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Abstract, The intermittent nature of turbulence within solar
wind plasma has been demonstrated by several studies of
spacecraft data. Using magnetic field data taken in high
speed flows at high heliographic latitudes by the Ulysses
probe, the character of fluctuations within the inertial range
is discussed. Structure functions are used extensively. A
simple consideration of errors associated with calculations
of high moment structure {unctions is shown to be useful as
a practical estimate of the reliability of such calculations.
For data sets of around 300 000 points, structure functions
ol moments above 5 are rarely reliable on the basis of this
test, highlighting the importance of considering uncertain-
ties in such calculations. When unreliable resuits are
excluded, it is shown (hat inertial range polar fluctuations
are well described by a multifractal model of rurbulent
energy transfer. Detailed consideration of the scaling of
high order structure functions suggests emergy transfer
consislent with a “Kolmogorov” cascade.

1 Introduction

The identification of at least some fluctuations in the solar
wind as turbulent is widely accepted. Coleman (1968)
showed that fluctuations in the magnetic field and velocity
near the Earth’s orbit had power spectra E(f) o< %, where
the spectral index o~1.2, on spacecraft scales of hours to
minutes. Coleman interpreted these fluctuations as being
inertial range turbulence, probably indicative of Kraichnan
(1965) magnetohydrodynamic (MHD) turbulence. While
Belcher and Davis (1971} pointed out that fluctuations in
high speed streams were highly Alfvénic with an outward
sense of propagation — and indeed while near-ecliptic
fluctuations are often Alfvénic (e.g. Roberts ef al., 1987) —
nevertheless they appear to be indicative of evolving
turbulence. Strong evidence of this evolution and the
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development of an inertial range is provided by the change
in shape of the power spectrum of fluctuations as they
travel from the Sun, especially in high speed streams (e.g.,
Bavassano et al, 1982; Feynman ef al., 1996) — the spectral
index at small scales is often near 5/3, the value predicted
by the Kolmogorov (1941a) theory. The reader is referred to
Mangeney et al. (1991}, Roberts and Goldstein (1991) and
Tu and Marsch (1995) for recent reviews of the state of
turbulence studies in the heliosphere.

In this paper, we concentrate on the inertial range of

_turbulent fluctuations in the solar wind and in particular

their “intermitient” nature. Intermittency — spatial inhomo-
geneity of encrgy transfer — is an accepted property of
terrestrial fluid turbulence (see, for example, Borgas, 1992
and Frisch, 1995). Recently, several studies have demon-
strated that heliospheric magnetic field and velocity
fluctuations are indicative of intermittent turbulence, by
considering the distributions of fluctualions (Feynman and
Ruzmaikin, 1994; Marsch and Tu, 1994; Ruzmaikin et al.,
1995) and structure functions (Burlaga, 1991; Marsch and
Liu, 1993; Ruzmaikin ez al., 1995; Horbury et af., 1996a) -
Marsch and Tu (1997) is a recent comprehensive review of
this subject. Different studies have concluded that the
fluctuations are in agreement with different models of
intermittency in turbulence. Indeed, it is not even clear
whether a description based around the Kolmogorov
(1941a) hydrodynamic turbulence model or the Kraichnan
(1965) and Iroshnikov (1964) MHD turbulence model is
more appropriate for turbulent fluctuations in the helios-
phere. The aim of this paper is to use a careful structure
function analysis to study the inertial range - where
compatison of models with observations is easiest — in
considerable detail, to decide which models of intermit-
tency are in agrecement with data and to attempt to
differentiate between Kolmogorov and Kraichnan-Trosh-
nikov scaling on the basis of the experimental data.

We have used magnetic field data taken by the Ulysses
spacecraft within flows from the Sun’s Northern and
Southern polar coronal holes to study inertial range fluctua-
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tions. The inertial range is not particularly large in polar
flows at the distances sampled by Ulysses (Horbury et al.,
1995a, 1996a, b), extending up to around 100s in the
spacecraft frame. However, inertial range fluctuations in
undisturbed high speed polar flows exist in’a much more
homogeneous environment than those near the ecliptic
(Phillips et al., 1995; Balogh et al., 1995). As such, we may
expect that energy input into the inertial range, by whatever
means, would be less variable than that near the ecliptic,
leading to a better defined inertial range.

In sections 2 and 3, we discuss the concept of inertial
range turbulence and intermittency, in both non-magnetised
and MHD fluids. Several intermittency models are dis-
cussed, with emphasis placed on the physical differences
between them. Section 4 gives a description of the calcula-
tion of structure functions, with emphasis on the influence
of uncertainties in distributions of fluctuations on structure
function results, We demonstrate that such uncertainties are
significant, and can cause misleading results. In sections 5
and 6 by taking into account these restrictions on the
structure function results we show that, of the models
considered, the multifractal p model (Menevean and
Sreenivasan, 1987a, b) best describes the fluctuations.
Finally, section 7 discusses details of the energy transfer in
the turbulent cascade. -

2 Inertial range turbulence

An essential property of the concept of inertial range
turbulence is that of energy transfer between scales. In most
cases, energy is transferred from large to small scales,
where it is eventually dissipated as heat. Two scales can
therefore be defined: that at which energy is inserted into
the fluctuations, Ly, and the dissipation scale, {, If one
assumes that the energy input rate per unit mass at scale Ly,
My, is constant over time and space, then the energy
dissipation rate €=Il; Similarly, if the rate of energy
transferred to a particular scale [, Lg»i»l, is II{{), then
energy must be lost from that scale at the same rate. If
Ly»i»l, and therefore energy is transferred through many
scales before being dissipated, then we expect that the
energy transfer rate per unit volume, I, is independent of
scale. That is,

TI)=TTy=¢ )

for Ly»t»i,. If the Reynolds’ number is high (i.e. inertial
forces dominate viscous forces) then there is essentially no
dissipation in this range of scales: it is termed the inertial
range. Studies of turbulence concentrate on the nature of
the energy transfer process, which is not well understood.

2.1 Kolmogorov Turbulence

Koimogorov (1941a), hereafter referred to as Kd4l,
introduced a model of inertial range turbulence based on the
Richardson (1922) picture of a turbulent fluid containing a
hierarchy of vortices on all scales (see, for example, Frisch,
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1995 and also Batchelor, 1953; Monin and Yaglom, 1975;
Frisch et al., 1978, Paladin and Vulpiani, 1987; Matthaeus
and Zhou, 1989; Zhou and Maltthaeus, 1990; Mangeney et
al., 1991). We define characteristic velocity fluctuations on
a scale ! as w() and assume that the energy transfer rate is
homogeneous and isotropic. If the energy on a particular
scale is £() and the characteristic time for a fluctuation of
size I to transfer a sizeable fraction of its energy to smaller
scales is T, the energy transfer time, then

& = TI(l) & E(DAaD. @)

If this energy transfer occurs by simple eddy decay, then 1
is proportional to the eddy turnover time, g

Tr{l} o TR({) o< Vu(l) (3}
and since E()s<1?(1), we have E(Dec(e/)** and
w(l) = (D)3, 4

As a consequence, the moments {powers) of these velocity
fluctuations scale as

W1y o< ™3 &)

within the inertial range. That is, if the m-th moment of the
velocity fluctuations varies with scale with exponent ~(m)

w"(l) <™ (6)
then for the K41 model,
h(m)=m/3. N

The resulting power spectral index can be calculated from
the scaling properties of «°(f) (Batchelor, 1953; Monin and
Yaglom, 19735). The power spectrum, E(f} =< f* where

o= 1+g(2) (8)

and g(2)=#(2). Equation (8) is a general result if the spatial
averages of the velocity fluctuations, <u™(l)>, vary with
scale with exponent g(m), so that <u’()>=<E2": for K41,
<u?()>=u’(!) — because the fluctuations fill the entirc space
on every scale — and therefore g(m)=h{m): this is not
necessarily the case for intermittent turbulence, as we will
see in scction 3. For the K41 model, since g(2)=h(2)=2/3,
a=5/3, The relation ~5/3 is often observed in terrestrial
fluid turbulence. However, measurements of the scaling
properties of moments of the velocity fluctuations using
structure functions (e.g. Anselmet er al, 1984) show that
the equality g(m)=m/3 is not satisfied in general. For
moments above 3, the measured values of g(m) are lower
than m/3. This resuit is usually explained by considering the
spatial intermittency of the energy transfer process, a topic
to which we return in the next section.

2.2 Kraichnan-Troshnikov Turbulence

Kraichnan (1965) and Iroshnikov (1964), hereafter K-1635,
discussed turbulence in a plasma, and argued that the
energy transfer rate should be slower than in an unmagnet-
ised fluid. In a normal fluid or a magnetofluid, the presence
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of a large scale background velocity (as a result of a flow,
or due to large-scale eddies) does not affect small scale
fluctuations, because it does not disrupt their interactions: it
can be locally removed with a frame transformation. The
addition of a background magnelic field to an incompress-
ible magnetofluid, however, causes fluctuations in the
magngtic field or velocity to propagate parallel or anti-
parallel to the background field as Alfvén waves. As a
resuli, the fluctuations tend to decorrelate in the “Alfvén
decorrelation time” TA(0)=i/V,, where V, is the Alfvén
speed. If T4 (1) < tg(l) then eddies cannot decay fully before
they decorrelate, a process which does not transfer energy
between scales. If a full eddy decay takes a time Tg then as
a result of decorrelation only the fraction t4/1g of the decay
will occur. Therefore, the full energy transfer takes a factor
Te/T, longer than in the K41 case and thc energy transfer
time is
()

Do tE([)-m &)

eV A# xV A#

where b(!) is the characteristic magnetic field fluctuation
due to an eddy of scale I By the same argument as the
previous section, we can then derive the spectral index and
gfm) functions. The important difference between K41 and
K-I65 turbulence is that decorrelation inhibits energy
transfer, resulting in a slower energy transfer rate. This
slower transfer rate leads to a flatter power spectrum — the
spectral index a=3/2 in this case. Indeed, the scaling of the
velocity fluctuations with scale is also shallower:

g(m)=m/4 10y

for the K-165 model. K-165 assumes equal amplitude
Alfvénic fluctuations propagating parallel and anti-parallel
10 the mean field direction. This is certainly not the case in
high speed polar solar wind streams, where fluctuations are
largely Alfvénic with an anti-sunward sense of propagation
(Goldstein er al., 1995). As a result, the K-165 model is of
limiled applicability to solar wind turbulence. However, the
continued application of K-165 to solar wind observations
by other authors — and the lack of other MHD turbulence
models — makes a detailed K41-K-165 comparison worth-
while. More detailed discussions about the relationship
between K41 and ¥K-165 phenomenologies can be found in,
¢.g. Matthaeus and Zhou (1989) and Dobrowolny et al
(1980). In particular, we note that if the condition
© T.(f) « 1)) is not satisfied, one can have scaling between
the K41 and K-165 cases (Matthaeus and Zhou, 1989).
These two cases represent limits of a continuous range of
possibilities.

3 Intermittency of the energy transfer process

As we have noted, terrestrial measurements (c.g. Anselmet
et al, 1984) and in sisu heliospheric measurements (Bur-
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laga, 1991; Marsch and Liu, 1993; Horbury et al., 1996a) of
the scaling propertiecs of velocily and magnetic field
fluctuations, and hence of the g(m) functions, do not show
the linear dependence of g(m) that is expected of the K41 or
K-165 models. This discrepancy is attributed to the spatially
inhomogeneous nature of the energy transfer process — that
is, it is intermittent. Several classes of model have been
developed in an atlempt to describe this inhomogeneity by
considering details of the energy transfer process. In this
section, we introduce four classes of models which have
been discussed in the heliospheric turbulence literature and
discuss their application to solar wind fluctuations.

3.1 The P model

Frisch er al. (1978) discussed a model of inertial range
turbulence which attempted to describe the intermittent
nature of the turbulent cascade. This model, as is the case
for all the fluid models we will describe here, is an exten-
sion of the K41 formalism.

In K41 turbulence, an eddy decays and produces a
number of daughters that fill the space occupied by the
parent. In the [ model, not all the space is filled (not all
possible danghter eddies are produced), leaving gaps in the
fluctuations on every scale,

We define the parameter |1 as a measure of the intermit-
tency of the fluctuations: p=0 corresponds to the K41 case.
This is related to P, the fraction of daughter eddies pro-
duced, p=2".

Because fluctuations occupy progressively less space on
smaller scales than in the K41 case, velocity fluctuations in
active eddies decrease less rapidly with decreasing scale in
the f§ model. The scaling of moments of velocity fluctua-
tions in active eddies is

A(m)=(1-u)(m/3). (11)

Values of u(f) calculated for the K41 case corresponded
to both velocity fluctuations over eddies of scale I and
average velocity perturbations on a scale [ because all space
is filled by eddies of all scales within the inertial range.
This is not the case in the  model, and me must therefore
distinguish these two values. We define the functions,

Stm b ={ |ufx+D-uix)|") (12)

which are called structure functions, where | denotes a
component of the velocity and <-> represenis an average
over the data set of values of u(x). S(m,{) is the m™ moment
of the distribution of fluctuations in the ' component of «
on the scale ! sampied over the fluid. We note that structure
functions can be defined in other ways (for example, using
vector differences, or not taking the modulus of differences:
see Monin and Yaglom, 1975). Structure functions can be
calculated from experimental data in a straightforward way.
Details and subtleties of the method are described laler in

this paper.
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If fluctuations are entirely space-filling at every scale,
then values of 5(m,f) should scale like those of «™(/), which
are the amplitudes of fluctuations in active eddies only. As a
result, if #™() scales like Eq.(6), then

S(m, o= 50 (13)

where g{m)=h(m). However, this is not the case for the
maodel. In this case, values of g{m) are given by

gmy=m3+u(1-m73), (i4)

We note that the p model reduces to K41 when p=0, as
expected, and that g(3)=1 for the b model, as is the case for
K41. Indeed, the result g(3)=! follows from the Navier-
Stokes equations at high Reynolds numbers (Kolmogorov,
1941b; Vainshtein and Sreenivasan, 1994) and is observed
experimentally in terrestrial plasmas (Anselmet er al,
1984).

Equation (i4) shows that values of g(m) for the B model
in the presence of intermittency are lower than those for
K41 for m>3 and higher for m<3. The spectral index o is
related to the scaling of S(m=2,1) — and hencc g(2) — by
Eq.(8), and is given by

0=5/3+W/3, (15)

Therefore, the power spectrum is stecper than in the non-
intermittent case. A simple comparison of the power
spectral index with the K41 value is therefore not sufficient
to identify inertial runge turbulence: the presence of
intermitlency can alter the obscrved spectral index despite
the presence of a K41 cascade.

The B model predicts a linear dependence of g on m.
Experimentally, observations of g{m) tend to show a non-
linear dependence (see, for example, Borgas, 1992 for a
discussion of various intermittency models). Consequently,
other intermittency models have been proposed.

Recently, Ruzmaikin er al. (1995) extended the § model
to MHD turbulence — that is, they added intermittency to
the K-I65 model in the same way that Frisch et al. (1978)
added intermittency to K41. The derivation is similar to the
K4l B model, but with the K-165 transfer time given by
Eq.(9) used instead of that for K41 fluid turbulence (Eq.3).
The structure function scaling exponents in this case are
given by

glmy=m/A+u(1-mld) (16}

and consequently the spectral index o=3/2+/4. As in the
non-MHD case, intermittency increases the spectral index.
Ruzmaikin er al. (1995) and Horbury et al. (1996a) sug-
gested that observations of g(m) for polar fluctuations were
consistent with the Ruzmaikin et al. (1995) MHD B model,
with p1~0.6,

3.2 The Random 5 Model
Paladin and Vulpiani (1987} extended the B model to

include the possibility that tarbulent fluctuations (“eddies’)
decayed into eddies with a variety of different “shapes”
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with different dimenstons. We do not prcsent a derivation of
the so-called randem B model here, but simply quote the
resulting values of g(m). Paladin and Vulpiani (1987) found
good agreement with the experimental data of Anselmet et
al. (1984) by choosing space-filling eddies (corresponding
to P=1 in the P model) and sheets (B='4) with different
occurrence probabilities, leading to a probability distribu-
tion of 3,

P(B) = x-8(B-V2)+(1-x)-8(B- 1) (7

with x=0.125 — that is, eddies were generated much more
often than 2D sheet-like structures. By using this probabil-
ity distribution of B rather than a single value, Paladin and
Vulpiani (1987) derived the values of gm):

g(m) =m/3 - log,{ ﬁ(l'mﬂ)} (18)

where {-} denotes an average over the P¢B} distribution. The
random B model reduces to the § model if P(B)=8(B-B') and
the K41 model if P(B)=1.

Burlaga (1991) showed that the random B model was
consistent with the structure function scaling of turbulent
velocity fluctuations on spacecraft scales of 0.85 to 13.6
hours at 8.5 AU using a 5 day interval of 96s samples,
containing around 4500 data points.

One can apply the random B model to Kraichnan turbu-
lence, as with the B model, by replacing the K41 energy
transfer time of Eq.(3) with the K-165 value given by
Eq.(9). In this case, one obtains g(m} values given by

g(m) = m/d - log, {pU ™). (19)

3.3 The p model

Meneveau and Sreenivasan (1987a, b) developed a different
method of introducing intermittency via eddy breakdown.
While the  and random B models describe the effects of
energy being distributed equally to only a subset of daugh-
ter eddics, the p model of Menevean and Srecnivasan
considers the eflects of unequal energy distribution to
daughter eddies: all eddies have some energy, but some
have more than others. If we tmagine that an cddy decays
into two daughters, then onc receives a fraction p of the
parent’s energy and the other 1-p. Conventionally, we take
pla.

Recently, Tu et al. (1996) presented a clear derivation
and discussion of the p model. Values of g(m) for the p
model are given by

glm)= 1-1og2( P41 p)*"f-‘) o0

As expected, the p model reduces to K41 if p='%: p=1is
the most intermitlent case. As with the B and random B
models, the p model has g(3)=1 independent of intermit-
tency. We note that the p model is multifractal: the energy
dissipation is distributed throughout space as a multifractal
(see, for cxample, Frisch, 1995). It appears that energy
dissipation in turbulent fluids is indeed multifractal, and the
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p model has proved to be a good description of the
observed structure function scaling in neutral fluid turbu-
lence (Frisch, 1995; Borgas, 1992).

Carbone (1994) showed that the p model was in agree-
ment with the values ol g(m) obscrved by Burlaga (1991),
with p~0.7. Carbone (1993) applied the p model to Kraich-
nan (19653) turbulence to produce the MHD p model, which
has structure lunction scaling exponents given by

gfm)= l-logz(pm/4+(l _p)m;‘-ﬁ) on

3.4 The She and Leveque model

She and Leveque (1994) introduced a model ol intermil-
tency which emphasises the structure.of the smallest scale,
dissipative, structures in the turbulent fluid. She and
Leveque assumed that these structures are filaments (that s,
they are essentially one dimensional) in neutral {luid
turbulence. Using a K41 energy transfer scaling, they
derived structure function scaling exponents given by

gfm)= mlf)+2(] _(213)»,:3) .

This model is of particular interest because it contains no
freely adjustable parameters: the dimension of the dissipa-
ion siructures and the energy scaling are the only inputs,
although She and Leveque also assumned a universal scaling
relation between moments of spatial fluctuations in the
turbulent energy transfer. Equation (22) is in good agree-
ment with experimental observations of fully developed
neutral fluid turbulence.

Grauer et al. {(1994) extended the She and Leveque
(1994) model to the MHD case. Taking a K-I65 energy
transfler scaling, and assuming that the dissipative structlures
arc sheets (for example, current sheets) they derived the
following relation

glm)=mi8+l- (1/2)""4_ (23)

Grauer et al. showed that the ratios g{m)/g(4) (hence
artificially imposing the K-165 condition of g(4)=1} agreed
with thosc measured by Burlaga (1991).

It is possible to alter the She and Leveque (1994) model
to use a K4l encrgy transfer time, but with sheet (two
dimensional) dissipative structures rather than filaments:
we are gralelul to one of the referees for pointing out this
possibility. It is simple to show that in this casc, the scaling
functions of moments of the energy dissipation are, using
similar terminology to She and Leveque,
1, = % +1-3)" (24)

where T, is the scaling exponent of the m'™ moment of
the energy dissipalion (this is equivalent to Eq.(9) of She
and Leveque, 1994). These functions are rclated to structure
function scaling exponents as g(m)=m/3+1,,  and therefore

glm)=m/0 +1-(13)"™" (23)
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for K41 energy transfer where dissipation is confined to
two dimensional sheets. We will return to this result in
section 6.

4 Structure function calculations

In this paper, we use structure functions to analyse inertial
range turbulence in the polar heliosphere. Fluctuations in
high latitude solar wind flows are particularly appropriate
for turbulence studies for several reasons. Firstly, the lack
of .stream structure al high latitudes (Balogh et al., 1995;
Phillips et al, 1995) means that long intervals of nearly-
stationary data are available, which is notl the case at low
latitudes. Secondly, this lack of strcam structure allows
Lurbulent evolution to proceed undisturbed, at a rather slow
rate (Horbury et al, 1996b). Energy appcars to be inserted
into the turbulent cascade from the decay of low frequency
Alfvén waves: this slow process means that energy transfer
through the cascade is likely to occur at a rather more
constant rate than at low latitudes, where the fluctuations
can be “driven” by shocks, compressions and so on. The
lack of variation in the rate of polar energy transfer means
that, although the inertial range is small, covering between
one and two orders of magnitude in scale, it is, as we will
show in this section, actually rather well defined. For an
inertial range to be present, we require that energy input
into the range is constant over several energy (ransfer imes:
this is plausibly the case for small scale fluctuations in the
polar heliospherc where the energy input rate is likely to
vary over very long timescales compared to the small scale
energy transfer time. Therefore, we expect polar fluctua-
tions to conlain an inertial range which, though small
because the turbulence is not fully-developed, is neverthe-
less well defined - the enmergy transfer rate is in quasi-
equilibrium on these small scales. This has indeed proved to
be the casc.

Before presenting our results, we discuss the calculation
of structure functions in some detail, with particular
emphasis on their limitations. As we have seen, structure
functions provide a simple method of deriving important
information about the scaling and intermittency of turhulent
flows and can be used to differentiate belween different
models of these processes in a way that is not possible
using power spectra. In this work, we calculate structure
functions as

S{im. T =( |b;-(t+‘t)-b;(1')|m) (26)

where b(s) denotes a measurcment of the i component of
the magnetic ficld at time #. This is very similar to Eq.(12) —
however, rather than taking spatial samples, time series of
the magnetic field in the high speed solar wind flowing past
the spacecraft are used. The high flow speed, around
750 km/s (Phillips et al, 1995), means that temporal
samples are essentially radial spatial samples of fluctuations
(see, for example, Horbury et al., 1996b).
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We nole in passing that it is not possible to use Ulysses
bulk plasma data on the small scales considered here due to
its limited time resolution (around 240s at best). However,
the highly Alfvénic and uncompressive nature of polar
fluctuations (Goldstein et al, 1995) means that magnetic
ficld fluctuations arc very similar to bulk plasma fluctua-
tions on these scales. Of course, the field and plasma
fluctuations arc not identical (they are not purely Alfvénic:
no energy transfer would occur in this case) but their high
correlation means that field variations are useful as a
measure of the plasma fluctuations. Dukok de Wit and
Krasnosel'skikh (1996) recently discussed some of these
issues for low latitude solar wind data.

Calculating S(m, 1)

We note that the calculation of structure functions from a
data set does not require the filling of data gaps. Indeed, the
data need not even be regularly spaced in time. The algo-
rithms used in the calculation of structure functions in this
work allow for such irregularity. We discuss them briefly
here: similar algorithms have been used by Horbury et al.
(1995a, [996a, b). We first define a set of “bins” spaced in
time lag. These need not be of equal width: they are often
chosen to be of approximately cqual width in log-space. A
value of the structure function is calculated for each bin and
over a range of powers in the following way. For each point
in the data set, absolute differences in the magnetic field are
calculated between the point and another point a certain
number of measurements later. Therefore, the lag is in
terms of data points not time. The timc lag between the two
points is calculated and the structure function value for the
bin in which this time lag lies is altered accordingly: this is
done for a range of moments for each difference. Differ-
ences are calculated for each point over a range of data
lags, and over the entire set of data. This method allows for
arhitrarily spaced data points. In practice, data Irom the
Vector Helium Magnetometer (VHM) of the Ulysses
magnetic field experiment (Balogh et al, 1992) are taken
one or two seconds apart depending on the spacecraft data
rate: this rate usually changes twice a day, when small data
£aps can occur.

The method outlined above leads to values of the struc-
ture function S{m,t) with values of time lag T taken 10 be the
centre of each lag bin, an cxample of which is shown in
Figure 1 for the sccond order structure function, Values in
Figure [ were calculated from the normal (N) component of
5 days of high resolution magnetic ficld data taken between
1994 days 130 and 135, when Ulysses was at approxi-
mately 63°S and 3.1 AU from the Sun, in the high specd
stream from the Sun’s Southern polar coronal hole. The
normal direction is perpendicular to the Sun-spacecraft line
and the cross product of this with the Sun’s rotation vector.

We note first that the $-T curve is approximately straight
for 7>10s and consequently there is a power law depen-
dence of Stm=2) on T over this range. We will see later that
more accurale analysis reveals variation within this range.
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Figure 1. Values of the second order structure function S(m=2,7) as a
function of time lag 1. Results shown are from 3 days of high resolution
magnetic field data (N component) taken between 1994 days 130 and [35.
Note the approximately linear dependence of § on T for 1105 on this log-
log plot and the “wiggling™ of altcrnate values as discussed in the text.

Sceondly, it is apparent that the curve in Figure | “wiggles”
slightly — that is, alternate valucs are higher and lower than
the average. This is a result of changes in the spacecraft
data rate, and consequently magnetic field sampling rate. At
the high data rate, a vector is returned from the sensor once
a second; at the low rate, once every two seconds. There-
fore, an interval with data rate changes (all intervals
considered in this work contain rate changes) will contain
sub-intervals with vectors every | or 2 seconds. Structure
function values with time lags of an odd number of seconds
can only result from high rate data, while even lags contain
both high and low rate data, If fluctuations during high data
rale sub-intervals are larger or smaller than those in low rate
sub-intervals on average, then odd lag structure function
values will be higher or lower than even lag values, result-
ing in the “wiggles” seen in Figure 1. This cifect only
occurs when lag bins are 1 second wide,

Calculating g(m)

The wiggling curve of S(m=2,7) in Figure 1 presents an
obstacle to calculating the scaling functions gfm). These are
generally calculated from least-squares straight line fits of
log-log values of S against T. The oscillating values of
S(m.T) can lead to incorrect estimations of the gradients if a
simple fit to an even number of points is made — even if an
odd number of points is used, the estimate of the error in
the gradient will be too large as a result of the large mean
variation from the best fit line. The method we have
adopted here is to fit to the odd and even lag points separa-
tely, producing two gradient estimates over a given range of
time scales, and then to combine the two values to give one
estimate of the gradient over the range, This method
eliminates the effect of the oscillations. Typically, valucs of
g(m) calculated without allowing lor this effect differ from
those calculated using the method described above by
around 0.1.
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Using this method we can estimate g(s) over a range of
moments and compare the values with the predictions of the
various models of turbulence presented in the previous
section. However, we must first consider errors associated
with our structure function estimates.

Structure tfunction errors

The calculation of structure functions of varying
moments at a given scale is essentially the calculation of
moments of the distribution of differences in the time series
at that scale. Clearly, there is a limit to the number of
moments ong can reliably calculate. Higher moments
emphasise the “wings” of the distribution: when these
wings have too few points, structure function estimates are
unreliable. Most previously published calculations of
heliospheric structure functions have not dealt explicitly
with these problems. Such results generally show consistent
variation of g¢m) with m for higher moments, often with a
linear dependence and small error bars. However, we will
show that such results can be caused by insufficient data
and therefore may not be reliable. We will then suggest a
semi-empirical criterion for rejecting unreliable structure
function estimates based on distribution functions.

Recently, Dukok de Wit and Krasnosel'skikh (1996)
presented structure function measurements of turbulent
fluctuations near the Earth’s bowshock and gqualitatively
discussed the limitations of high order structure functions,
concluding that moments above around 4 were not reliable.
In this work we present a quantitative criterion for structurc
function reliability, and reach a similar conclusion. The
advantage of our technique is that it can be applied in an
automated way to a large number of measurements, making
the analysis of large data sels, while taking into account
structure function limitations, possible.

We first consider a set of values &, i=1, ... N, which in
this case are absolute differences on a particular time scale
T, s0 & =1b(r+1)-b(t)l. We calculate moments of the
distribution of values, k,,, as

N
1 S
k =—=2,8
" N g{ i (27)

We consider the effect of moving one point, 8; to 8. Then
the moments change to

(B JIH 28’”

iy

(28)
The difference between these values is thereforc given by

" (§-0,")/N. If &/<8; and there are a large number of points
near both valueq thcn k, ~k,. However, if 68, and there
are few points near & — 1[ 1s near the tail of the dlstrlbutlon

— then for large m, k >k, In this case, estimates of k,, are
unreliable. Similarly, es‘umates of S(m,1) are susceptible o
this effect. If 8/»; then the difference in k,, is approxi-
mately &;"/N. Il 5’ is a far outlier, then thlS value will
dominate the calculatmn of k,,. We note that values of § are
effectively moments of dlsmbutlons of differences for a
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given time scale. They are, therefore, alfecied by oulliers in
this way. Indeed, since these far outliers cause S(m) to scale
as 6 ™ for large moments, then when we calculate values of
g(m) by fitting straight lincs to the logs of §(m), we cxpect
to obtain a linear g(m) vs. m relation for sufficiently large
moments where 8" dominates the sum to calculate S(m).
This dependence is indeed what is often observed — but it is
also expected on the basis of intermittency models. We
therefore require a method of distinguishing these cases, to
determine whether g(m) values are the result of accurate
measurements of turbulent fluctuations, or the result of
insufficiently long data sets.

We note that the occurrence of large differences §; is a
direct consequence of the presence of discontinuities i m the
magnetic field, although other causes are also likely. In our
analysis of fluctuations, we do not wish to climinate
particular types of structure or behaviour, such as discon-
tinuities: we want to remove “unreliable” distributions only.
By calculating the distribution functions directly, it is
possible to achieve this aim.

Consider a particular jump or step in the magnetic field
at a certain point — possibly, but not necessarily, caused by
a discontinuity — and its effect on the distribution function
of differences on a time scale T. If the change, which we
term an “‘event,” is larger than the average level of fluctua-
tions on this scale, then all differences calculated using data
points up to a time t on either side of the change will be
affected. If the sampling period of the data is ¢ then the
number of points affected by a single “event” or change
will be 2t/t. A step in the field can therefore result in 27/
differences which are larger than they should be: this
number of points corresponds to a single *“event.”

To illustrate these effects, we present some measure-
ments of moments of difference distribution functions in
Figure 2. These are calculated from the same data set as
used for Figure 1, on a spacecraft time scale of 50 seconds:
there are around 3.1x10° points in this data set. We bin
these differences depending on their magnitude: there are
500 bins, each 10pT wide, although only the [irst 200 are
shown: the rest are unpopulated. Figure 2(a) shows the
numbers in these bins multiplied by the 1 power of the
value of the centre of the bin, normalised to the maximum
value. The 1 moment structurc function for t=30s is the
sum of the (unnormalised) values in the bins: the difference
between calculating directly and calculating using the
hinned distribution is less than 1%. Panels (b), (¢) and (d)
show the same calculation for the 2", 4™ and 6" powers.
The distribution for the first moment is generally rather
smooth, with a rapidly decaying tail. The value of the
corresponding structure function is therefore well defined in
the sense that it is not affected by a small number of
outlying points.

To quantify and automate the process of rejecting
unreliable data, we have used the following method. Firstly,
we are only interested in data points which contribute
significantly to the total sum. We therefore restrict our
attention to those bins which contribute more than 2% of
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Figure 2. Normalised histograms of moment distributions for magnetic
field diffcrences on a spacecraft scale of 50s in polar fluctuations. Each
punel shows the distribution function of values for a given moment. The
struclure function of this moment for the 50s scale is the sum over this
distribution, although each panel shows values normalised to the maxi-
mum value for eusy comparison. Moments shown are (a) 1: {b) 2; (¢) 4;
and {d) 6.

the total sum — thal is, which affect the value of S by 2% or
more. If any bin contributes more than 2% to the total
(higher numbered bins contribute more to higher moments)
then it must contain at least the number of points associated
with 10 “events” as defined above. If any point does nol
meet this criterion, the distribution — and the structure
function value calculated from it — is rejected. This pro-
cedure is computationally expensive, since the distribution
lunctions must be calculated for each time lag used. It is
also somewhat arbitrary, since the fraction of the total sum
and the number of events are chosen empirically to refect
distributions that appear by eye to be unreliable. However,
it has the advantage of being physically motivated and
easily implemented.

We can test the effectiveness of the criterion by consider-
ing the distributions shown in Figurc 2. For the {irst
moment, 2 bins contribute more than 2% of the total —
however, they contain well over 10 events (they are at the
peak of the distribution): for 1s sampled data and 1=50s,
one event corresponds to 200 data points. Therelore, this
moment is not rejected. For the second moment, it is clear
that poings in higher bins are weighted more strongly and
the peak has moved to a larger vatue. The tail of the
distribution is more ragged as the statistical variation
between bins is proportionally larger due to their smaller
number of points. A small peak is visible at around 1.6nT.
However, no bin contributes 2% or more of the total. This
moment is not rejecled. Similarly, the fourth moment is
kept, although the small peak visible in the second moment
distribution is larger. The sixth moment has one point which
contributes over 2%, and which has fewer than 10 events.
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We can sec that this point lies in the 1.6nT peak which is
hardly visible in Figure 2(a). The sixth moment is therefore
rejected by this criterion. All higher moments are also
rejected.

In the example presented here, the first five moments are
valid using the error criterion. This is a typical result. We
have used this criterion on several 5 day intervals of
magnetic field data using time scales from 20 o 300s.
These intervals, with over 300,000 data points, usually have
the first four moments valid. The fifth moment is some-
times valid, while the sixth is rarely so. The seventh
moment has never been valid in the intervals we have
studied. While we have used considerably more data points
in this study than is common in such work, the rapid
decline of the differences distribution functions means that
the highest valid moment is probably a rather weak function
of the length of the data set and so shorter data sets may
have similar numbers of valid moments. We conclude that
structure functions of moments above six are unlikely to be
reliable in the study of heliospheric turbulence, a resull in
agrcement with Dukok de Wit and Krasnosel’skikh (1996).

The criterion presented here is a simple method of
rejecting statistically unreliable data, We emphasise that we
do not make any assumptions about thc nature of the
fluctuations which cause such rejections, but simply reject
outliers with too few points. This criterion is used through-
out the rest of this paper: we will see that is has a profound
effect on the selection of an appropriate model of intermit-
tent turbulence.

There is a drawback of the criterion presenled here: at
large time lags, the number of data points associated with
one event is large and indeed can become a significant
fraction of the data set length. If the amplitude of jumps in
the ficld (for example, discontinuities) is larger than
characteristic Muctuations on this scale, then the structure
function estimatc will be significantly influenced by these
discontinuities. However, if the fluctuations are generally
larger than the jump, then fewer than 2v/7 points will be
affected. This error criterion must therefore be used with
care, or modified, for large scales. Here, we use it only lor
scales of less than 300s, when this effect is not significant.

35 Identification of inertial range fluctuations

Horbury er al. (1995a) considered the extent of the inertial
range in polar flows, and concluded that it extended to
around a hundred scconds in the spacecraft frame, although
this was a function of solar distance due to the active
energy transfer from larger scales. Their identification of
the inertial range, in common with most studies, used
estimates of the spectral index. Scales where the spectral
index was near 5/3 or 3/2 and relatively invariant with scale
were considered to be the inertial range. It is not possible to
check for a particular value of the spectral index because
intermittency can alter this valuc. However, Carhone (1994)
pointed out that the p mode! of intermittency does not affect
g(3) — indeed, we have scen that the models of intermit-
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Figurc 3. Scale dependence of g(3) and g{4) for the 5 day mterval of
magnetic field data used in Figures 1 and 2. Each data peint is calculated
from a least-squares linear fit to log values of g against T over a range of
10s. The first range is from 20 to 30s; successive ranges touch but do not
overlap. g(4) is not shown for small time lags: it is statistically unreliable
{as discussed in the text} on these scales. Error bars arc shown, but are
typically smaller than the data symbols and hence not visible.

tency presented here with the K41 energy transfer rate have
g(3)=1. Similarly, those with K-165 energy transfer have
g(4=1. Therefore, Carbone (1994) argued that measure-
ments of g(3) and g(4) were more reliable indicators of the
presence ol an inertial range. Such an analysis also intro-
duces the possibility of determining whether the turbulence
has a K41 or K-165 cascade scaling, or some other value. If
the energy transfer time is given by Eq.(3) (a K41 cascade)
then we would expect to sec g{3)=1 as observed for terres-
trial turbulence. If the transfer time is given by Eq.{(9) (a K-
[65 cascade) then we would see g(4)=t. Carhone (1994)
suggested that the data of Burlaga (1991), taken at 8.5 AU,
were consistent with a K41 cascade, We note that Burlaga
{1991) considered relatively large scales (.85 hours to 13.6
hours) al 8.5 AU and may therefore have been sampling
fluctuations with a rather different character to those on
100s scules in the polar heliosphere.

We proceed to calculate the scale dependence of g(3) and
g(4) and thereby identify the inertial range of polar fluctua-
fions with greater precision than has previously been
possible. We use the same 5 day interval as before, and
calculate structure functions for time lags of 20 to 200s. As
described in section 4, values of g(3) and g(4) are calculated
from least-squares linear fits to log-log values of S(m=3,1)
and S(m=4,7) against T over ranges of T, with odd and even
' lags fitted separately and the resulting values — and
associated errors — of the gradients combined to produce
one value and error for each moment and each time range.
The resulting values (and errors, which are generally
smaller than the data points) are ploued in Figure 3,
showing the scale dependence of both g(3) and g(4) in polar
flows. More values of g(3) are shown than of g(4): this is
because scveral values of g(4) were discarded using the
error criterion discussed earlier. It is important to realise
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that the error estimates in Figure 3 are derived from the
linear fits to values of S. In fact, the large number of time
lags used results in a possible oversampling of the data:
consequently, variation in § from one lag to the next is
small and error estimates from line fits are also small. True
uncerlainties in the values of g{m) may be larger than those
shown in Figure 3 but are unlikely to be larger than the
trends in g(m) with changing scale that are visible in the
Figure.

From the data in Figure 3, we aim to identify the inertial
range. At the largest scales in the Figure, the vaiues of g(m)
are declining with scale: this is indicative of the small scale
edge of the transition to 1/f fluctuations at large scales and
is consistent with other measurements of the extent of the
inertial range (Hotbury ef al, 1996b; also recent multitap-
ered spectral measurements). The inertial range is, ideally,
an cxtended range of scales where g(3)=1 or g(d)=1. It is
clear from Figure 3 that there is not an exlended range of
scales where g(4)=1 and therefore not a K-165 inertial
range. In contrast, g(3)=1 is approximately satisfied over a
small range of scales, from the smallest shown here (around
20s) to at least 60s and probably to near 100s, where values
drop sharply. On this basis, we conclude that the lNuctua-
tions on spacecrafl time scales under 100s (and hence
plasma scales under ~8x10’km) are consistent with a small
inertial range, with a cascade with a K41-like transfer time,
in this interval. The significance of this resuit will be
discussed in section 7. We note that the inertial range may
extend to smaller scales than 20s, but they cannot be
measured reliably using the analysis described here.

We have studied several intervals of magnetic field data
at similar solar distances to eslablish whether thc results
presented here arc representative of fluctuations in this
region of the polar heliosphere. We present the results {Tom
these intervals in section 7 - however, we note here that
they are also consistent with a K41-like cascade.

The identification of g(3)=1, and hence a K4l-like
transfer time, constrains the models which can successfully
describe the fluctuations. In particular, MHD variations of
intermittency models, such as the p model (Carbone, 1993);
the B model (Ruzmaikin et al., 1995); or the random [
model, which have g{(4)=1, cannot successfully describe the
fluctuations in the polar inertial range.

We note that the conjecture of Ruzmaikin et al. (1995),
that the 5/3 spectral index of solar wind turbulence was the
result of inlermittency altering a fundamentally 372
Kraichnan-like cascade, is not supported by the results
presented here. Ruzmaikin ez af. (1993) and Horbury ef al.
(1996a) concluded that the Ulysses magnetic lield data
were consistent with this conjecture. Their conclusions
were based on the scaling of structure (unclions up to
moment 10. We suggest that the discrepancy between the
earlier results and those presented here is probably due to
the statistical unreliability of the high order structure
function morments used in the earlier studies.
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Figure 4. Values of the structure function scaling measures glm) as a
function of moment 74, calculated from least-squares linear fits to log-log
values of 5(m,T} against T for time scales of 20 to 60s. Open squares are
values calculated from all data. Filled circles are values calculated onty
from data which satisfied the error criterion discussed in the text. Reliable
values can only be calculated for moments up to 4.

6 Turbulent intermittency

Having established that turbulent fluctuations in polar flows
appear to have a K41-like cascade, we procced to discuss
the intermittency of the energy transfer process and deter-
mine the model which best describes the data.

Values of g(m) for moments m between 1 and 15 are
shown in Figure 4. These values were calculated over time
scales from 20 to 60s for the same interval as before, 1994
days 130 to 135. These scales are within the imertial range
as identilied in section 5. Open squares with error bars
show values calculated from all structure function values.
The squares have the characteristic curved shape of the
£(m) values seen in all heliospheric turbulence studies. We
note that g(m) is approximately linear with m for high
moments.

The filled circles in Figure 4 represent values of g(m)
calculated only from statistically valid values of S on the
basis of the criterion intreduced in this work. Values can
only be calculated for moments from 1 to 4: above 4, there
are no valid values of S from which g can be estimated.
Therefore, all values of g for m>4 are misleading: they are
significantly influenced by outlying points. These points
appearf to be reliable at first sight, following a smooth curve
and having small error bars. It is only by considering the
distributions explicitly that the reliability of these measure-
ments can be tested.

With only four data points left after unreliable points
have been rejected, it appears difficult to distinguish
between different intermittent turbulence models. However,
we proceed to demonstrate that it is still possible to perform
useful tests with these data.

Three of the intermittent turbulence models diseussed in
this paper (the B, random [} and p models) introduce at least
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Table 1. Parameters of least-squares best fits to structure function scaling
functions for polar [luctuations on spacecraft scales of 20 o 60s, as shown
in Figure 4. Deviation values are the root mean squared differences of
model fits from the observed data, *SL filament’ is the She and Leveque
(1994) model with 1D dissipative structures; ‘SL sheet’ is the same model
with 2D structures

Model Parameter name  Value  RMS deviation
B n 0.15 39%10°3
Random B x 0.17 32x10°?
SL filament - - 194x107
SL sheet - - 16x107*
P p 0.79 7.6x1077

one frce parameter that can be varied to best fit the data:
this parameter is related to the cddy decay process in some
way. The random [ model of Paladin and Vulpiani (1987)
has, in principle, even more parameters but we will use the
probability function P(B)=x-8(-0.5)+(1-x)-8(B-1), which is
the same as that used by Paladin and Vulpiani, to reduce the
number of parameters to one, the weighting function x.

The She and Leveque (1994) model docs not, in princi-
ple, have freely adjustable parameters, although one can
alter the characteristic dimension of dissipative structures.
Here, we consider variants with K41 energy transfer and
filamentary or sheet-like dissipative structures (Eqgs. 22 and
25).

We wish to find the model which best describes the
available data. For each of the three models with free
parameters, we have varied these so as to minimise the
least-squares deviation of the values of g(m) predicted by
the model from those observed. We have not used the error
estimates on the g(m) values derived from the line fits to
weight these parameter fits because of the problem of
oversampling: these error estimates are probably too small.
In practice, the best-fit values of parameters are not very
different when the error estimales in g(fm) are used.

The non-linear dependence of the model g(m) functions
on m makes a rigorous confidence test (for example, a x*
test) difficult. Instead, we use the root-mean-square (RMS)
deviation of the model values from those observed, which
are a byproduct of the fitting process, to establish which
class of model is closest to the observations. Values of the
least-squares fitted values of the parameters, and the
resulting RMS deviations, are presented in Table 1 for the
. random P and p models. In addition, the RMS deviations
from the She and Leveque model with K41 scaling and
sheet-like and filament-like dissipative structures are given
in Table 1.

The best fit value of u for the B model (Frisch et al.,
1978) is rather small, implying that the fluctuations are not
very intermittent. Indeed, the value of the weighting
function x for the random B model (Paladin and Vulpiani,
1987) is also rather small, again implying that the fluctua-
tions are largely space-filling. We note, however, that
x=0.17 is larger than that found by Paladin and Vulpiani
{1987) for terrestrial turbulence, where they found x=0.125.
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Figurc 5. Comparison of observed structure function scaling functions
glm) of polar turbulence with varicus turbulence models. Each panel
shows observed values as filled circles without crror bars: errors are
generally similar in size to the circles, but were not used in least-squares
fitting models to the data. Panels (a), (b) and (¢} show best fit g(m) values
ol the B (Frisch ez wl, 1978), random B (Paladin and Vulpiani, 1987) and p
(Menevean and Sreenivasan, 1987a, b) models respectively, as open
squarcs along with best-fit values of the relevant parameter. Panel (d)
shows g(m} values of the She and Leveque (1994) model with current
sheet dissipation.

The She and Leveque (1994) model, with 1D dissipative
structures {“filaments™} is, perhaps unsurprisingly, & poor fit
to the data. The 2D variant, with sheet-like dissipative
structures, is a considerably better fit than the p and random
B models.

It is important to note, however, that the best fits of the B,
randem B and She and Leveque models are significantly
peorer approximations to the observations than that of the p
model {Meneveau and Sreenivasan, 1987a, b). In fact, the
RMS deviation for the p model is less than a quarter that of
the B and random  models and less than half that ol the
She and Leveque model. We conclude that the p model is
the best approximation to the fluctuations on the basis of
this daia: it has also proved consistently closer to the
observations for all other intervals of polar fluctuations that
we have analysed.

1t is clear that the p model provides the best approxima-
tion to the data when we consider the g{m) curves for the
models. These are shown in Figure 5. Each panel shows the
data for 20 to 60s as filled circles. The observed g(m)
values lie on a curve, indicating that intermittency is
significant. Panels (a), (b), (¢) and (d) show the data
compared with the (3, random P, p and She and Leveque
model predictions, respectively. All models have a K4l
cascade, and hence g(3)=1. The B and random P models
agree well with the observations, but the p model fit is
considerably better, with deviations being less than the
errors on the observations. Visually, the She and Leveque
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data taken in high speed (>750km/s) polar flows. Values were calculated
over different spacecraft timescales, denoted by different symbols.

model in panel (d) appears almost as good a fit as the p
model: the most obvious difference is in the value of g(1).
We note that g(1) is the best defined of all the structure
function gradients.

The best fit value of the p model parameter is 0.79, rather
higher than the accepted value for terrestrial turbulence,
around 0.7, and higher than that found by Carbone (1994)
for the data of Burlaga (1991) which was also around 0.7.
The accuracy of this result is not clear from this single
measurement, so we have performed a similar analysis on
several additional intervals of polar data to produce a
distribution of values. This analysis is discussed in the next
section.

7 Energy transfer

it is possible to perform a fit of the g(m) data to the p
model and vary not only the intermittency parameter but
also the value of m at which g(m)=1: we denote this value
of m by q. That is, one can find the values of p and g such
that the values

glmj= I-Ing(p”’"’+(l-p)’""’) (29)

are closest to the observed g(m) values in a least-squares
sense. If the range of scales over which the g(m) values are
calculated is an inertial range with a K41 energy transfer
rate, then we would expect to find g=3. Similarly, if the
inertial range has a K-I165 transfer, we would find g=4. Such
a fit can therefore provide information about both intermit-
tency and energy scaling in the inertial range. We have
performed such fits to several intervals of data, the resulis
of which are shown in Figure 6, All the intervals contained
data taken in high speed (>750km/s} polar flows, and cover
a range of distances and latitudes in both the Northern and
Southern polar heliosphere. Values of g{m) were calculated
over four time scales (20-40s; 40-60s; 60-80s; 80-100s) for
each interval, and p and ¢ estimated as described above. It
is clear from Figure 6 that there is a strong p-g dependence,
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with values lying on a curve. The p-¢ curve is approxi-
mately flat for values of p from 0.65 to 0.8, near 4=3. There
are no values of p below 0.65. For p above around 0.8, g
values rise, reaching 4=4 for p around 0.9. However, the
curve passes through g=4 and reaches even higher g values
with higher p. Although the scatter of points is rather large
(typically around 0.1 for p and 0.5 for 4) the p-g curve is
well defined, leading us to conclude that the p-g variations
are genuinely related, either by a physical mechanism or a
systematic analysis effect. This p-g relation is at first sight
surprising, and must be explained if conclusions are to be
drawn about “typical” values of both p and g in the polar
solar wind, In fact, the relation can indeed be explained, in
a manner which leads us to conclude that the termination of
the curve near the values of (p=().7, g=3) is most representa-
tive of inertial range polar turbulence.

As we have seen, the inertial range tferminates at rela-
tively small scales in the polar solar wind. There is
naturatly some variation in the extent of the inertial range:
in some intervals, it is smaller than others. This can occur
because the exlent of the inertial range is a function of solar
distance in the polar solar wind (Horbury et al., 1996b) but
also because of simple variations between different regions:
if energy transfer is less steady in one region than another,
we would expect a less well-defined inertial range. As a
result, for some intervals we expecl (o find non-inertial
behaviour on scales where in other intervals there is an
inertial range. Recently, Tu er al. (1996) discussed the
addition of the p model of intermittency to a model of
evolving turbulence, which is appropriate for fluctuations
near the edge of the inertial range, as we would have in the
case where the inertial range is smaller than the scale on
which fluctuations are measured. In this case, the spectral
index is lower, and all structure function values are lower
than they would be in the inertial range. Such a reduction
can be achieved with the p model (with inertial range
turbulence) by increasing p and g, although the precise g(m)
curve is different to the Tu et al (1996) model. When
performing a least-squares fit of Eq.(36) to g(m) values just
outside the inertial range, one would therefore expect to see
increased p and g values compared to inertial range fluctua-
tions. Horbury et @l {1997) discussed this issue and showed
that within the inertial range, the p model is a good fit to the
observations, but just outside the inertial range fitted values
of p and g increase and the Tu ef al. (1996) model is a
considerably better fit to the data. This is, of course,
unsurprising, but this effect provides an explanation of the
data in Figure 6. That is, points with higher p and 4 values
reflect fluctuations just outside the inertial range: progress-
ively lower values reflect conditions ncarer to “ideal”
inertial range fluctuations and hence the ieft hand termina-
tion of the p-q curve reflects the best estimate of p and 4 for
polar inertial range turbulent fluctuations. A corollary of
this effect is that smaller scale fluctuations should lie nearer
the lefl end of the curve more often than those at larger
scales, because smaller scales will generally be more likely
to be within the inertial range. It is clear from Figure 6 that
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Figure 7. Distribution of least-squares fitted q values for structure function
values on 20-40s and 40-60s scales for polar turbulent fluctuations. K41
corresponds to ¢=3; K-I65 corresponds to ¢=4. Vertical scale is fraction of
total points in cach bin, divided by the width of the bin,

this is indeed the case: it is only the smallest scale {luctua-
tions (filled circles) which have the lowest p and g values.

We conclude, therefore, that the left hand edge of the
curve in Figure 6 most accurately reflectls the state of
inertial range polar turbulence. Here, to within the effective
uncertainty in the values (which is around 0.5 in ¢ and 0.1
in p), we have p~{.7 and g~3. These values are consistent
with a Kolmogorov cascade, with intermittency levels
similar to those oi.erved in terrestrial turbulence (e.g.
Meneveau and Sreenivasan, 1987a, b) and in at least some
other measurements of solar wind turbulence (c.g. Carbone,
1994).

We note that the data in Figure 6 are certainly not
consistent with an inertial range K-165 MHD cascade. This
is clear from the histogram of values of ¢ (for only 20-40
and 40-60s scales) presented in Figure 7, which peaks
around ¢=3 but has no peak around g=4.

8 Discussion

In this paper we have attempted to answer two questions
regarding the nature of heliospheric turbulence: firstly,
which model of intermittent turbulence best describes the
observations; and secondly, is the turbulent cascade a
Kolmogorov or Kraichnan-Iroshnikov one?

Structure function calculations offer the opportunity of
answering both these questions in a rigorous manner. A
drawback of using structure functions, however, is the
inherent problem of calculating high moments of distribu-
tions. We have considered this problem here, and suggested
a quantitative criterion for discriminating between
“reliable” and “unreliable” structure function values on the

" basis of the moment distribution. We stress that the criterion

is semi-empirical in that an arbitrary numerical criterion is
introduced, which is chosen in an ad hoc way by consider-
ing the observed distributions. This criterion is intended to
reject distributions which are influenced by a few far
outlying points: it is not intended to identify physically
“meaningful” distributions in any way. Intervals which
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contain non-stationary data, or non-turbulent data, are —
intentionally — not rejected by this criterion. In addition, we
stress that this method simply rejects or accepts individual
distributions: it docs not aller them in any way.

This error critericn appears to be rather successful in
rejecting unreliable data in the sense that unusual “kinks” in
g(m) curves, which are due to the influence of far outliers,
are eliminated — values of g(m) above (hese kinks are
rejected. One would expect outliers to produce a linear g(m)
curve at high moments, as does indeed appear to be the
Case.

After rejecting unreliable data, one is often only left with
moments up to 4, 5 or 6. In this paper, we have used rather
long inlervals of data (5 day intervals of 1 or 2 second
resolution, with over 3x10° points) but moments above 6
are essentially never valid. A consequence of this observa-
tion is thal one cannot use high order structure functions (o
describe turbulence properties: while the g{m) curves at
these high moments are smooth and have small apparent
errors associated with them, they are not related to the
plasma f{luctuations - rather, they can be significantly
altered by the presence of a few outlying data points. After
discarding this unreliable data, we are lefi with only a few
values of g(m) from which we wish to infer properties of
the plasma turbulence. However, this small number of
points is sufficient to answer at least one of the two ques-
tions we have posed.

To discriminate accurately between intermittency models

for inertial range fluctuations, we must first identify the
fluctuations’ scaling, or equivalently the scaling of the
energy transter time (see section 2). It is easiest to do this in
the incrtial range. In principle, in the absence of intermit-
tency it is possible to distinguish K41 and K-165 scaling
from the observed spectral index. However, such measure-
ments are difficult o make in practice and while recent
measurements tend to be nearcr 5/3 than 3/2 (e.g. Roberts
and Goldstein, 1991), they are not conclusive. The presence
of intermittency complicates the problem because it can
increase the spectral index, making a precise identification
with a particular model more difficult. Indeed, Ruzmaikin
et al. (1995) suggested that intermittency was the cause of
the apparent value of the spectral index near 5/3 in polar
heliospheric turbulence: they suggested that the underlying
spectral index (and hence cascade) in the absence of
intermittency was indeed a K-I65 one.

The possibility of using g{3) and g(4) to identity K41 or
K-165 wrbulence was, to our knowledge, first suggested by
Carbone (1994). This method has the considerable advan-
tage of being unaffected by intermittency. Considering the
results of Burlaga {1991}, using data taken in the far
heliosphere at quite large scales, Carbone suggested that the
cascade was a Kolmogorov one, On the basis of this
method, in section 3 we showed that the inertial range of
polar fluctuations, although rather small, appeared to have a
K41 scaling. In section 7, using a slightly different method
with considerably more data, we obtained the same result.
This result is not consistent with the conjecture of Ruz~
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maikin er al. (1995).

The significant variation of the character of fluctuations
in different regions of the polar heliosphere that is clear in
Figure 6 means that the identification of Kolmogorov rather
than Kraichnan-Iroshnikov turbulence can be no more than
tentative. However, the presence of a K41 cascade in solar
wind turbulence would not be surprising, for reasons
discussed in the next paragraph, It is also no surprise that
the cascade does not appear to be a Kraichnan one. Several
key assumptions of K-165, which are vital to the model and
distinguish it from K41, such as zero cross helicity and
wavevectors parallel to the mean field, are certainly not
satisfied in solar wind turbulence. We have discussed the
Kraichnan model here because of its continued application
lo solar wind fluctuations.

We stress that several of the assumptions of the original
Kolmegorov and Kraichnan formalisms are violated in the
turbulence we have studied. In particular, the inertial range
is small; the fluctuations are not homogeneous; and nor are
they isotropic. While the inertial range covers around an
order of magnitude of scale (see Figure 4 and Horbury et
al, 1995a), this is not large compared to the idealised
inertial range of theory, covering a wide range of scales.
However, behaviour appears to be rather consistent across
this range. In fact, the undisturbed, large scale homogeneity
of polar flows makes the presence of a well-defined inertial
range, despite its small range, more likely than at low
latitudes: the gradual decay of large scale fluctuations and
input of cnergy into the inertial range (Horbury et i,
1996b), being unforced, probably proceeds at a rather
steady rate. As a result, the inertial range can be maintained
cven though it only covers a relatively small range of
scales. .

It is clear that small scale fluctuations are not homo-
geneous and isotropic in heliospheric turbulence, both at
low latitudes (e.g. Matthaeus et al, 1990; Bicber et al.,
1996) and in polar flows similar to those studied here
{(Horbury et al., 1995b): fluctuations tend to be perpendicu-
lar to the mean field direction. Indeed, such anisotropy may
contributc to the intermittency of the fluctuations as
measured here using structure functions. This anisotropy,
and in particular the apparent presence of both “slab™ and
“two-dimensional” fluctuations (e.g. Beiber et al., 1990),
may be an important factor in explaining the fact that
g(3)=1 in the inertial range. In particular the presence of
wavevectors perpendicular to the mean field resulting in
Alfvénic fluctuations which do not propagate along the
field - and which are therefore not subject to Alfvénic
decorrelation — may be important in explaining the apparent
K41 cascade. We also note that this result is consistent with
some simulation results (e.g. Biskamp and Welter, 1989;
Hossain et al, 1995), especially when turbulence is
“strong” — the background field is small, while the fluctua-
tions are large. This is, of course, the case for polar
fluctuations, at least qualitatively compared (o low latitude
fluctuations. We do not discuss this result further here, but
concentrate on the primary result of this paper, regarding
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intermittency models.

We have considered four intermittency models here: the
B model (Frisch et al., 1978), its extension as the random [
model (Paladin and Vulpiani (1987), the p model (Menev-
eau and Sreenivasan, 19874, b) and the She and Leveque
(1994) model. We have not considered the log-normal
model (Kolmogorov, 1962}, which Burlaga (1991) found to
be marginally consistent with observations of hourly-scale
velocity fluctuations at 8.5 AU, becanse this model is not
considered to be a physically realistic one (Borgas, 1992).

The models we have considered have all been compared
to heliospheric turbulence observations (Burlaga, 1991;
Carbone, 1994; Grauer et al., 1994; Ruzmaikin et al., 1995;
Horbury et al., 1996a) and there is a clear need to identify
the most accurate. All the intermittency models we have
described can be used with a K41 or K-I65 cascade — we
have used K41 for the reasons described above. The p
model (Meneveau and Sreenivasan, 1987b) describes the
observed g(m) scaling considerably better than the B and
random P models, and slightly better than the She and
Leveque model with 2D dissipative structures.

The She and Leveque model, while having no freely
adjustable parameters, agrees well with the observed
scalings. Given that this model, with 1D dissipative struc-
tures, agrees well with neutral fluid turbulence
measurements, the agreement of the 2D variant with data
presented here is remarkable. The physically accessible
difference between these two varianis is what one would
expect given the differences between neutral fluid and
MHD flows: the anisotropy produced by the presence of a
magnetic field in a magnetofluid results in two dimensional,
sheet-like fluctuations. This model certainly merits atten-
tion and further analysis, but the p model best describes the
data presented here. Hydrodynamic turbulence is also well
described by this model (Meneveau and Sreenivasan,
1987a, b; Borgas, 1992), highlighting the remarkable
universality of turbulent intermittency. We have concen-
trated on the p model in section 7 because its altered form
in Eq.(29) makes it possible to consider variations in both
energy transfer and intermittency.

The p model introduces an empirical parameter which is
used to fit the observations. Physically, this parameter
describes the uneven energy transfer from parent to daugh-
ter eddies. Terrestrial (Meneveau and Sreenivasan,; 1987b)
and earlier heliospheric observations (Carbone, 1994) found
this parameter to be around 0.7. We have found a range of
values, but as described in section 7, a value around 0.7 is
likely to be representative of inertial range polar fluctua-
tions. We note that Tu er al. (1996), while usually finding
p~0.7-0.8, recently found some intervals of Helios data
taken near the interplanetary current sheet where p>0.8, and
we hope that future studies will help to further quantify
intermittency and its variability and hence lead to a greater
understanding of the physical processes involved.

Finally, we stress that the results presented here concern
heliospheric turbulence in only one region of the helios-
phere. This study will be extended to other data sets taken
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at other heliolatitudes and distances to establish whether
these results are indeed general: it is not inconceivable that
the turbulent cascade may be K-165-like, for example, in
other regions. The remarkable agreement of the p model
with observations offers the hope of providing a simple
analytic description of fluctuations for the use in, for
example, cosmic ray scattering models as well as a greater
understanding of the processes which govern hydromag-
netic turbulence throughout the heliosphere and indeed the
universe.
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