Nonlinear Processes in Geophysics (1996} 3: 66 - 76

Nonlinear Processes
in Geophysics

@ European Geophysical Society 1996

Cosmic ray momentum diffusion in the presence of non-linear Alfvén waves

G. Michatek and M. Ostrowski

Obserwatorium Astronomiczne, Uniwersytet Jagiellonski, ul. Orla 171, 30-244 Krakow, Poland

Received 6 June 1995 - Accepted 28 February 1996 - Communicated by E, Marsch

Abstract. The relation betwéen the spatial diffusion
coefficient along the magnetic field, x), and the mo-
mentum diffusion coeflicient, D, for relativistic cos-
mic ray particles is modeled using Monte Carlo simu-
lations. Wave fields with vanishing wave helicity and
cross-helicity, constructed by superposing ‘Alfvén-like’
waves are considered. As the result, particle trajectories
in high amplitude wave fields and then - by averaging
over these trajectories - the values of transport coeffi-
cients are derived. The modeling is performed at vari-
ous wave amplitudes, from § B/ By = 0.15 to 2.0, and for
a number of wave field types. At our small amplitudes
approximately the quasi-linear theory (QLT) estimates
for xy and D, are reproduced. However, with growing
wave amplitude the simulated results show a small di-
vergence from the QLT ones, with ) decreasing slower
than thecretical prediction and the opposite being true
for Dy. The wave field form gives only a slight influence
on the wave-particle interactions at large wave ampli-
tudes §8/By ~ 1. The parameter characterizing the
relative efficiency of the second-order to the first-order
acceleration at shock waves, D -y, is given in the QLT
approximation by the Skilling formula V{p?/9. In sim-
ulations together with increasing 6B it increases above
this scale in all the cases under cur study. Consequences
of the present results for the second-order Fermi accel-
eration at shock waves are briefly addressed.

Keywords : cosmic rays — second-order Fermi acceler-
ation — magnetohydrodynaimic turbulence — interstellar
medium

1 Introduction
*

The quasi-linear theory of energetic charged particle trans-

port in weakly perturbed magnetic fields provides a ba-
sis for considering cosmic ray propagation in interstellar
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space and particle acceleration processes at shock waves.
It treats the effect of the random field as perturbations
of orbits of particles moving in the average background
field. Within this approach accounting of interactions
of cosmic rays with perturbed magnetic field consists in
derivation of a single tensor guantity, the momentum
diffusion tensor, including as its components the pitch-
angle diffusion coefficient D, , the momentum diffusion
coefficient D),, and the cross-correlation coeflicient Dp.
By suitably averaging the coefficients over the pitch an-
gle cosine p one can derive the spatial diffusion coeffi-
cient along the magnetic field, k) and the mean over p
momentum diffusion coefficient D, . The derivation of
these coefficients for perturbations in the form of Alfvén
waves was presented by Skilling (1975) and Schlickeiser
(1989). In the case of the same wave intensities in the
forward and backward waves Skilling obtained a simple
relation between the spatial and the momentum diffu-
sion coeflicient

Dy = éVjpz : (1.1}
where V4 is the Alfvén velocity and p is the particle
motentum . A more detailed discussion of the prob-
lem was presented by Schlickeiser (1989; see also Dung
& Schlickeiser 1990a,b, Jaekel & Schlickeiser 1992), who
derived transport cocfficients in the presence of Alfvén
waves with different circular polarizations. By applying
the diffusion limit to the full relativistic Fokker-Planck
equation, Schlickeiser derived the relevant cosmic-ray
transport equation, exact to all orders in Vi /c, for the
isotropic part of the distribution function. That preci-
sion allows him to determine more general expressions
for pitch angle diffusion, momentum diffusion and cross-
correlation coefficient for particles, avoiding problems
with the ‘resonance gap’. The ‘application’ of the the-
ory in the Schlickeiser paper was to study an influence
of the wave polarization state, intensity and propaga-
tion direction on the cosmic-ray proton transport in a-



cold medium. In a particular case where 1.} the right-
hand and the left-hand polarized waves stream in both
directions with the same intensity, and 2.) where the
power spectrum of right-hand and lefi-hand polarized
magnetic fluctuations at wave number k); within an in-
terval dky is Qm(ku/k“)‘? dk) in terms of the spectral
density at a reference wave number ko, for 3.) 1 < g < 4
and 4.) small V4/v, one obtains approximately:

P ; - 2-q v
v3 qBé{mﬁ-g_—;(%&) for ¢ # 2

Kl =
I 47 I} % +In (ZUA)_ for g =2
(19)
and
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where 2 is the particle gyrofrequency and Iy is a con-
stant. For the case of a flat Alfvén wave spectrum, ¢ = 1,
one obtains' the same relation between D, and «) as
Skilling’s one (Eqn. 1.1). In the present considerations
we restrict the discussion to the g = 1 case.

A major problem arising within the quasi-linear ap-
proach comes from the fact that the theory relies on
the assumption of small amplitude magnetic field per-
turbations, §B/B <« 1. However, in astrophysical ap-
plications the high amplitude MHD waves are common
and the assumpltion can be invalid, or, at most, only of
marginal validity. By the method of particle simulations
it was shown (Zachary et al. 1989) that even mediun
amplitude perturbations (6 B/8 ~ 0.1) can lead to par-
ticle reflections within only a few gyroperiods, a feature
not inciuded in the quasi-linear derivations of the trans-
port coefficients (cf., also Carioli 1991). In particular,
the wave generation process due to streaming instability
acting in the shock wave vicinity can lead to perturba-
tions 68 ~ B (cf., e.g. Drury 1983, Blandford and
Eichler 1987), and thus medify in a quantitative way,
but in some cases also qualitatively, the cosmic ray ac-
celeration process. Some aspects of this problem were
discussed for non-relativistic shock waves by Decker &
Vlahos (1985), Decker (1987), Ostrowski (1988). Tt is
also common Lo register high amplitude waves by mea-
surements in the solar wind (¢f. Goldstein et al. 1995).
The discussion of the second-order Fermi acceleration
at shock waves prescuted by Ostrowski & Schlickeiser
(1993) is based on the arbitrarily chosen quasi-linear re-
lation between Dy and &) . They demonstrated a possi-
bility of substantial modification of the particle energy
spectrum by the second-order process in some condi-
tions, depending however, in a crucial way on the true
relation between the momentum diffusion and spatial

In the Schlickeiser (1989) paper the integral /1 below the
2
equation (69) reads I, ~ 2 (l - %%ﬁl) {R. Schlickeiser,

private communication).
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diffusion in the presence of the high amplitnde MHD tur-
bulence. Moreover, the question about the role of the
second-order acceleration of energetic particles within
the solar magnetosphere and the heliosphere was dis-
cussed by numercus authors (e.g. Wibberenz & Beuer-
mann 1971; Morfill & Scholer 1977; Quenby 1984; Mous-
sas et al. 1987; Terasawa 1989; Ryan & Lec 1991; the
summary of the last ICRC in Leahy et al. 1994; Bar-
ing et al. 1995). These works are often based on the
in situ measurements in space and thus, it 1s subject to
all reconstruction problems of three dimensional wave
field structure. The above mentioned works, as well as
somte not listed here, suggest a strong need for clarifying
the issue of particle transport in media containing high
amplitude perturbations of the magnetic field. In the
present paper we consider this problem for relativistic
particles, with v =~ ¢, the case relevant to the accelera-
tion processes in large scale interstellar shocks. Qur spe-
cial goal is to understand the influence of the large am-
plitude waves on the scattering efficiency both in the or-
dinary space and in the momentum space, as character-
ized by the respective diffusion coefficients. For particles
with lower energies the comparison ol scattering coetfi-
clents derived from QLT assuming the slab turbulence
wave model with the ones determined phenomenologi-
cally from spacecraft observations has shown that simple
usage of QLT can overestimate the coupling strength be-
tween magnctic fluctuations and energetic particles by
an order of magnitude. Extensions of QLT which take
into account such effects as the dynamical character of
the fluctuations, thermal damping of waves, more com-
plicated three-dimensional structure of the turbulence,
etc., may overcome the problem (eg., Bieber et al. 1994;
Droge 1994). However, as no one of these modifications
1s generally accepted we refer our results to ’classical’
theory by Schlickeiser (1989). One should also remem-
ber that no one QLT approach applies to the case of
large amplitude perturbalions and can be used only as
a reference.

The alm of the present work is to study the relation
between the spatial diffusion coefficient and the mo-
mentum diffusion coeflicient for energetic (relativistic)
charged particles propagating in space filled with high
amplitude Alfvén waves (cf. also Karimabadi et al.
1992). We do not consider any particular site for ap-
plication of the present results, the only restrictions are
provided by the considered simplified structurc of the
magnetic field perturbations and relativistic velocities
of the considered particles, Monte Carlo simulations in-
volving derivation of particle trajectories in wave fields
are applied. In Section 2 we describe them. In Section 3
the actually performed modeling at various wave ampli-
tudes and for a number of wave field types is described
and compared to the quasi-linear relations. The QLT
estimates for «) and D, are approximately reproduced
at smmall amplitude. With growing wave amplitude the
simulated results show a small divergence from the QLT
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ones, with ) decreasing slower than the theoretical pre-
diction {(outside its range of validily) and the opposite
trend for 7. The wave fleld form only slightly influ-
ences the wave-particle interactions at large wave am-
plitudes § B/ By ~ 1. The parameter characterizing the
relative efficiency of the second-order to the first-order
acceleration at shock waves, D, -k, is given in the QLT
approximation by the Skilling formula Vip?/9. In sim-
ulations it increases with increasing 63 above this scale
inr all the cases under our study. In the last section we
present a short summary of the resulls. Consequences
of the present results for the second-order Fermi accel-
eration at shock waves are briefly addressed.

Below, the following notation is used: E - electric field
vector; B - magnetic induction vector, conststing of the
regular component By and the fluctuating component
due to waves §B(8B is given in the unit of By) ; Va -
the Alfvén velocity in the field Hy; ¢ - the wave spectral
index. We put the light velocity, the considered parti-
cle’s mass and the background magnctic field to be the
units, ¢ = 1, m = | and By = |, respectively. For cosmic
ray particles, we denote as p - the particle momenturo
vector with the pitch angle respectively to By denoted
with @ (g = cos®), ¢ - particle energy, v = c*p/e -
particle velocity vector (here ~ ¢) and the respective
Lorentz factor v = (1 — v?/c?)~H/2 |

2  Numerical simulations

The approach applicd in the present paper is based on
numnerical Monte Carlo particle stimulations. The gen-
eral procedure is quite simple: test particles are injected
at random positions into a magnetized plasma and their
trajectories are followed by integration of the particle
equations of motion. Due to the presence of Alfvén
waves, parbicles move diffusively in space and momen-
tum. By averaging over a large number of trajectories
one derives the respective diffusion coefficients. Below,
we describe a particular simple model chosen for turbu-
lent wave fields. The prescutation of technical details of
the derivations is given in Appendix A.

2.1 'The wave field models

In the case of high amplitude waves, there are no an-
alytic models available reproducing the turbulent field
structure. Becausc of that, approximate models repre-
senting such fields are considered. Three of them are de-
scribed below. The turbulence here is represented as a su-
perposition of Alfvén-like waves. It is a viable model for
non-linear turbulence because Alfvénic fluctuations of
arbitrary amplitude are exact solutions of dissipationless
incompressible MHD (Parker 1979). The constructed
perturbed field structures are explicitly divergence-free.
In the simulations, for any individual particle a separate
sei of wave ficld parameters is selected. As a result all

the averages laken over the particles include also aver-
aging over multiple magnetic field realizations.

2.1.1 Linearly polarized plane waves

In the model we take a superposition of plane Allfvén
waves propagating along the z-axis, in the positive (for-
ward) and the negative (backward) direction. Two pla-
nar polarizations, along the x and y axes, are considered.
In the computations a discrete number of 24 sinusoidal
waves, 12 of each pelarization, is included. The wave
parameters - wave vectors £ and wave amplitudes 6By
- arc drawn in a random manner from the flat wave
spectrum.  Relaled to the wave "1’ the magnetic field
fluctuation vector §B() is given in the form:

B = B sin(kWz — D — 0ty (2.1)
The dispersion relation for Alfvén waves, w? = Vik*

provides the respective w parameter for any given wave.
The sign of w is defined by selecting the wave velocity
V at, randomly, £V4, but a number of waves moving
in any direction is kept the same within any selected
range of wave vectors (see below). We call the ‘isotropic
wave field” or “isctropic turbulence’ the wave ficld with
the same number of positive and negative waves in any
wave-vector range. The electric ficld fluctuation related
to the particular wave is given as SE®) = —v{) A sB

For selecting any individual sel of wave paramecters we
use the following procedure. Wave vectors, expressed
in units of kpps = 2m/rg(< B >, po) in the mean mag-
netic field < B >, are drawn in a random way from
the respective ranges: 2.0 < & < 8.0 for ‘shorl’ waves,
0.4 < k < 2.0 for ‘medium’ waves and 0.08 < k < 0.4 for
‘long’ waves. Four waves arc taken from every range lor
everyone polarization plane. The respective wave am-
plitudes arc drawn in a random manner so as to keep
constant

[SEBO =5 (2.2)

i=1

where 4B 15 a model parameter, and, separately in all
wave-veclor ranges

8 16
(DB = o)) =
= Z(aB 22 = f/E; (2.3)

i=17

The mean magnetic field for sinusoidal Alfvén waves
(with éB - B = 0) is given as < B »>= /B; + 6B?/2.



2.1.2 Wave packets

The plane wave model is not expected to reproduce the
3-D turbulence in a realistic way. In the same time the
2-dimenstonal or 3-dimensional character of the turbu-
lence can give a qualitative influence to energetic parti-
cle transport properlies (cf. Giacalone & Jokipii 1994).
Therefore, as a simple extension of the above models to
the third dimension we consider waves in the form of
wave packets, modulated in one direction perpendicular
to the propagation direction. In the present case one can
use the formula (3.1) for 6B, where the phase param-
cter 1s subject to modulation on the scale comparable
to the corresponding wavelength. Two types of modu-
lation for the x-components in (3.1} are considered: A.)
the sinuseidal ‘smooth’ modulation is given as

Pl (y) = sin(ké“y) (2.1}
and B.) the ‘sharp-edged’ modulation as
) (y) = y mod (1/k4) (2.5)

The y-components can be obtained from the above for-
mulae by interchanging » and y. Veclors £ and k;i)
are drawn in a random manner from the respective wave-
vector range for &)

3 Results

Simulations were performed for all presented turbulence
models. Typically 8300 particles were involved in an in-
dividual run. At Fig.(1,2,3), on the successive panels
we present the derived diffusion coefficients x|, D, and
the product D, %y versus the wave amplitude 8 8. How-
ever, in order to abtain a realistic estimate of diffusion
cocflicient for small wave amplitudes requires substan-
tially longer integration time, growing in proportion to
roughly the inverse wave amplitude squared, only the
results for 8B > (.15 are presented. Also, at small am-
plitudes the fhuctuations ascribed to the long scale phase
coherence of the involved waves become visible and con-
tinuing simulations below our limiting one would require
a substantial increase of the number of the wave mode
involved, i.e. a further increase of the computation time.
The resnlts are presented in Fig-s (1, 2, 3), where they
are compared to the QLT estimates derived from (1.2,3)
with /y/dr = (8% /37)/[2log(kmaz /kmin)]. The final
division by 2 in this expression comes from averaging
the squared (sinusoidal) wave amplitude. The expected
decrease of the spatial diffusion coefficient and grow of
the momentum diffusion with increasing é B is observed.
At small amplitudes approximately the QLT estimatcs
for & and D, are reproduced. With growing wave am-
plitnde the simulated results change in a different way
with respect to the QLT ones. Diffusion coeficient )|
decreases stower than the theoretical prediction (outside
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its range of validity) and Dy, riscs faster then the theo-
retical prediction. The wave field form gives only slight
influence on the wave-particle interactions at large wave
amplitudes 68 ~ 1. The parameter characterizing the
relative efficiency of the second-order to the first-order
acceleration at shock waves, Dy, - &, is given in the QLT
approximation by the Skilling formula V3p?/9. In sim-
ulations with increasing § B it increase above this scale
in the all cases under our study. The product of two dil-
fusion coeflicients shows a systematic trend to increase
over the quasi-lincar value represented al fligures by a
horizontal dashed line. One should also note that at
larger wave amplitudes there are no qualitative differ-
ences between the results prescuted in Pig(1,2.3). Tt
may illustrate the non-resonant wave-particle conpling
at these amplitudes,

4  Summary and final remarks

In the present paper we considered cnergetic relativis-
tic particle phase-space diffusion due to scattering at
the finite amplitude Alfvénic turbulence. In the con-
sidered situation of wave backward-forward symmetry
and vanishing helicity the diffusion coefficients for a few
turbulent field models were derived. At oursmall ampli-
tudes we obtained results <lose Lo the quasi-linear theory
estimales for k) and [J,. 'The decrease of the spatial
diffuston coctlicient and grow of the momentum diffu-
sion with inereasing 6B is also reproduced. However,
together with growing wave amplitude the simulated re-
sults change in a different rate with respect to the QLT
oncs, with &) decreasing slower than theoretical predic-
tion and /), vises faster than theoretical prediction. The
wave {leld [orm gives only slight influcnee on the wave-
particle interactions at large wave amplitudes §8 ~ 1.
The parameter characterizing the rclative efliciency of
the second-order to the first-order accelervation at shock
waves, Dy s, is given in the QLT approximation by the
Skilling formula Vip?/9. In simulations with increasing
40 1l increases above this scale in all the cases under
onr study. One should alse note that at larger wave am-
plitudes there are no substantial differences between the
presented results for the considered turbulence mods. It
illustrates the effective non-resonant wave-particle con-
pling at high wave amplitudes. We do not consider any
particular site for application of the present results, as
the only restrictions arce provided by the assumed sim-
plified structure of the magnetic field perturbations and
relativistic velocities of the considered particles.

It was demonstrated by Bell (1978) that shock waves
provide conditions for generation of highly non-linear
MID turbulence and our present results have a great
importance in such conditions. The possibility to in-
crease the product Dy ey above the scale Vip® /¢ can give
a noticeable impact at the processes of the second-order
Fermi acceleration in a number of astrophysical environ-
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Fig. 1. The simulated values of 5|, Dp and g k) versus the wave
amplitude § B for linearly polarized plane Alfvén waves. Solid lines
join the results obtained from siimulations (5). Near the results for
w) and Dy the theoretical (T) quasi-linear estimates are presented
with dashed lines. The adjacent dashed lines near D, «|, in units
of V_i 22/9 give the maximwn and minimum values of this quan-
tity occurring within the range used for the fitting. The horizontal
dashed line is provided in the upper panel for the reference repre-
sents the QLT estimate.
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menls. As it was demonstrated by Ostrowski & Sehlick-
eiscr (1993) and Ostrowski (1994) in some shock condi-
tions the second-order accclerati on can give a substan-
t1al influence to the accelerated particle spectrum. To il-
lustrate this fact when varying the ratio o = DPKN/QVjp
one can derive the respective spectral indices accord-
ing to formulac given in Appendix A of Ostrowski &
Schlickeiser (1993; in A7 onc should read 77 instead of
U1). The results with & > 1 — occurring in our simu-
lations for large 4B — suggest an interesting possibility
to obtain a noticeable flattening of particle spectra al
shocks, which create non-linear waves or propagate in
highly turbulent medium.

Among other simplifications and limitations introduced
in the present paper the most important oues are due to
onr simplified turbulence model. in actual wave fields
modifications may oceur because of a few reasons. In
general, the wave spectral index is ¢ # 1 and the val-
ues of ¢ expected to be larger than unity will lead to
somewhat greater QLT values of . The processes gen-
erating waves in the shock vicinity may he balanced by
the non-linear wave damping (cf. Lagage & Cesarsky
1983) or the generating process can becorne saturated
(cf. Vlk 1984} with 8B < By. Then our derivations at
higher amplitudes would be of only ‘academic’ impaor-
tance, perhaps with the exception of the perturbations
appearing immediately behind the strong shock. More-
over, the general perturbation field in the considered
conditions can involve a number of magnetosonic wave
medes complicating the reality with respect to the con-
sidered model. Finally, in non-linear situation the phase
velocities of perturbations will be governed by the actual
magnetic field B instead of the smaller field By used by
us. It may lead to larger particle momentum diffusion.
We are grateful to the referees of this paper for crit-
ical remarks which helped us to hmprove substantially
its’ original version. The present work was supported
by the grant PB 1189/P3/93/04 from Kemitet Badasi
Naukowych.
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Appendix A. The method of stmulations

Let ns consider an infinile region of tenuous plasma
with the uniform mean magnetic field. As the refer-
ence frame we introduce a plasma rest frame with the z-
axis directed along the mean magnetic fietd. The Alfvén
waves, described in Section 3, propagate along this axis.
Particles used in the simulations are injected with the
same initial momentum py, randomly at initial positions
{x0, Y0, 20) within the cube with dimension much larger
than the longest wave. Integration of the Lorentz equa-
tion, p = ¢(E+ v AB) (= F) and the energy equation
¢ = F - v is performed for the time much longer ! than

A small digression is now required. The above energy
equation can be derived from the momentum equation
and it seems to be sufficient to solve only the later one.

73

the mean scattering time. In a chosen sequence of time
instants, {; , particle spatial positions and momentum
values are recorded. Basing on the information collected
for numerous particles, at any instant ‘4* one derives the
values of the ‘partial’ diffusion coellicients by averag-
ing the respective squared dispersion over all particles.
For the spatial diffusion along the mean magnetic field,
K|| = &, onc obtains

< (2 — =) >
24

and, for diffusion perpendicular to the mean field, &,

and k, are obtained by substitution in Equ. (A1) of

2 and y instead of 2, respectively. Analogously, the

moinentum diffusion coefficient can be csftmated as

(A1)

i =

< (pi —po)* >

2%;
For sufficiently long integration times (but with V4 small
enough to keep < (p; ~ po)? > < pf) these coefficients
tend to the hmiting values corresponding to the final
coeflicients &), 51 and IJ,. The cstimates (A1-2) have
a noticeable weakness for limited particle wumbers in
the simulations: hecause of the square dependence of
the estimated coefficients on particle shift along the re-
spective co-ordinate the few particles with highest shifts
determine the result. That feature leads to substantial
fluctuations of the derived diffusion coefficients. There-
fore, in our approach, we applied a procedure of fitting
the obtained lLimiting distribution to the particle dis-
tribution function derived from the respective diffusion
equation, with the diffusion coefficient being the fitting
parameter. For the spatial distributions

1 {p—pa)’
flp) = W [ et }
where p stands for space co-ordinate x, y, or z and
the respective spatial diffusion coefficient is x,. The
momentum diffusion coeflicient with the considered flat
wave spectrum (g = 1 in equation (1.3)) is proportional
to momentum for relativistic particles, Dy, = Dy - p .
Then, the solution of the momentum diffusion equation
can be obtained with the Bessel function technique, o

yield (cf. Toptygin 1985):

Dy (A2}

(A3)

flp,t)

= —l exp | — ptm Iz 2\/1[%
47 Dotppy Dot Dqt
(A4)

However errors introduced into particle energy by an it-
erating numerical code are of the order of 6 B/6E ~ ¢/ V4
larger for the momentum equation than the crrors aris-
ing from integration of the energy equation. Due to this
fact we solved equations for momentum components, as
well as the energy equation, and, after any step of iter-
ation procedure, momentum length was scaled to pre-
serve 2 = 1 + p?.
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Fig. 4. An example of the derived instantaneous diffusion coeffi-
cients (A1,2) versus integration time are presented for the case of
§8 = 0.6 and the plane Alfvén wave model.

where the injection have the form o 8(¢)é(p — po} and
I is the modified Bessel function (Abramowitz & Ste-
gun 1973}, In the expressions (A3,4) £ is the diffusion
time (= integration time) and the index 0 is for the
particle initial co-ordinates. The fitting was performed
by looking for the highest probability according to the
Kolmogorov-Smirnov test (see, e.g. Press et al. 1989)
of the theoretical distribution to be the real one. Exam-
ples of the results for a given value of 6§ B are presented
at Fig. 4. Variations of the recorded data can be easily
accounted for on the qualitative level. The first, quickly
changing section represents transition from the initial
free particle flow to that dominated by wave scattering.
Then the curves for the spatial diffusion coefficient and
the momentum diffusion coeflicient get flat. However,
in deriving the diffusion coefficient perpendicular to the
magnetic fleld the moment of reaching the stabilized flat
range is delayed, until the scatter of particle position due
to diffusion is greater than the one related to probing
the regular particle gyration (Michalek & Ostrowski, in
preparation). The effect is stronger for smaller wave
amplitudes and, so, it requires long integration times
to become negligible. Various tests of the simulation
procedure are presented in Appendix B.

rryrryrryrrryr—rrrere4vrrrrrrreorrrrr 1 rrrr LI

3000 4000

Appendix B, Testing the simulation scheme.

Simulations with the use of Monte Carlo method re-
quire very careful checking against possible systematic
numerical effects. In the considered by us wave fields
constructed by superposition of a finite number of si-
nusoidal waves an additional danger of ceccurring some
resonant phenomena arises. In order to avoid or control
these problems a number of tests of the code, including
the ones described below were performed.

1.} The particle trajectories in the phase space were
checked to be smooth and ‘reasonable’ ones. In the mag-
netic field with static perturbations imposed the particle
energy was conserved to the high degree of accuracy (of
course, without using the above mentioned momentum
scaling)}. With the randomly oriented uniform magnetic
field the particle pitch angle was analogously conserved.
2.) In the presence of resonant phenomena one expects
the final particle distributions to diverge from the purely
stochastic behaviour. For example, one could find par-
ticles that diffused much further in space or in momen-
tum iz comparison to what could be deduced from the
expected Gaussian-like distributions. As presented at
Fig. 5, we compared the typical simulated particle dis-
tributions with the theoretical {A3,4) ones for the dif-
fusion coefficients derived in the simulations involving
the expressions (A1,2). One should note that the dis-
tributions for larger wave amplitudes are always well
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Fig. 5. Histograms of the generated particle distributions {solid
lines) along the indicated phase space co-ordinate compared to
the respective thearstical curves (43,4; dashed lines). The results
are presented for linearly polarized plane Alfvén waves .
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fitted by the diffusive distributions. Additional checks
whether the numerical code preserves the momentum
distribution isotropy were performed for all mementum
components pg, py and p., for all considered éB.

3.} The curves presenting time evolution of the trans-
port coefficient were inspected by eye and checked against
any abrupt change or systematic variation at advanced
simulation times. The additional consistency verifica-
tion for the considered axial symmetry of the perturba-
tion field is due to good agreement of the derived values
of the perpendicular diffusion coefficients along axcs
and y.
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