Korteweg -
de Vries equation with a positive nonlinear
coefficient were obtained by Hirota (1972). The
solution of the Cauchy problem for a localised
initial disturbance {on a zero pedestal) is de-
scribed by Perelman et al (1974a). Any local
initial disturbance will at large times transform
into a set of separated solitary waves and a
spreading oscillating tail.

o, < 0 (negative cubic nonlinearity)

In this case there is no solitary wave solution of
the modified Korteweg - de Vries equation if
there is no pedestal {n, = 0). The steady-state
solution in this case is the dissipationless
shock wave (Perelman et al, 1974a,b; Ono,
1976a)

x—(c———Nn

la 4] IallAz) }
68 | 3 '

n=x4 tanh[
(43)

with exists for both branches. The solitary wave
can only exists on a nonzero pedestal, see
(38). The solitary wave is a wave of elevation
on a negative pedestal (*-" branch), and a
wave of depression on a positive pedestal (“+"
branch). In the case of small amplitude it is the
“usual” solitary wave of the “classic” Korteweg
- de Vries equation, where the quadratic non-
linear term is due to the pedestal. With in-
creasyng amplitude the solitary wave reaches
the limit of a very wide wave (the limiting wave
is a superposition of two shock waves (43) of
different signs) with an amplitude 25, above
(below) the pedestal.

N-soliton solutions of the modified Korteweg -
de Vries equation with a negative cubic non-
linearity are given by Perelman et al. {(1874a,b)
and Ono (1976a). The interesting phenomenon
of the elastic interaction of the solitary wave
(37) with the shock wave (43) is described in
these papers: the solitary wave after an inter-
action changes its polarity. The numerical solu-
tion of a Cauchy problem for the local initial
disturbance shows that a small disturbance
transforms into a sequence of solitary waves
and a spreading tail, while a large disturbance
transforms into a single “limiting solitary wave”
and a spreading tail (Perelman et al, 1974a).
The same result within the inverse scattering
method was obtained by Miles {(1981).

Vertical structure
in order to use there results in practice, we first
note that the modified Korteweg - de Vries

equation {B8) is wriiten for the wave profile
7(x.t}, which in the linear long wave limit is the
amplitude of the streamfunction for a linear
mode. Better, to second order in accuracy the
vertical displacement of a streamline from a
height z above the bottom is (Gear & Grim-
shaw, 1983)

¢(z,x,1) = n(x,NP(2) + 7° (x,NT(2) . (44)

In our calculations we have chosen &(H/2) = 1
and T{H/2) = 0 (the value of the cubic nonlin-
ear term does not depend on this condition),
and, therefore, 7(x,t) is the nonlinear wave
disturbance of the streamfunction at mid-depth.
For other depths the wave disturbance of the
streamfunction will differ from the function
n{x.t), calculated from the modified Korteweg -
de Vries equation. For instance, we will con-
sider here the case of positive cubic nonlinear-
ity and use the explicit formulas (12) and (13)
for the modal structure and the function Tfz) for
interfacial waves in the three-layer fluid. The
solitary wave disturbances for three depths
being the mid-depth and the upper and lower
boundaries between the layers, are as follows,

Z=h

A
5= 2 -
cosh( A (x —Vt)]
64
S(E)
2h 2h 2 '
cosh{"%(x —Vt)]
65
(45)
zZ=HR2
A
c= : : (46)
cosh( 4 (x —VI)J
65
Zz=H-h
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A
¢ = VE +
cosh[ a6lﬁ (x —Vt)]
NH-B, H A
MEET IR [ [ J
cosh?®| .[—(x - V1)
6p

(47)

As can be seen, the wave disturbances at dif-
ferent depths differ both in the wave form and
in the amplitude. For a sclitary wave of positive
polarity the amplitude of the wave disturbance
is maximal on the lower boundary, and for a
solitary wave of negative polarity the wave
disturbance is maximal for the upper boundary.
As a result we can say that the wave energy in
the nonlinear wave propagates not only in the
horizontal direction, but may also oscillate in
the vertical direction (this effect is absent in the
linear theory).

The function T{z) in this sense can be inter-
preted as a nonlinear correction to the vertical
structure of the nonlinear waves. Because the
function T(z) can be presented as a series of
eigenfunctions @,(z), sometimes such a soli-
tary wave is called a multimodal nonlinear
wave (Vlasenko, 1994), but it is better to speak
about the nonlinear correction to the modal
structure. It is important to mention that the
modified Korteweg - de Vries equation is sym-
metrical about the sign of a wave profile (it is
invariant with replacing n on -n), but the wave
field at different depths remembers the quad-
ratic nonlinearity of the basic equations and it is
not invariant to replacing of the wave sign.

5. Nonlinear evolution of the periodic and
localised disturbances

The numerical simulation of the modified
Korteweg - de Vries equation (8) was done for
two initial disturbances. The first case corre-
sponds to a localised sinusecidal disturbance
{(with a phase variation only from zero to 2a) of
wave {ength 1 km in a basin of 100 m depth.
The numerical domain for this case has length
5 km and periodic boundary conditions were
used. In the second case boundary conditions
correspond to a periodic sine wave with wave-
length 10.8 km. For simplicity the case of a
three-layer fluid with two symmetrical density
jumps was considered; the density jump Ap/p
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was 0.00023. The width of the middle (non-
stratified) layer is changed so that we have
different signs for the cubic nonlinearity.

m
50 —

{1 1000 2000 3000 4000 5000

Fig. 6. Evolution of an initial localised disturbance for a
negative sign of the coefficient of the cubic nonlinear term.

In the first experiment the distance between
two layers is 22 m, and for this case the coeffi-
cients of the modified Korteweg - de Vries
equation are as following, /i = 0.3 m/sec, f =
140 m¥sec, =0, o, = - 2x10™ m'sec™ . Here
the modified Korteweg - de Vries equation has
no solitary wave solution on a zero pedestal
(see Section 4), and therefore a localised dis-
turbance with zero asymptotic behaviour at
both ends should decrease, transforming to a
self-similar oscillatory tail. This dynamics is
shown in Fig. 6 for different times (the time unit
is 5 min). The initial amplitude of the impulse
disturbance was chosen as 50 m comparable
to the total depth so that the noniinear effects
can be manifested in a relatively small time.
But the magnitude of the nonlinearity within the
modified Korteweg - de Vries equation is de-
termined by the parameter |a,Al/c which is
3.3x10° and, therefore, the nonlinearity is
small. In the first stage due to the large initial
amplitude, the process of generation of solitary
waves of negative polarity on the
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Fig. 7. Periodic wave transformation at the negative cubic
nonlinearity.

crest of the positive part of the initial distur-
bance is visible. This process of the genertion
of solitary waves on non-zero pedestals is very
interesting and we specially consider the evo-
lution of a periodic long wave. The wave forms
are shown in Fig. 7 for different times

(the time unit here is 2.5 hr). The nonlinearity in
first stage leads to the formation of two shocks
on the long wave on the left slopes of each
semi-wavelength, because the nonlinear cor-
rection to the wave speed is hegative for dis-
turbances of either sign, see (39). Then solitary
waves of both polarities are generated on both

shocks and situated on the crest and trough of
the long wave. As was described in Section 4,
solitary waves with a zero pedestal are impos-
sible for this modified Korteweg - de Vries
equation, but we have effectively variable ped-
estals related to the long wave and therefore a
large effective quadratic nonlinearity. This ex-
plains the generation of the solitary waves of
both polarities in the periodic wave field. Their
amplitudes are less than the critical one (for the
“limiting wave”) and the picture is quite similar
to those for the “classic” Korteweg - de Vries
equation. Then, the solitary waves interact
among themselves and with the shock waves,
their number is decreased and they are rear-
ranged (Fig. 7b).
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0 4000 2000 12000
X-ct,m
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Fig. 7. Periodic wave transformation at the negative cubic
nonlinearity (continued),

We see also the shifting of the dissipationless
shocks to the left. After that, we can see the
process of a near recurrence of the initial state
and again, the generation of solitary waves
(Fig. 7c). Thus, the generation of both dissipa-
tionless shocks and solitary waves, and their
interaction is possible in a periodyc wave field
for this case, when the cubic nonlinearity is
negative.
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Fig. 8. Evolution of an initial localised disturbance for a
positive sign of the coefficient of the cubic nonlinear term.

The thickness of the middle layer in the next
experiment was 40 m, and this leads to a posi-
tive value of the cubic nonlinearity., Now, the
coefficients of the modified Korteweq - de Vries
equation (8) are as following, A = 0.26 m/sec, A
=120 m¥sec, a = 0, a, = 4x10* m'sec’. The
process of the evolution of a localised sign-
variable disturbance is illustrated in Fig. 8 (the
time unit is § min). The initial disturbance
transforms in two large solitary waves of both
polarityes and a small positive solitary wave.
This tast solitary wave has a small speed (it is
proportional to A? for the solitary wave) and it is
practically not shifted. Results of the same
simulation for a periodic initial long wave is
shown in Fig. 9 for different times (the time unit
is 2.5 hr). Two shocks are formed again in an
initial stage, but in the opposite phase of the
long wave, because the nonlinear correction to
the wave speed is now positive (Fig. 9a). Then
solitary waves of the corresponding polarity are
generated on each shock. Here all solitary
waves have a zero pedestal, and are similar to
(42). Large-amplitude solitary waves cross the
small-amplitude solitary waves due to the dif-
ference in the wave speeds which do not de-
pend on the polarity of the solitary wave. As a
result, the solitary waves of opposite polarities
are interleaved among themselves (Fig. 9a at ¢
= 35). After that, we have a complex picture of
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the interaction of these solitary waves with a
changing of their ampiitudes (Fig. 9b), and a
partial recurrence of the initial sine wave (Fig.
9c).
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Fig. 9. Periodic wave transformation at the positive cubic
nonlinearity.
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Fig. 9. Periodic wave transformation at the positive cubic
nonlinearity {continued).

Numerical simulation cenfirms that the picture
of solitary wave generation depends on the
sign of the cubic nonlinear term quite signifi-
cantly. It is important to note that the solitary
waves In the periodic long wave field appear for
either sign of the cubic nonlinear term, and
they can have a non-zero pedestal.

6. Conclusion

We have considered models of the density
stratification of a fluid for which the cubic non-
linearity can have uither sign; in particular,
there are cases with a positive sign (previously
only cases with a negative cubic noniinearity
were known). The sign of the cubic nonlinearity
depends on the profile of the vertical density
distribution. The cubic nonlinearity for internal
waves of high modes is more significant. From
our numerical simulation, we conclude that
different signs of the cubic nonlinearity lead to
different scenarios for the evolution of long
waves. If the cubic noniinearity is negative,
solitary waves of both polarities and dissipa-
tionless shock waves are generated, and inter-
act among themselves. If the cubic nonlinearity
is positive, the solitary waves are generated on
a zero pedestal, and aiso interact among
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themselves. Partial recurrence of the initial
state is observed.
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