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Abstract. Sudan and Keskinen in [1979] derived a set
of equations governing the nonlinear evolution of den-
sity fluctuations in a low-pressure weakly ionized plasma
driven unstable by the E x B or gradient-drift insta-
bility. This problem is of fundamentAl importance in
ionospheric physics. The nonlinear nature of the equa-
tions makes it very hard to write a closed form so-
lution. In this paper we propose to use “Dynamical
Renormalization Group” methods to study the long-
wavelength, long-time behavior of density correlations
generated in this ionospheric plasma stirred by a Gaus-
sian random force characterized by a correlation func-
tion (fi fi.) = &™. The effect of the small scales on
the large scale dynamics in the limit £ — 0 and infinite
“Reynolds” number, can be expressed in the form of
renormalized coefficients; in our case renormalized dif-
fusion. If one assumes the power spectra to be given by
the kolmogorov argument of cascading of energy, then
one can not only derive a subgrid model based on the
results of RNG, and this has been done by Hamze and
Sudan [1995], but one can also extract the skewness of
the spectra as we do in this paper.

1 Introduction

Over the past two decades, there has been a large num-
ber of observations of organized flow in fluids and plas-
mas commonly termed turbulent. Historically, turbu-
lent flow has been characterized by extreme incoherence
or randomness, the most successful theoretical treate-
ments assuming a quasi-Gaussian probability distribu-
tion of the excited fluctuations. It is becoming very
clear that new techniques need to be developed in order
to sort out the wealth of phenomena that oceur in a tur-
bulent system. Renormalization Group Methods (RNG)
have tried to fulfill this need, but they come short on

many grounds as will be discussed later in this paper.
They do, however, provide usefull tools for turbulence
analysis as we intend to show explicitly.

In this paper we have chosen a two dimensional prob-
lem, namely that of strong turbulence resulting from
plasma convection in the E-region of the ionosphere.
The choice of this particular case for study is dictated
by the fact that it describes fairly accurately the phys-
ical situation and the evolution of the plasma in this
very specific region. In addition a large number of radar
and rocket experiments have been conducted in the past
two decades and data has become available to analize
and therefore check the validity of the various theo-
ries. The calculations, we are presenting, are based on
the ”Dynamic Renormalization Group” (RNG) meth-
ods first developped by Ma and Mazenko [1975] for crit-
ical phenomena. These techniques have since been suc-
cessfully applied by a number of authors (see for exam-
ple Forster et al. [1977], Fournier et al. [1982], and
Yakhot and Orszag [1986]) to investigate the problem
of randomly stirred fluids. The evolution equation de-
rived in the context of ionospheric physics, is one of
the most simple archetypes of nonlinear evolution of in-
homogeneous magnetized plasmas (a nonlinear partial
differential equation with a quadratic nonlinearity). A
great deal of interest has been focussed on applying the
strong turbulence theories such as the ” Direct Interac-
tion Approximation” of Kraichnan [1959] or equivalently
the renormalized nonlinear wave interaction theory de-
scribed by Kadomisev [1965]. The Turbulent spectra for
the two dimensional problemn we are to investigate have
been predicted by the cascade hypothesis (see for exam-
ple Sudan and Pfirsch [1985]), namely that the energy
cascades to higher ks with a power law of (—5/3).
WIth all the applications, in fluid turbulence and crit-
ical phenomena in mind, here we undertake a detailed
description of RNG methods to the problem of strong
turbulence arising in a low 3, weakly ionized plasma
confined in a strong magnetic field subjected to both
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a gradient in density and a backgroung electric field.
Under certain circumstances, the plasma under consid-
eration, was shown by Simon [1963] and Heh [1963] to
be unstable to electrostatic fluctuations. The E x B
drift associated with these very low frequency potential
fluctuations is divergence free and convects the electron
fluid in two dimensions. The instability is analogous
to the Rayleigh-Taylor instability. We should point out
that if we were to study the advection of the density by
the E x B drift then the natural spectrum that comes
out from a kolmogorov type of analysis would be a k=1
spectrum as shown by Batchelor [1950]. Very interesting
results are obtained as we shall see very soon.

The purpose of this paper is to use the renormalization
group method to extract turbulent transport properties.
We propose to calculate the density-gradient skewness
since the application of RNG to numerous problems is
available in the literature and to the problem at hand in
a publication by Hamza and Sudan [1995]. The Skew-
ness calculation presented in this paper has never been
published, and constitutes an excellent yard stick for
comparison with radar observations related tc Farley-
Buneman turbulence as it occurs in the aunroral E region
of the ionosphere. We therefore organize the paper in
the following form. In section II we briefly review the
results of Hamza and Suden [1995] related to the appli-
cation of RNG in deriving a sub-grid model for E-region
turbulence. In section III we calculte the skewness given
a Kolmogorov spectrum, and finally conclude.

2 Dynamical Renormalization Group

In this section we will briefly discuss the results of a
recent paper by Hamza end Sudan [1995] on the appli-
cation of RNG to the ionospheric problem in question.
We have kept the same notation for convenience, and
highlighted a number of equations so that the reading
of this manuscript does not really require extensive ref-
erence to the mother paper Hamza and Sudan [1995)].
The nonlinear equation governing the evolution of the
plasma density fluctuations in the ionospheric E-region
can be written in the following form (for assumptions,
derivation and details we strongly recommand the reader
to consult the paper by Hamza and Sudan {1995]).

(i-g—t—wk>n(k,t)=

./ (211:1)25(2)(% k—ajn(a,nk—at), (1)

where the density fluctuation

n{x,t) = f[dwdk(i;%?”(k.:w)ei(k'x_m) 2)

and wy is given by [see for example, Fejer et. al,, 1975]
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where vq = cEg xBo/BEZ = vq3 is the electrojet electron
drift velocity and L1 = nla%‘l is the electron density
scale height in the E-region. Finally the nonlinear cou-
pling matrix element is given by

6(2)(‘1: k - Q) =
vi b-(qxk)fq-vqi (k—q)-vq
20 (1+9)? ( 2 k—qf ) *)

with b = By/By = &k = (ky, k. ). = (94, 42).
Equation (1) describes the nonlinear evolution of den-
sity fluctuations around an average density ng, with a
gradient Vnp taken to be constant. This equation has
only one quadratic constant of motion [ d*kfny |* in the
limit g — 0. This according to the turbulent cascad-
ing theories would lead to one single inertial range. This
property plays a signicant role in this problem.

At this stage we are ready to apply RNG and discuss
its ramifications. But before, we need to discuss how
we handle the unstable system. It will be treated as
an externally forced stable system. The external forcing
is interpreted as the energy transfer from the unstable
part of the spectrum k, < k& < k. by mode coupling to
the range k > k. by the addition of a forcing function
f(k,w). Eqn. (1) may be rewritten in w,k space as

EL(k,w)n(k,w) = f(k,w)

dqd€2
+ho [ (e k- an(a Ynlk— .0~ D),
where

dkw)=w -wk+z'k2D0 (6)

and w)., Dy and &(?) represent the linear eigenfrequency,
the diffusion coefficient and the nonlinear coupling coef-
ficient respectively, which were defined earlier. The pa-
rameter Ag(= 1) is formal; it is introduced to facilitate
the perturbation solution of equation (5). The forcing f
is rtandom, and chosen to be isotropic and to have Gaus-
sian statistics. It 1s important to note that no initial and
boundary conditions are needed for equation (5), since
the plasma described is stirred by the random force such
that a statistically steady state can be reached.

The force correlation function is given by:

< flk,w)fk' W) >=

(27)° Ao P(R)5(w + w')5(k + K) )
Fk) = k™ (8)



The resuits of the renormalization group methoed as ap-
plied to equation (5} will be briefly discussed. But be-
fore, we would like to review some of the fundmentals
steps and questions raised by this method.

The key question raised by RNG is: Let A be the high-
est wavenumber in the system, the so-called ultraviolet
cut off. What then is the effect of the shori-wavelength
modes n” (k,w), from a narrow wavevector band near
the ultraviolet cutoff Ae™ < k < A (where r is a small
parameter), on the long-wavelength modes n<(k,w) be-
longing to the interval 0 < k < Ae~"?

The “Dynamic Renormalization Group” technique an-
swers the question as follows. First eliminate the small
scale modes n”(k,w) from the equation governing the
evolution of the large scales n<(k,w). Then average
the equation for n<(k,w) over the small scale forcing
f?(k,w) that acts in Ae™" < k < A: this operation re-
defines the coefficients which enter the reduced equation
(r is a measure of the fraction of degrees of freedom elim-
inated). The next step consists of rescaling space, time,
the density n<(k,w) and the stirring force f<(k,w) and
we collect all the terms in the new equation that are
self similar to the original one. Subsequently, it has
to be argued that the remaining termns are “irrelevant”,
i.e., the higher order terms generated via the perturba-
tion analysis ought to vanish under the rescaling pro-
cess. Finally one obtains recursion relations (ordinary
differential equations (ODE’s)) for the different coeffi-
cients, such as the diffusion, the coupling constant, etc,
If the solutions to ODE’s obtained through this proce-
dure have fixed points as r = oo we obtain renormalized
values for the diffusion.

If now one defines the large and small scale densities n>
and n? for {{k| < Ae="} and for {Ae™" < |k| < A}
respectively, then one can write two coupled equations,

one for nf and another for n7 respectively. This leads,
after substituting the “>" quantities and averaging over
the high & shell with the proper statistics for the forcing
term f, to the renormalized evolution equation

Bk, w)n(k,w)< =

—'\n/ E?d—gf(z)(q'k'q’n(q, D) <n(k —q,w - N<
g<Ae—T

(27)
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where the renormalized dielectric function of the lhs of
Eqn. (9) is

Pk, w) = cL(k,w)(l-—
Ae—T<g<A (27“")3 fL(qa Q)eL(k -q,u - Q)
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and where the correction to the forcing, Af<(k,w), is
shown to vanish because of the structure of the nonlin-
ear coupling coefficient in the evolution equation, i.e.,
the bare vertex e(?) vanishes (see appendix A of paper
Hamza and Sudan [1995]).

One can at this stage evaluate the renormalized coeffi-
cients as done in Hemza and Sudan [1995] to obtain

cﬁ = (w —wy) + ik*D, (in

where

3 [\ o2 sin?@
Dr= 1 S i Bilowntiinll
D"(*Mw(&-) (1+¢)“) (12)

where the dimensionless coupling constant Xy is defined
by

. AgAl

2 _ 04D

The renormalized Fqn. (9) is defined on the domain
0 < k& < Ae™", unlike the original evolution equation,
which is defined on the larger interval 0 < k < A.

The next step of the RNG technique is to test the self-
similarity of the equation under the transformations:

n(k)< = E(Np(K).  (19)

Therefore the new variable K is defined on the same
interval 0 < K < A as the vector k in the original
evolution equation. In terms of the new variables, the
renormalized equation is self-similar with the following
new parameters:

K =ke ,Q=wel)

FEKy=0- e*"wy, +iD(r)K*?,

F(K) = f(k)<e* e (r),
A(r) = Aob(r)e™,
D(r) = D, e¥(")=2r (15)

On the other hand the correlation function character-
izing the force fyr, given by the expression (7) can be
constructed easily using the original definition and the
rescaled variables

8(3a(r)+(2--m)r)
EZ
x(2rPAK™S(K + K')8( + ). (16)

We choose the function £(r) such that the amplitude 4,
of the foreing remains unchanged; therefore

< fk,w)f(K,0") >=

£(r) = 3T (17)

The different steps so far described are formally exact
in the lirnit » — 0. In order to eliminate a finite band
of k space, one can iterate and therefore eliminate in-
finitesimally narrow wavenumber bands. The different
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coupling constants generated depend on r and satisfy
the following ordinary differential equations:

dD

— = D(r)(z -2+ CX°), (18)
dA
=0, (19)

D= (Fe-2E2), (20)

here da/dr = z,C = Cosin? = 3 (%) 2482
where da/dr = z,C = Cosin®f = 52 (&) Fgw

and the dimensionless parameter A is defined as

. A2A, ‘

The equation satisfied by A is then

dX
dr

The solution to this Eqn. (22) tends to zero when r —
oo if m > 2. On the other hand when m < 2, the
solution tends to a fixed point A*

= :(2 m — 3CA?). (22)

(2-m

3C
The exact solution to Eqn. (22) can be written as fol-
lows:

+ (3=m 3c
(5
P (14 525

and therefore the diffusion coeflicient can be written as:

P

as 1 — oo, (23)

/\(T’) =

B —1/2
Ag(e(z‘"‘)"—-l)) , (24)

1/3
D(r) = Dpels~2r (1-;-23—03\2( (2”")'"—1)) . (25)

At the fixed point the diffusion coefficient D(r} becomes
r-independent if
4
2= % (26)

from Eqns. (18) and (20).

This now lays down the ground for the calculation of
the skewness. Most of the results presented here will be
used to obtain the final expression for the skewness. We
will need the expression for the fixed point as well as
the renormalized expressions for both the renormalized
coupling coefficient and the diffusion coefficient.

3 The Skewness

Now that we have prepared the neccessary tools, we
shall compute the density-gradient skewness S,,, defined

as 3
oo &Y _ 4
gl BT

(27)

where 5
n.3
A= E;;) )=

f/ (2m)? (271')3 =5 otz (ks Q‘w—ix)n(tj)n(f)n(]}_@_ﬂ
(28)

This expression can now be decomposed according to
the RNG scheme as follows

A= A<

-/./ (2733 ( 2%?)3% {kz—q

where

e —tz )(a+btetd+e+f+g)
(29)
a = n(@)>n(@)<n(k — § - )°
b= n(rj)>n(f)>n(£: —§—1<
e = n(§)<n{)>n(k —§—1)>
d = n(§)>n@)<n(k - § - 1)<
e =n()n()”n(k - §-H<
F=n(@<nd)<nk-g§->
g = (@) n(f)” nlk — § ~ i) (30
At this stage we need to evaluate A explicitly, eliminat-
ing the small scale structures from the problem following
the RNG procedure. It is tedious, however straightfor-
ward to show that one can write the contribution from
term (a) in expression {30} in the following form (again
some of the details can be found in appendix {A) of
the paper by Hamza and Sudan [1995] regarding the

eleimination of small scales and their effects on the large
scales)

—4iAp Ao j/ (2“"_)3 (27r)3f1 qmix(kx — g~ tw)

{5(2)(1{ —q—t.k — Q)GOHEO—HGEO (k — 4 —1)

= 0, 0600606 - 06O -~ 0 |
q

n(f)<n(k — 1)< (31)
where
- 1
O N iy k2y—1
G\"HE) k) (w — wy + ivek®)

The frequency integrals can be performed readily to give

Aa—QAUAU/ df
vi (2m)3

x/' dq 1
(27)% ¢* +|g —

sn(i)<n(k - D

e {‘Ix(tw — k2 }(ge — to)la— t™=2
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(32)
expressing explicitly the coupling coefficients one can
casily verify that the expression (32) goes to zero when
g — 0. Expanding in powers of ¢/t and retaining the
first nonvanishing terms in the expansion leads to

[/}

Am AUAU 1—e=™ Vysind,
( )(Q ) (1+¢)2

167!' i m

[ pintiy<n-i° (33)

where 0, represents the flowangle.

It can easily be shown, using symmetry arguments, that
the contributions from the terms a, b, and ¢ to the in-
tegral {29) are all equal to A,, while that of d, e, f, and
g vanish to the order kept. Therefore

A=A 434,

The next consists of using the energy conservation law
for the system and this enables us to eliminate the spec-
tral dependence of the skewnes. In order to achieve our
goal we use the following relation derived by Hamza and

Sudan [1995].

537 () = =Do [ bk (me0P)
+Im / %( fkni‘c> (34)

where {|n}?) = [ /& (2”2 {Ink|?}. In the steady state the
lhs of Eqn. (34) vanishes and we have a balance between
the energy dissipated per unit time per unit volume &
and the power provided by the forcing agent. Thus

€:Do./c—;§/% (Ingl*) =

n [ 5 [ e (i) (%)

If we were now to assurne an isotropic spectrum, we can
then define an energy rate transfer in the x direction

E:c:DO/ / (2m)? m(| k|2>“

and consequently be able to write expression (33) in a

(36)

aﬁlml

closed form for m = -2, that is
1 )t(}A[] _ 621‘ -1
A4 —
A= + Tom AED?,)eCl 7 (3N
where
Cy = V. Vasind, {32xC
& +9)? 3

where C was defined earlier.
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This allows us to write and use the rescaling ODE’s for
the fixed point to obtain a ODE describing the evolu-
tion of the triple correllation under the group transfor-
mation, which we calculate to be

_E doAo
327 D3A2

On the other hand the calculation of B is straightforward
and leads to

(38)

dt .
5= [ Grstindn(e -0 (39)
In the limit of £ — 0 one can follow the same procedure

ag for the calculation of A to obtain

dt t
(213 12

B=B<— A Z|GOD)? (39)

performing the frequency and wavevector integrations
leads to
Ay

8Dy

Using the rescaling arguments one can show that the
fixed solution can be written in the following form

_ 3 Ao

B =B~

T 487D (40)
This finally allows us to evaluate the skewness
_ A _ 601 Avo 327 372 03/2

50 = BB T "aan A3D3( 3 A (41)

using the results of Hamza and Suden [1995] for the
expression of the fixed point (20)-(23), one can eliminate
€ for the expression for the skewness and express it as a
constant

1672
3737

where g < 1. For ¢ = 0.1 we obtain a skewness S, = —3.

Sp=— (42)

4 Summary and Conclusions

Iu this paper we have presented a calculation of the
density-gradient skewness for a turbulence problem, that
occurs in the ionospheric E and F regions, using the
“Renormalization Group Methods” (RNQG). This cal-
culation is subject to many of the same reservations
mentioned by Kraichnan [1987], for example, concern-
ing the renormalization group methods in general. One
has to question the validity of RNG methods near the
ultraviclet cutoff. For more details on the limitations
of RNG techniques the reader is refered to Hamza and
Sudan [1995]. As described above, RNG is another per-
turbation technique with even stronger constraints than
the classical perturbation methods dealing with similar
problems; indeed the constraint of selfsimiliraty is very
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robust and may be the exception rather than the rule
in most turbulent systems. Moreover, RNG treats only
half the problem, namely that of the effects of the small
scales on the large scales. It does not address, not at all,
the effects of large scales on small scales, and would not
be able to do so using a perturbative approach since the
large scales contain more energy than the small ones.
This removes the possibility of cascading, and it can
easily be seen in the predictions of RNG; it predicts a
family of power laws linked to the forcing which tries
to provide the missed Kolmogorov power law. Since the
effects of the small scale turbulence is, to lowest order,
independent of whether that turbulence was generated
by self-consistent cascade or external forcing so is the
renormalized diffusion. Thus RNG provide only half a
turbulence theory by modeling the effects of the small
scales on the large ones. This is the only half that mat-
ters for sub-grid modeling as emphasized by Hamza and
Sudan [1995).

In this paper we have been able to show that given a set
of assumptions and limitations, one can still predict cer-
tain transport properties such the skewness. One can try
to verify whether the predicted value for the skewness
, by RNG, matches that predicted by other turbulence
closure techniques. In this specific case, we have been
able to show (see Hamza et al. [1095]), that one can
obtain an expression for the skewness, with the same
order of magnitude along with the proper sign, unsing
an “Eddy Damped Quasi-Normal Markovian” closure
scheme. This gives us more confidence about the use-
fulness of RNG methods, given their limitations. On
the other hand the value quoted above, and obtained
via RNG is very close to what radar data seems to
suggest (see for example Schiegel, Thomas and Ridge
[1986]). The present calculation suggests that the model
used, though severe assumptions were imposed, retains
the physics relevant to Farley-Buneman fluctuations and
their evolution.
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