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Abstract. The Kirchhoffl approximation is used to de-
lermine the sea state bias in radar altimetry. A weakly
nonlinear model of the sea waves is used to derive the
joint moments of two different points separated by a
distance B; the bias moment is formulated, and found
for power law spectra. The method provides a consistent
analysis of the sea state bias and avoids the need to trun-
cate the high frequency tail of power-law wave spectra.
The model exhibits dependence of the “electromagnetic
blas” on the radar frequency, an effect observed in field
experiments.

1 Introduction

Radar altimetry is a very useful tool for observing the
dynamic surface height and for inferring oceanic circu-
lation and related phenomena. The utility of altimetric
observations is limited by the accuracy of the measure-
ment. Perhaps the least success has been achieved in
removing the sea state (or electromagnetic) bias.

This bias is due to a shift in the mean radar reflecting
surface relative to the mean sea surface. It results from
the non-Gaussianity of the sea surface, which is due to
the nonlincarity of the surface waves.

(Juite a few studies of the sea state bias have been
carried o1t in recent years. Most of the efforts to model
the radar reflection were based on the specular point re-
flection model (Barrick and Lipa, 1985; Srokosz, 1986,
A987). This model encounters difficulties (lack of conver-
gence) when applied to typical wave spectra which have
power-law high frequency tails {Agnon and Stiassuie,
1991; Glazman, 1990; Glazman and Weichman, 1989;
Phillips, 1985; Stiassnic et al., 1991). Such spectra can
be characterized as the spectra of fractal surfaces (Sti-
assnie, 1988), if the range of scales of interest. lies within
the spectral range for which self-affinity holds {Stiassnie
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et al., 1991). A common approach to this difficulty was
to introduce a high wave number cutoff to the sea wave
spectrum. It has been argued that this cutoff could be
related to the radar frequency, and thus the {observed)
variation of the sea stale bias with the radar frequency
could be accounted for.

The approach taken in the present study, is to use a
more general reflection model for the radar signal. This
is the Kirchhoff approximation, which had been applied
to determining the radar cross section of the sea surface
{Agnon and Stiassnie, 1991; Berry and Blackwell, 1981;
Yordanov and Stoyanov, 1989). It has the advantage
that 1t can describe the reflection from a surface with
a power law spectrum. In the present model it is not
necessary to introduce a cutoff just to get finite results.
We do however introduce a cutoff in order to describe
more accurately the sea wave spectrum. This cutoff is
based on the hydrodynamics and is not related to the
radar wavelength.

Theoretical estimates of the sea state bias range from
1% up to 8% of the significant wave height (SWH) (Born
and Richards, 1982; Glazman et al., 1996, 1994: Glaz-
man and Srokosz, 1991). In field experiments of Walsh
et al. (1989, 1991), an approximate relation was found
to hold between the radar frequency and the sea state
bias
sea state bias

SWH
where Fis the radar frequency in GHz (in the exper-
iments F = 5.3,10,13.6,36). Thus, the sea state bias
is smaller for shorter radar waves. The specular point
reflection model does not account for this dependence.

A notable exception to the geometric optics approach
is the work of Rodriguez et al. (1992). They used direct
numerical simulations of radar backscatter in a Monte
Carlo approach. Their work requires separation of the
spectrum into long and short scale waves. Due to its
computational intensiveness, they were limited to study-
ing one dimensional surface profiles.
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Fig. 1. Geometry of diffractal echos from the ocean surface. The
satellite is at P, at a height z above the mean sea level. The
pulse is reflected from the point at 7 relative to the satellite, at an
elevation n(ﬁl) above the mean sea level. B is measured from
the zenith point. 7 forms an angle x with the vertical. h. is the
radius of earth and 7 is the normal to the sea surface pointing
inwards.

In the present work we introduce a model which is ca-
pable of accounting for the frequency dependence of the
reflected signal, while maintaining relative simphcity.

The mathematical problem is formulated in the next
section. Section 3 discusses the statistical properties
of the ocean waves. The joint moments and the joint
distribution function will be presented, where special
consideration will be given to the BIAS moment and
its characteristics. In Sections 4 and 5, the intensity
integral is solved and a general form for the sea state bias
will be given. Finally, numerical results and conclusions
are given in Sections 6 and 7.

2 Formulation of the diffracted radar pulse by
Kirchoff approximation

The geometry of the problem is shown in Fig. 1. The
satellite, which is located at point P at the height z
above the average sea level, sends a radar pulse
&y = P71, x), where 7 is the vector from the satellite
point P, t is the time and y is the angle from the zenith
point.
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We assume a quasi-monochromatic pulse:

Py = MH(X) (2}

fo(T) = Ta(T) (3)
2T

a(l) = agexp {— J{ } (4)

In general, the pulse shape g{x) depends on the pulse
length, &, the time interval of reading the return pulse
and the satellite type. As an example, we can assume

1 when |x| < Xmas
- = )
Ymar = 0.3%=7/600 radians < 1. (6)

The frequency wy = cky = 2mwe/A, where: ¢ the speed
of light; k, the wave number; A wave length; a(T) is
a Gaussian envelope. To make sure that the pulse is
quasi-monochromatic we will assume

AL o (7)

For SEASAT X\ = 0.03m, ¢ = 3m. This value of A is
also inside the range of wavelengths used in TOPEX.

For electromagnetic waves ¢ is the speed of light, and
the sea surface will appear frozen to the radar pulse.
Therefore, we assume that the height of the sea surface,
n{R1), is fixed during the time interval of the measure-
ment. R, is the average surface vector measured from
the zenith point to the satellite.

r can be related to n(R&,)} and R;, using z and h,
(the radius of Earth) by a simple geometric considera-
tion. Using the cosine theorem (see Fig. 1) we get the
algebraic equations:

(he +n{By))* =
n2(§1) + R =

(he+2) + 7% — 2r(h.+z)cosy (8)
22+ 1% — 2rzcosx {9)

IX% < Xmaz, Bif2 = Olxmaz);
n(B1)/z = O(x%,.). From those equations we get an
estimate for r:

= 2
U LY ) (10)
z z 27'z
Where 2’ = h.z/(he + z) is the reduced height due to
Earth’s curvature. Typically z = 800k, Earth radius
h. = 637T0km and the reduced height 2’ = 710k,

Cur purpose is to study the sea state bias by better
understanding the time dependence of the nadir reflec-
tion of a quasi-monochromatic radar pulse ¥ from a
fractal (i.e. with a power law spectrum} sea surface.
Specifically, we are interested in the effect of the ocean
waves nonlinearity on the intensity of the reflected pulse:

I = {|¥(n)*) (11)

as a function of the time 7 measured {rom the time
t = 2z/c at which the mid-pulse will return from the

where we assume:
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zenith point. {f) is the average of a functional f over
the probability space. In our case we deal with the sea
waves probability which will be given later.

Using Kirchhoff’s approximation (e.g., Berry, 1972)
we have the reflected pulse as a superposition of waves
from secondary sources on the sea surface:

(r) Z'frc]/ iR, 2f”( (c s 3) as (12

For Gaussian distribution of the sea surface height
this function is anti-symmetric about the mid-point,
7 = ( (Berry and Blackwell, 1981). The sea state hias is
a small offset, due to the nonlinearity (or non Gaussian
nature) of the distribution function of the sea surface
height. This nonlinearity appears as pointed crests and
flattened troughs. Therefore, we expect that the deriva-
tive of the intensity will be smaller for 7 < () than the
one for 7 > (0 (when more energy will be reflected).
This will be seen from the calculation {and was shown
by previous models). Intuitively, the pointed crests are
a rougher surface than the flattened troughs, hence the
crests produce smaller reflection.

We note that
1 1
72 z2

— (1 4+ Olxas)) - (13)

Also, fromt the asymptotic expansion for the sea surface
height, in the wave steepness ¢

dr 9
ﬁ_1+0(f) {14)

The value 1 is simply the cosine of the incidence angle
(whick is 7/2). It should be modified for other radar ap-
plications, in which the incidence is not along the normal
to the surface.

Since the pulse is quasi-monochromatic, we can write
the derivative (using T = O(7), kx = wa/c) as

£ (14 Oler/kaa?)) (15)

following Berry and Blackwell (1981). We see that the
pulse envelope term er/kye? will be smaller than O(c?).

= iwy fo(T)

When xmaz Se {which is true for any realistic wavy sea,
$ince Ymar = 5- 1073 (Eq. 6) and the wave steepness is
typically 0.01 < ¢), the equation for the return pulse is
given by:

W(r) = ;’::zf Fo{T)d R, (16)
T = T+2n(§,g)/c—R?/cz' (17)

and the intensity integral 1s given by:

F= () [f 4[] o o9

<a(T1 )G(Tz)e—zik,\(n(ﬁi)~n(§2))> cRA(RY-R3)/2
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To calculate this integral the appropriate probability
function needs to be taken. In our formulation, it will
be the joint probability function of the height and its
increment at two points, R1 and Rz, on the average sea
surface. This is in contrast to specular point reflection
models in which joint moments of the height and slope at
a single point appear. It will be shown that the present
formulation gives convergent results for power law spec-
tra, for which specular point reflection gave divergent
values.

3 Sea surface statistics

In order to calculate the joint moments and thereafter
the joint distribution functions, we consider a weakly
nonlinear model of the sea surface’s height:

(1) = em + €’ + O(e°) (19)

¢ & 1 represents the order of the waves’ slope. For_
the deep water lumit, #; and 7, are found by using the
theory of Longuet-Higgins (1963):

m = i a; cos ; : {20)
=1
12
m= g a;a;(Cij cos d; cos ¢y + Sij sin ¢y sin §;) (21)
ii=1
¢ =k T - wit + 0 (22)
w! = gk; (23)
(B + B — ki kj + (ks +‘kj)\/ij)

N
BE: — kikj) [\/Fik; (25)

Si; = (B

(VE =B (R & 7 kaky )

B,ﬁ = (26)
(VB £ v&)" -~ |E: £ &)
where:
8; is a probability variable evenly distributed over
[_ﬂ—rﬂ—]r

; i3 a Rayleigh distributed probability variable,

k is the wave number and k = |k],

w is the wave frequency and

g 1s gravity.

As k; — ki, Bf both vanish, which leads to
Cag + Sap = 0 (for example).
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3.1 Joint moments

We start by calculating the joint moments of the sea
surface elevation at two points. Since the surface is ho-
mogeneous, the joint moments will be functions of the
difference in position, R:

. . iy J
paij = pii(R) = <n(m)‘n (w + R) > : (27)
At the limits n — oo and £(a?) — 0, we may write:

I L (a?) = F (k) dk+0 (|dkP) . (28)

Eiedk

r (E) 1s the waves energy spectrum, where k is the wave

vector. Thus we can describe the joint moments by in-
tegrals:

w0 [

Hil = n(&@)n(F é)>
ff ) cos(k - R)dE + O(?) (30)

(n(@)n(s + Ry lf]dklff Fiky)F

[(Clz — 513) COS((kl + k2)
+(Chz + S12) cos((ky — kq) - )
+4C1p cos(ky - R )] 2+ O(c%) (31)

MCh1 + Si)dk =0 (29)

Hz

and so on. The integration is on the surface k, dk = kdfdk.
Some of these moments are well known { Longuet-Higgins,

1963; Srokosz, 1986):
1. The average sea surface height is zero: g = 0.

2. The significant wave height is Hy;3 = 4/{. Where
H? = pgg = f F(k)dk (32)

3. The skewness, which is a positive number, jzq:

s ff v

The homogenemy of the sea surface will result in Sym-
Inetry in the moments p;; = pj; and symmetry in R
Ju‘J(R) = pij(— RJ-

In contrast with the mean square slope which diverges
at the short scales (k — oo) for a power-law spectrum
(Glazman, 1994; Phillips, 1985; Stiassnie et al., 1991)

F(k) = Ak~ (34)

F(k3)C1odky (33)
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with o < 4, there is no such problem in the calculation
of the joint moments p11 and g4 while 3 < o < 4. This

is because the sign of cos k- R} alternates as k tend

to infinity, so the integral over the short scales (large k)
is then equal to the sum of a decreasing series with an
alternating sign.

We clearly do not expect Eq. (34) to hold at the long
scales (£ — 0), since there is finite energy in the spec-
trum. However, even if the spectrum did go to infimity
at that limit, this would not posc a problem, since we
require moments of the increment, which converge even
in that case. Berry and Blackwell (1981) considered the
mean square incrernent:

AR = { (0@ - nE+B)Y. (35)
(( )

We will require in addition the correlation between the
hieight and the square of the height increment {or, equiv-
alently, the correlation between the square of the height
and the height increment), which we choose to call the
BIAS moment, since it will be used later to calculate
the sea state bias. It is defined by:

(&) (1(3) - e+ 7))
= (n@)? (n@) - niz+ M) ). (36)

These functions can be related to the joint height meo-
ments {30,31):

T(R)

ARy = 2 —Hu) (37)
= f] dEF (B)(1 — cos(k - B)) + O(?)
T(R) = pso—po = %,[/ k) ff dky F (k1) F (k)

x |(Cra — 512)(1  cos((Fy + £2) - )
HCrz + S12)(1 — cos((ky — ka) - K))
+4C5(1 — cos(k, - ﬁ))] + O(e%) (38)

If the structure of the surface is self-affine over a range
of scales which dominate the scattering of radiation with
the radar wave length, A, we may use dimensional anal-
ysis, to write: C,S o |k| and F(k;) o |k]~*. This
implies that T(‘yﬁ} = V{EQ‘S}T(E).

Thus, the theory of diffractals (Agnon and Stiassnie,
1991; Berry, 197%; Berry and Blackwell, 1981) can be
applied using the form:

T(R) « |R|{2>~5) (39)

We get for R0

{A(R‘) — L[*DRD

T(R’) — MBS-ERE (40)
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where R = ]fﬂ, the topothesy! {Agnon and Stiassnie,
1991), L, and the BIAS topothesy, M, all have dimen-
sion of length (and are given in meters). The topothesy
1s defined by Berry to be the distance R = L, over which
the mean square increment is A{L} = L2, It is typically
a very small distance, since the characteristic slope of
the segiment between two points that are separated by a
distance [ is one radian. In analogy, M represents the
Bias moment. D = D{«) = o — 2 according to Berry,
and £ = E{a) = 2a — 5 according to our above analy-
sis?, We can modify the wave spectrumn by introducing
a high wavenumber cutoff to the spectrum, kg, at scales
smaller than some h. We may still retain, to a good
approximation, the power law strocture of T. However,
the power F decreases and tends to o — 2. While these
Limiting values can be deduced from the form of the
equations, the intermediate range behavior 1s assessed
by numerical calculations. The results of these compu-
tations will be discussed later.

Let us consider the correction to A and 7 due to a
drop 1n the spectrum F, for wave numbers smaller than
the spectral peak, k,. This introduces a term that is
O{{k,R)?) in both expressions. So, for 4 < o (which
corresponds to a smooth, two dimensional sea surface)
we will get, for R — 0
A(R) — BR? (41)
T(R) - M.R? (42)

B? is a mean square slope and M, is a correlation be-
tween the height and the square of the slope along R.
Writing R = (R, ), we getl

B* = cos® (n) + 2cos dsind (neny) + sin’p (n)))
M, = cos% {mm2) + 2cos sin ¢ {nnen,) + sin’p ('qnﬁ)

where 7, and 7, are the slopes in the & and y directions.
Both these quantities, B and M,, appear in specular
point reflection models. Thus, specular point reflection
models may only be appropriate for power law models
when 4 < « (smooth surfaces).

For R big cnough the correlation between the two
peints approaches zero, and we will get for R — oo:

{A(@) — 2H?

T(R) — g (43)

A numerical investigation of an isotropic spectrum
with o = 3.5, k, = g/U?, U = 10 m/sec and kg = 27/h
with & = 0.4 m, shows good agreement with the above
analysis. In Fig. 2, we plot the variation of In{A(R)/A)
vs. In(R) {in Fig. 2a), and In(T(H)/A?} vs. In(R)
(in Fig. 2b). When Rk; < 27 both I and E are
about 2, while, when Rk, > 1 both increments reach

. - 22— (2—a/2
'L satisfies L1~% = ?;:L—/lz"_r((rﬂi')iﬂ

2 should not be confused with the fractal dimension of the
sea surface, which is 4 — /2 for 2 < o < 1 {Stiassnie et al., 1991)
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Fig. 2. The variation of (a) In(A(R)/A) vs. In(R), (b)
In(T(R)}A%) vs. in{R). Both are calculated for isotropic spec-
trum, F{R) = Ak™ ka < k < kg, with the parameters: o = 3.5,
ke = gf/U? m™%, kg = 2n/h m~!; where the wind speed at
height 10m above sea level I/ = 10 m/sec, and the lower cutoff
h = 0.4 m. To demonstrate the slopes in different regions we add
best fit lines. The regions’ boundaries were chosen to be Rkg = 2w
and Rka = 1, in both figures. In (a) the slopes are 1.93 for the
shorter lengths of R and 1.31 in the intermediate region. In (b)
the slopes are 1.97 for the shorter lengths of R and 1.25 in the
intermediate region.

a plateau. The first limit can be shown by the approx-
imation 1 — cosz ~ z%/2, while the second is due to
the fact that the oscillating integrands vanish. At the
intermediate range, 27 < Rk < 1, D is approximately
@ — 2 = 1.5 and F 15 monotonic decreasing, with an
average value of 1.5.

Sirnilar results are obtained for o = 4, and are plotted
in Fig. 3.

3.2  Joint distribution function

Following the theory of Longuet-Higgins (1963}, the joint
distribution function P({;, () which describes the prob-
ability for sea surface elevations {, and (3 at the points
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In(A(R)/A)

Fig. 3. The same as in Fig. 2, with o = 4. The slopes in (a) are

1.97 and 1.58; The slopes in (b) are 2.00 and 1.54;
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R and R, respectively, is:

_,3  fot
P(C1,C2) zﬂHz p{ fi Pff fz}
x {1+g (Aso Hau+3A21Hay
+3A 12 H 2+ Aoz Hoz) +O(e?)] (44)
where:
Amn = fpmn/H™™ m4n<3 (45)
po= An (46)
G = Hfi i=12 (47)
Hon = (1™ exp {ff;(?iﬂ]:l);;ﬁz}
g e
with the asymptotic order:
Amn = O(emH1=2) (49)

therefore we get the joint distribution function as an
asymptotic series,

In the above notation, A(R) = 2HZ(1 — p) and
T(R) = H*(Aau — Aa1) = H3( Aoz — Apa).

4 The intensity integral

In order to find the sea state bias which is the effect
of the sea waves nonlinearity on the radar return wave-
form, we should calculate the intensity integral (Eq. 19)
up to O(¢). Those calculations are quite complicated.
In order to bring out the physics, we shall use some
approximations.

The averaging will be done by using the joint prob-
ability distribution function P({1,{2) (Eq. 44). By
straightforward calculations (Gradshteyn and Ryzhik,
1965), assuming that 1/(kxH) = Ofe), we get for the
average in Eq. (19), see the Appendix for details:

_ 16k%, R+ RE
¢ = (1485 (o - BEE))

(22

aggl \/_exp{ —2k3A(R)Q,
_z— (R} - R}) ( (R)) h
2 2
_gﬁZQ + 243 (M) Qo
(R‘f+ Rg) (0' + 8472
IRNETE T2Q )

16H2 [ RyRy\* A(R) .
+ o) (Jﬂ") (] T 9Kz (50)
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where # = er/01 (a nondimensional variable) is the nor-
malized time, /12" 1s the radius of the illuminated sea
area at which the intensity reaches its maximum. It de-
pends on the sea state (wave height) and the radar pulse
through the relation: ¢ = 02 + 16 H%.

Q, Qu, @, are smooth bounded functions which tend
to one as ]R]_‘—-} 0. Q =1+ 64H4/(crlcr W1 — p%),
Qo = (1+A(R)/0?)/Q and Q) = (1 — A(R)/o?)/Q.

Putting the above into the intensity integrals and
changing the coordinates as follows: R = R.l — Ez,
Ry = (R, + R3)/2 we get:

<(53) Sl ] R

(R(y+) ) vexp {-243A(B)Qu+

16k2

a1
,21\')‘ = - 2 20’% ﬁ, ﬁg
i— B RoQ2—2Qs(y +v)° — 7 o

where: y = RE/aiz', ¢/ = R/Vo2, v = ¢'?/4 — 3 and
Q2 = 1 —4A(R)Gh /of.

If we assnme_that the main contribution to the inte-
grals is while |R; — Ry| is small because the correlation
function decreases with distance, we will arrive at Berry
and Blackwell’s (1981) formula:

I o= (k“‘“) f/dgnp 2y-py?
27z ) @
~ 2k
//dRexp{ 2k3A( )+2—R Ro} (52)

Rewriting (51) in polar coordinates By = (Ro, #),
R = (R, ), gives:

;o= (Fa 21{]]#& rdﬁfmd !
= \anez) 72 IR A AV}
16k2 -
(1— GAT(R)(y+'f))*
1

exp { 2k2A )Q1 — i2pq’ /Y@= cos (# — ¢)

Ql} (51)

2
~20u(y 97 -yt (0= 6101} (59

where p = kaoy 3> 1. The term, ~2Qo(y + 7)? in the
exponent, ensures convergence of the integral.

I order to calculate those integrals we note that for
A(R) = H20O(1) the integrands are exponentially small
{e=238(R) = O(e=1/")). Therefore, the dominant in-
terval will be R € [0, pg} where A(gy) = H2. This will
give us py = H(H/L)4-0/e=2) which is large since
H » L. The variable ¢’ is bounded in this interval
by L(H/L)*(«=2) /512" =~ 3. 107? for typical values
of z, H, L and o. Therefore, we assume ¢/ = O{c?)
and ¥ = —8 + O(e*) in this interval. The exponential
decreasing with y suggests y = O(1) as the dominant
integration interval.
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Some more straightforward calculations will bring us
to the final estimate

I = aéjfl{%\/g[l+¢(\/§ﬁ)}o'p'—e‘zﬁ:TF} {54)

plus higher order terms, where ®(z) = 2 [’ e e~t"dt is the
probability integral. op is the Rada.r Cross Section, Tp
1s the nonlinearity effect on the intensity:

2
op = 2 f dfie= AR (55)
4 —
Tp = 8" /deT Je=2#10(R) (56)
iyal

The index F denotes the "fractal” model (o < 4), but
the results are valid for other spectra as well

Using the index s for smooth sea (4 < a), assummg
isotropic sea (Egs. 41, 42 with B2 = (g2} = (g2},

M, = (mi) = (m2) and (neny) = (memy) = 0) we
get

s, = 1/B T, 2 M,

'T; = 2M,/(G‘]B4) } = [ - (78] Bz (57)

Finally we write the intensity (54), due to the fact
that the main contribution for the second part is for

8= 0(1}1 as

= oo \/;{ [1+ 9{van) -/ 2 22 ﬂ} J

where the time T appears through 8 = cr /0.

In real measurements the intensity tail (plateau re-
gion) decreases (e.g., Barrick and Lipa, 1985). We did
not include this effect in our analysis, since our main
goal is to model the leading edge of the return pulse.
Thus the result is only good for |3| < 1, which is the
interval of interest.

5 The sea state bias

In order to find the sea level height, the mid-time return
point must be found. Following Srokosz (1987} we define
the normalized intensity for further analysis:

o) = 160y (55 [Zoe). (59

The estimation of the bias due to tracking the half-power
point, 13, is obtained by solving

1

Hry) = 3 (60)

Noting that, ®(z) ~ 2z/\ /7, e™% ~ 1 —z% as z — 0,
will lead us to the solution (Srokosz, 1987):

CTI/E TF

ﬂl/z— o =

+ O(e?) {61)
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Note, that m;3 # 0 when Tr # 0. 79 is positive
because of the nonlinearity of the sea surface.

Thus, %C’n/g is the sea state bias, 7., which de-
scribes the shift between the mean sea level and the
level that corresponds to measuring half of the maxi-
mum intensity.

o T,
flem = — = —— + o1 0(¢?) (62)
2 oTF
where oy = Vo2 +16H2, op = %iff dﬁe‘%:A(m,
Tr = %g—%ffdﬁi"(ﬁ)e‘zkgmﬁ), and the moments:

H?® = 139, A(R) = 2{ua0 — p11) and T(R) = pag — piay.
In order to simplify the derivation, we assume an
isotropic wave field, This is of course unrealistic (al-
though the short wave field which has an important ef-
fect on the sea state bias may be nearly isotropic), still,
we can expect to get the right trend.
In the case of isotropic smooth sea (57)

Lol (mi) __(my)
2o, (n3) {(n2)

{(—HAXize and —HXA;oz in Srokosz (1986) notations).
{63) is the same as Srokosz (1986, Eq. (26)), for isotropic
sea, since the cross-skewness parameter, 4, becomes
A1z + Aoz in this case.

However, our result differs from Srokosz (1987, Eq.
2). We did not get a term that is proportional to the
skewness, but only the term that is proportional to the
cross-skewness parameter, v,

Using the "fractal” model for the joint moments,
A(R) = L**PRP T(R) = M* FRE je. apower law

spectrum, we obtain:

Nem =

(63)

op = %izrrfme‘“”“i“'bﬁ"}ﬂd}z
T 0
_ 4 2 praopy-UD 2
= 3 (2k5~Y L~} r{5
4 e
Tr = 8"—*2”] M3-ERE ~2%3L* "R pyp
ﬂ'ﬂ'; 0
16 3E (o, 2-Dr2-Dy~ 5 2+ E
= ks M D - -
Dk,\ﬂ'] ( A ) (QkA L ) F( D
o1 TF 2 -k
em — ——— = —— (kaM
7 5 7y h( AM}
_E

i I'(2/D)
We see a dependence of the sea state bias on the radar
wavenumber kj, %oy, o ki(D_E)/D. Thus, our model
exhibits dependence of the sea state bias on the radar
frequency. This feature is known from field experiments
of Walsh et al. {1989, 1991), but not captured by the

specular point reflection model. Also, we see nonlin-
242(D-E)/ D

1/3 , since

ear dependence on Hiys, nom x H

Ax le/:a'

}
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A HIIB oF Tr TNemn gﬁl% H:Q_ml
0006 1.04 90.6 B35 | -.00937 298 18.7
001 1.48 45.1 506 -.0188 1.27 18.8
.002 2.09 22.4 | 4567 -.0372 1.78 18.6
.003 2.56 14.9 | .419 -.05853 2.16 15.4
0035 3.30 8.96 .366 -.0910 2.76 18.2
D08 4,18 5.62 316 -.145 3.48 18.t

.01 4.67 4,51 293 -.180 3.86 180

Table 1. Relying on the form of A(B)/4 and T(H}/A? caleu
lated in Fig. 2, we change the parameter 4 (given in +/m, where
m is the length given in meters) and calculate the different pa-
rameters. The forms are given for a spectrum with: o = 3.5,
ko = g/U% m~1, kg = 2x/h m~'; where the wind speed at
height 10m above sea level U = 10 m/sec, and the lower cutoff
h = 0.4 m. For different values of the spectrum coefficient A we
calculate: the significant wave height Hy 4 (m), op, Tr, the sea
state bias fem for radar wave length 3cm and its relation to the
significant wave height 5em/H) /3 in percentage, and its relation
to the spectrumn coeflicient A.

6 Numerical Results

In order to get a general idea of the variation of the sea
state bias as a function of the wave spectrum’s param-
eters, we carried out calculatious for a simple model of
the wave spectrum (34), with & = 3.5 and 4.0. We take
the form for A(R) and T(R), as caleulated for the spec-
trum with k; = g/U? and k4 = 27/h (see Figures 2 and
3), for different values of the parameter A. The radar
wavelength was chosen to be 0.03m (10 GHz). Calculat-
ing the sea state bias (62}, after using {55, 56), we get
the results summarized in Table 1. For different wave
heights we see that the sea statc bias variation is propor-
tional to the parameter A of the wave spectrum. This
was expected, since the cutoff suggests that the sea is
smooth for short waves. Thus, both D and E can be
approximated as 2 for the relevant scales.

When we will push & to zero, we will get the “fractal”
presentation, where D = o — 2 and £ = 2a — 5. Thus,
for &« = 3.5, 1om o k;‘z/a and e, o A2/3,

To sumnmarize the results, we compare Equations (1}
and (64). We recall that Eq. (1) ignores the nonlin-
ear dependence of the electromagnetic bias on the wave
height, leading to a spread of the results.

In Fig. 4 we plot the percentage of the sea state bias
of the significant wave height, |f../Hy/3l%, as a func-

A H]/H ar TF e ﬁﬁ Herm
0005 1.62 126 1.70 | -.0229 1.42 45.8

001 2.29 62.9 1.52 | -.0456 2.00 45.6

002 3.23 314 1.29 | -.0909 2.81 45.5

003 3.98 209 1.15 -.136 3.44 45.5

005 5.11 12.5 961 - 227 4.44 45.4

L0038 6.46 7.84 798 -.363 5.61 45.4

.01 7.23 6.27 2T -.453 6.27 45.3

Table 2. The same as in Table 1 but, relying on the form of

A(R)/A and T(E)/A? calculated in Fig. 3, with e = 4.0.
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Fig. 4. Results of the comparison between Equations (1) and (64). The percentage of the sea state bias of the significant wave height,

Inem/Hy /3]%, as a function of the radar frequency, F, in GHz.

The two dashed lines (- - - - ) present the lower and upper bounds of Eq. {1}; The four Xs, at F = 5.3,10,13.6,36, are the radar
frequencies used in Walsh's experiments (Walsh et al., 1989, 1991). The curved lines present our estimation according to Eq. (64) and

Lthe results obtlained in the tables.

The full line { —— ) @ = 3.5, 4 = 0.002, Hlf?- = 2.09.
The dashed line ( - - - } &« = 3.5, A = 0.003, Hu_—_.‘ = 2.56.
The dash-dotled line (~ - ~ - ~ -} ow = 4.0, A = 0.001, Hyp =229

The two verticals segments, at F' = 6,15, are taken from Rodriguez et al. (1992) Fig. 9a. The four dots on each line were given for four

different significant wave height (2.5, 1.5, 0.87, 0.38 meters).

tion of the radar frequency, F, in GHz. We have shown
the lower and upper bounds of Eq. (1} and the mean
experimental values associated with it. The results ob-
tained by Eq. (64) and the results obtained in the tables,
are seen to fall within those bounds. Both values used,
a = 3.5 and a = 4.0, provide good agreement, still the
trend of the & = 3.5 curves is closer to Eq. (1). We also
show computational results of Rodriguez et al. (1992).
These results also fall in the same range.

¥ Conclusions

An alternative model was proposed for the study of the
sea state bias in radar altimetry. This model is based
on the Kirchhoff approximation and 1s more general
than the specular point reflection model which has been
widely used. The present model does nol assume that
the surface 1s smooth, and addresses roughness on small
scales. The cutoff in the spectrurn was introduced to de-
scribe the actual water wave spectrum, and not in order
to make the scattering integral converge. The statisti-
cal moments of the free surface relate heights and incre-
ments at two points. For spectra that are not “smooth”,
the bias was found to vary with the radar frequency.

Appendix A Derivation of Eq. (50)

The average in Eq. (19) is calculated by using the joint
probability distribution function P({y,¢s) (44).

<a(T1)a(TQ)e—%h(n(ﬁj)—n(ﬁ:))> _

K.// expl—p(fi + 3} + 2 fL + g2f2 + @afi fo)}
X [IHL(f3 + FOM fLf2(fu+ 2 N (i + f2)] dfi dfz (A1)

The constants in the above Eq. {Al) are:

K = — (A2)

c? 2 2T 2y P+ RS
exp{—; (21’ - E;;(Rl + R;)+ o

[ = _1\3?(1+Pr+P2)+3’\21 (A3)
6(1—p*)*(1 + p)
3pda0 —An(1 —p+p%)
6 (1-p?)%1+p)
3 Az0 + Az (1 - 2p)
6 (1-p%)(1+p)
4H? 1

b= "5 +2(1—p2) (46)
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q1 = —7(’? - ;) - 'i',kAH (A.?)
2H¢ RZ .
s = —_ 0_2 (T - ;) + lka (AS}
14
- 7 A
43 21— p?) (A9)

Straightforward caleunlations, and then collecting the
higher order terms with (ikxH)? gives us Eq. (50).
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