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Abstract. The recent availability of complete three di-
mengional samples of galaxics and clusters permits a di-
rect study of their spatial properties. We present a brief
review of galaxy correlations based on the methods of
modern statistical Physics. These methods which are
able to identify self-similar and non-analytical proper-
ties, allow us to test the usual homogeneity assumption
of luminous matter distribution.

We conclude that both the three dimensional proper-
ties, and the angular log IV —log S relation, point out to
the fact that the distribution of galaxies and clusters is
fractal with I =~ 2 up to the deepest scale probed for
luminous matter {Z 1000A~'AMpe). This result has im-
portant implications for the theoretical framework that
should be adopted.

1 Introduction

The first galaxy catalogues were only angular, namely
they defined the two angles corresponding to the galaxy
positions in the sky (Shane and Wirtanen, 1967). These
angular distributions show structures at small scales but
appear rather smooth at large angular scales. This sit-
uation was therefore fully satisfactory with respect to
the theoretical expectations of a homogeneous universe
(Peebles, 1980). In the late seventies however the first
redshift measurements begun to appear and permitted
the identification of the absolute distance of galaxies
(Huchra et al., 1983). In this way it became possible
to obtain the complete three dimensional distribution
of galaxies. These distributions showed a more irregular
structure with respect to the angular data with the ap-
pearance of superclusters and large voids. At first these
large structures were considered as accidental or due to
experimental incompleteness. But more and more data
showed that the structures are all over and the voids do
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not fill with better measurements. This three dimen-
sional picture did not show any more a clear tendency
towards homogenization and was in contrast with the
angular data. This controversial situation found an ap-
parent solution with the first statistical analysis of the
CfAl galaxy catalogue (Davis & Peebles, 1983). In fact
this analysis identified a small correlation length of only
5 Mpc in a catalogue that showed structures of much
larger sizes. The statistical analysis appeared therefore
to provide a way out such that large structures can be
compatible with small correlation lengths.

In the following years the situation evolved in a dra-
matic way because deeper and deeper surveys showed
larger and larger structures that appeared difficult to
reconcile with such a small correlation length. In addi-
tion the catalogues of clusters gave a correlation length
of 25 Mpc, five times larger than the one of galaxies,
even though the clusters are made themselves of galax-
ies. This situation led to a great confusion and dif-
ferent authors looked for different possible solutions to
the problem. At this stage various hypothesis were for-
mulated like the luminosity segregation, the clustering
richness relation that leads to the biased theory of struc-
ture formation etc. In the end the most popular picture
is that clusters and galaxy structures require different
theories because their correlation show different ampli-
tudes. A linear theory is necessary for clusters while a
non linear theory should be adopted for galaxies. The
large structures can be compatible with small correla-
tion lengths and with a large scale homogeneity because
the amplitudes of the structures becomes smaller the
larger is the structure. Finally a clear evidence of ho-
mogeneity cannot vet be obtained because the present
samples are not yet fair.

In the past years, we have challenged this picture
{Coleman & Pietronero, 1992) (Baryshev et al, 1994)
by showing that it arises just by a mathematical incon-
sistency in the characterization of the galaxy and cluster
correlations. Qur main result is that a correct analysis of



the data shows fractal correlations up to the present ob-
servational limits. The galaxy-cluster mismatch disap-
pears and the visible universe is characterized by a mul-
tifractal distribution of matter when the galaxy masses
are also included. This requires a radical change of per-
spective for the properties of the universe and for the
theorctical methods that one should use to describe it.

In this lecture we present a colloquial discussion of
these subjects including the most recent results (Sylos
Labini et al., 1996a) (Sylos Labini et al., 1996b) (Sylos
Labini et al., 1997).

2 The Space correlations analysis

The distribution of galaxies in space has heen investi-
gated very intensively in these last years. Several recent
galaxy redshift surveys such as CtA 1 (Huchra et al.,
1983), CfA 2 (De Lapparent et al., 1988) (Da Costa et
al., 1994) (Park et al., 1994), SSRS1 (Da Costa et al.,
1988), SSRS2 (Da Costa et al., 1994), Perseus Pisces
(Haynes and Giovanelli, 1988), Las Campanas Redshift
Survey (Schectman et al., 1996), APM-Stromlo (Love-
day et al., 1992), IRAS catalogs (Strauss et al., 1992)
(Fisher et al., 1995), pencil beams surveys (Broadhurst
et al., 1990) (Bellanger and De Lapparent, 1995), and
ESP (Vettolani et al.,, 1994} have uncovered remark-
able structures such as filaments, sheets, superclusters
and voids. These galaxy catalogues probe scales from
~ 100 — 200k~ Mpe for the wide angle surveys, up to
~ 1000k~ M pc for the deeper pencil beam surveys (that
cover a very narrow solid angle) and show that the Large
Scale Structures (LSS) are the characteristic features of
the visible matter distribution. One of the most impor-
tant issues raised by these catalogues is that the scale of
the largest inhomogeneities is comparable with the ez-
tent of the surveys in which they are detected. Hence
from these data a new picture emerges in which the scale
of homogeneity seems to shift to a very large value, not
still identified. )

The usual correlation analysis is performed by the
£(r) function (Peebles, 1980) defined as

(n{r +ro)n(ro))

(n)?

where (n) is the average density in the sample consid-
ered. Such an analysis leads to the identification of
the "correlation length” ry ~ 5h~'Mpe (Davis & Pee-
bles, 1983), defined as the distance where £{ry) = 1.
This result appears incompatible with the existence of
LSS of order of 50 — 200h~*Mpc. In fact, according
to this result, the distribution should become smooth
and regular at distances larger than ry {say for example
~ 2+ 3rg ~ 153~ Mpc), while it is evident that this is
not the case. The main problem of the £(r}-analysis is
that it is based on the assumption that the distribution
of galaxies has reached the real homogeneity within the

§(r) = -1 (1)
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considered samples. {We refer the reader to Coleman &
Pietronero (1992) for a detailed discussion of this sub-
ject). The identification of the correlation length ¢ as
the ampiitude of £(r) is actually not correct if the sys-
tem has long range (power law) correlations. In fact,
only in the case of a really homogenous sample the am-
plitudes of correlation acquire a physical meaning. In
the opposite case and anyhow for the range of scales
in which the structure is self-similar (even if homogene-
ity is eventually achieved at large scale) it is necessary
to change the theoretical language and perspective and
adopt the one that is appropriate for self-similar and
non-analytical structures (Baryshev et al, 1994) (Sylos
Labini et al., 1997) (Mandelbrot, 1982) (Pietronero and
Tosatti, 1986) (Erzan et al., 1993).

The basic idea of our approach is to perform a correla-
tion analysis that does not require any a priori assump-
tion (Coleman & Pietronero, 1992). In particular the
normalization of the correlation function to the average
density, as used in the definition of £(r) (eq.1) is avoided
because in the case of irregular and non-analytical dis-
tributions, the average density may be not a well de-
fined quantity. In fact, in the case of fractal correlations
the average conditional density has a power law decay
from any occupied point of the structure (Coleman &
Pietronero, 1992) (Mandelbrot, 1982)

L(r) ~ {n(r + ro)n(ro)) ~r"* (2)

where IJ is the fractal dimension. In the case of a ho-
mogenous distribution DD = 3 and I'(r) = (n), and the
average density is clearly well defined.

Following Coleman & Pietronero (1992) the expres-
sion of the £(r} in the case of fractal distributions is:
£(r) = ((3—4)/3)(r/Rs)~" — 1 where R, is the depth
of the spherical volume where one computes the average
density and v = 3— I} is the correlation exponent. From
the previous expression it follows that

i.) the so-called correlation length ry (defined as
&{ro) = 1) is a linear function of the sample size R, and
hence it is a spuricus quantity without physical meaning
but it is simply related to the sample finite size ii.) £(r)
is power law only for ((3 —%)/3)(r/R:)™" >> 1 hence
for r € rq: for larger distances there is a clear deviation
from the power law behaviour due to the definition of
&(r). This deviation, however, is just due to the size
of the observational sample and does not correspond to
any real change of the correlation properties. It is clear
that if one estimates the exponent of £(r) at distances
r < rp, one systematically obtains a higher value of the
correlation exponent due to the break of £(r) in the log-
log plot. The fact that the fractal dimension has been
estimated to be D = 1.2 (for example (Davis & Peebles,
1983)) is only due to the fact that its has been estimated
by the £(r) in the region of length scales r ~ rg: this
result is completely spurious and does not depend on
the real properties of the distribution (Sylos Labini et
al., 1997).
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Coleman & Pietronero (1992) by analyzing the CfA1l
redshift survey showed that galaxy distribution in this
sample is fractal up to ~ 20h~* M pe. Recently we have
extended such a result finding by the conditional den-
sity analysis (Eq.(3}) that galaxy distribution in several
volume limited samples (e.g., Coleman & Pietronero,
1992) galaxy redshift catalogs such as has fractal long
range correlations up to their limiting depth that is
~ 150h~! M pc for Perseus-Pisces, LEDA, CfAl, SSRS1,
Stromlo-APM, IRAS redshift surveys, ESP and LCRS.
(Fig. 1). Moreover by analyzing the behaviour of the ra-
dial density from the vertex rather than the conditional
density (Eq.(3)), we are able to conclude that galaxy
distribution has fractal properties with D' = 2 up to
~ 1000h~1 M pc (Sylos Labini et al., 1997).

In addition we have studied several cluster catalogs
(Abell, ACO, APM) showing that galaxies and clusters
are different representations of a single self-similar strue-
ture: the correlations of clusters appear to be the contin-
uation of galaxy correlations at larger scales, and clus-
ters have the same fractal dimension D ~ 2 (Coleman
& Pietronero, 1992} (Montuori et al., 1997) of galaxies
(Fig. 2).

In no case we observe any trend towards homogeneity.
This implies that, within the present observations, no
characteristic correlation length can be defined, and that
the usual one rg is actually spurious.

This new analysis we have discussed here, reconciles
the statistical studies with the observed Large Scale
Structures. The existence of such LSS, whose extent
is limited only by the size of the surveys in which they
are detected is now compatible with the fact that the
statistical analysis shows that such structures are char-
acterized by long range correlations.

3 The log N —log S relation

We now discuss other experimental evidences in ad-
dition to the correlation analysis (Sylos Labini et al.,
1996L}. It is clear that the most complete information
about galaxy distribution comes from the full three di-
mensional samples, and that the angular catalogs have
a poorer quantitative information, even if usually they
contain & much larger number of galaxies. However,
one of the most important tasks in observational astro-
physics, is the determination of the log N —log S relation
for various kinds of objects: galaxies in the various spec-
tral band (from ultraviolet to infrared), radio-galaxies,
quasars, X-ray sources and 4-ray bursts. This relation
gives the number N(S) (integral or differential) of ob-
jects, for unit solid angle, with apparent fluz larger than
a certain limit S. The determination of such a quan-
tity avoids the measurements of the distance, which is
always a very complex task.

Let us consider this problem in more detail. We as-
sume as work hypothesis (that can be tested in the real

data) that the number of objects per unit volume and
unit intrinsic luminosity is given by

v(7, LYd*rdL = n(f)¢(L)d*rdL (3)

i.e. one can consider the total density ¥ in a space den-
sity n(7) multiplied a luminosity function ¢(L). As we
are going to discuss briefly in the following, the galaxian
luminosities are strongly correlated with their positions
in space. This clear observational fact can be studied
quantitatively with the multifractal formalism (Coleman
& Pietronero, 1992) (Sylos Labini and Pietronera, 1996).
However the approximation of Eq.3 can be considered
valid for the purpose of the present discussion, and the
multifractal properties will affect very weakly the fol-
lowing results {Sylos Labini and Pietronero, 1996) {Sy-
los Labini et al., 1996b). Neglecting the relativistic ef-
fects (that are usually model dependent (Baryshev et al,
1994, e.g..)), the apparent luminosity S of an object of
intrinsic luminosity L at distance R from the observer
is given by
L
= E (4)

For a fractal distribution the number of sources within

a radius R is given by the so-called mass-length relation
(Mandelbrot, 1982)

N(< R) = BR” (5)

From eq.5 and eq.3, using eq.4, we have that the number
of objects with apparent flux greater than S is given by

N(>8) ~§5 % (6)

(for galaxies this relation is usually expressed in terms
of magnitude (Sylos Labini et al., 1996b, e.g.,)) Hence
eq.6 allows the determination of the fractal dimension
without! measuring the distance. Although this seems to
be the most direct way to study the space properties,
one should consider a very important limitation in the
determination of the log N —log S relation. It is possible
to show that the genmuine behavior described by eq.6
is reached only for faint apparent fluxes (Sylos Labini
et al., 1996b). This problem is due to the fact that
eq.6 is determined from a single point of observation
and this relation is averaged over different directions in
the sky but not over different observers: in this case
the finite size effects may play an important role in the
determination of an integrated quantity as N(> §). The
point is that a fractal structure is dominated by intrinsic
fluctuations at all scales whose convolution leads to an
average power law decay for the conditional density.
Usually the number counts relation is written in terms
of the apparent magnitude m, S ~ 107%™ (note that
bright galaxies correspond to small m). In terms of
m, Eq.(7) becomes log N(< m) ~ am with a = D/3
(Baryshev et al, 1994) (Peebles, 1993). In Fig.4 we have
collected all the recent observations of N{< m) versus
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Fig. 1. The conditional average density eq.(2) for several volume limited samples of various redshift surveys: CfA1l, Perseus-Pisces,
LEDA APM-Stromlo, SSRS1, ESP, LCRS and the IRAS redshift surveys. The amplitude in the various cases is not arbitrary, and it
is normalized only to take into account the different luminosity selection in the different samples (see Sylos Labini et al. 1997, for a
detailed discussion of such a normalization). The reference line has a slope —1 that corresponds to a fractal dimension D = 2.
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Fig. 2. The conditional average density (eq.2) for galaxy clusters: Abell and ACO. The reference line has a slope —1 that corresponds
to a fractal dimension D = 2,
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Fig. 3. a The behaviour of the conditional density computed from a single point in the ideal case of a fractal structurc. Before the
distance ¢ {that is of the order of the characteristic size of the Voronoi polyhedron) in average, one does not find any other points.
Beyond this distance one sees a fluctuating region up to the scale A that is related to the intrinsic properties of the fractal structure.
Finally the correct scaling regime is reached. {b) The N{> 5) relation for the fractal structure whose density is shown in Fig.3. At
faint fluxes, corresponding to large distances, one observes the correct scaling behaviour with an exponent —D /2, while at bright fluxes
the finite size effects dominate the behaviour. In this case one detects an exponent 2 —3/2 thai seems to be in agreement with the
homogenous case, but that is just due to the highly fluctuating behaviour of the density
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m (Sylos Labini et al.,, 1996b). One can see that at
small scales (small m) the exponent is o ~ 0.6, while
at larger scales {(large m) it changes into o = (0.4. The
usual interpretation (Peebles, 1993} is that o = 0.6 cor-
responds to IJ & 3 consistent with homogeneity, while
at large scales galaxy evolution and space time expan-
sion and galaxy evolution effects are invoked to explain
the lower value o =~ 0.4. On the bhasis of the previous
discussion of the VL samples we can see that this inter-
pretation is untenable. In fact, we know for sure that, at
least up to ~ 150~ ' Mpe there are fractal correlations
s0 one would eventually expect the opposite behaviour.
Namely small value of @ = 0.4 (consistent with D = 2)
at small scales followed by a crossover to an eventual
homogeneous distribution at large scales {a =~ 0.6 and
D = 3). The main problem in the study of the number
counts relations, is that it is determined by only one ob-
server. Namely, if one observes the conditional density
from one point only, one observers a regime is charac-
terized by a very fluctuating behavior that is just due
to finite size effects and beyond this fluctuating region
the correct scaling properties can be recovered (Fig.3).
Correspondingly at bright apparent flux, that are asso-
ciated to small distance of the sources, one expects to
see an exponent 2 —3/2, that seems to be in agreement
with the homogeneous case. On the contrary this is
just a spurious effect that arises from the fact that eq.6
is strongly affected by finite size fluctuations at small
scales. At faint apparent fluxed, one is integrating the
density in the correct scaling regime, and in this region
the genuine statistical properties of the system can be
detected (Fig.38).

This behaviour is the general more and we have a
double power law decay for the log N — log S relation,
one at Bright fluxes with exponent 2 —3/2, and the
other one at faint fluxes where the genuine behaviour is
reached (~ —D/2) (Sylos Labini et al., 1996b).

We have shown that the double power law behavior
for the log N — log S relation is verified for several ob-
jects: galaxies (in the blue, redshift, vellow, infrared and
ultraviolet spectral bands - Fig.5), radio galaxies (at var-
ious wavelengihs), quasars, X-ray sources and, finally,
~-ray bursts (Sylos Labini et al., 1997). Except the case
of visible galaxies, where there are available complete
redshift samples, for the other astrophysical ohjects the
log N — log S relation represents the only way of study-
ing the spatial clustering. In oll these cases we find the
same behavior: an exponent 2 —3/2 (that in terms of
magnitudes means 2 D/5) at bright fluxes, and an ex-
ponent —1/2 ~ —1 at faint fluxes, that corresponds to
D = 2. Despite the experimental uncertainties, that
in some cases can be important, we have that all these
objects show the same tendency, t.e. they arc all fully
compatible with a fractal distribution in space (with the
same fractal dimension) up to the deepest scales ever
probed for luminous matter (Sylos Labini et al., 1997).

4 Luminosity and Space distributions

In the previous sections, we have discussed galaxy corre-
lations in terms of a set of points corresponding to their
position in space. (Galaxies can be characterized by their
luminosity (or mass). Therefore is possible to study the
whole matter distribution, i.e. weighing each point by
its mass. It is natural to consider the possible scale in-
variant properties of this distribution, and this requires
a generalization of the fractal dimension and use the
concept of multifractality (MF). The concept of MF is
appropriate to discuss physical systems with local prop-
erties of self-similarity, in which the scaling properties
are defined by a continucus distribution of exponents.
This situation requires the generalization of the simple
fractal scaling to a MF distribution in which a continu-
ous set of exponents is necessary to describe the spatial
scaling of peaks of different weight (mass or luminosity).
In this respect the mass and space distributions become
naturally entangled with each other.

A MF analysis of the CfAl (Coleman & Pietronero,
1992)and Perseus-Pisces (Sylos Labini et al., 1996a) (Sy-
los Labini and Pietronero, 1996) (see also Garrido et
al. (1996)) shows that also the full distribution is scale
invariant and this lead to a new important relation be-
tween the luminosity function and the space correlations
properties (Sylos Labini and Pietronero, 1996). In fact,
the continuous set of exponents [, f(a)] that describes a
MF distribution can characterize completely the galaxy
distribution when one considers the mass {or luminosity)
of galaxies in the analysis. In this way many observa-
tional evidences are linked together and arise naturally
from the self-similar properties of the distribution. Con-
sidering a MFE distribution, the usual power-law space
correlation properties correspond just to a single expo-
nent of the f(a) spectrum: such an exponent simply
describes the space distribution of the support of the
MF measure. Furthermore the shape of the luminosity
function (LF), i.e. the probability of finding a galaxy of
a certain luminosity per unit volume, is related to the
f(e) spectrum of exponents of the MF (Sylos Labini
and Pietronero, 1996).

These results have important consequences from a
theoretical point of view. In fact, when one deals with
self-similar structures the relevant physical phenomenon
that leads to the scale-invariant structures is character-
ized by the exponent and not the amplitude of the phys-
ical quantities that characterizes such distributions.

5 Conclusions

The main assumption of modern cosmology, i.e. the ho-
mogeneity of matter distribution at some large scale is
lacking a clear experimental support. On the contrary
we have shown that galaxy distributions in all the avail-
able redshift surveys, present power law (fractal) long
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range correlations up to their limiting depth R,, with
D = 2. In particular we find that in various three di-
mensional surveys £; s 10002~ Mpc, that corresponds
to one forth of the Hubble radius (Sylos Labini et al.,
1997).

Moreover we have discussed the reinterpretation of
the so-called log N — log 5 relation, that gives the num-
ber of objects with apparent flux greater than S. This
is strongly related to the behaviour of the space den-
sity, and we find that, for various kind of astrophysical
sources, it is fully compatible with a fractal distribu-
tion, with almost the same fractal dimension found by
the whole three dimensional analysis (i.e. D = 2).

This picture unifies the various different observations
of luminous matter in cosmology, without introducing
any "ad hoc” hypotheses. This brings us to a new pic-
ture which simplifies or eliminate a number of inconsis-
tencies of the standard one:

- the quite small ” correlation length” (rg & 5h 1 Mpc)
found by the &(r) function analysis, that is in contrast
with the existence of large scales structures extended
over some hundreds h~! Mpe, is spurious. This has al-
lowed us to clarify also the mismatch galaxy-cluster, and
points out that the clusters and the galaxies are different
representations, of the same self-similar structure.

- Galaxy counts, {i.e the so-called log N —log § rela-
tion). We have shown that the galaxy counts arc com-
pletely compatible with the full three dimensional cor-
relation analysis. Moreover we found that various other
astrophysical objects such as radio-galaxies, quasars, X-
ray sources and ~y-ray bursts are completely compatible
with a fractal structure in space with D =~ 2.

In summary, our result, the existence of a single frac-
tal structure for the different kinds of astrophysical ob-
jects up to the deepest scales ever probed for luminous
matter, clarifies various inconcistencies of ohservational
astrophysics, and points out which are the real theoret-
ical tasks that a consistent model should clarify.

In this new picture, the theoretical problem becomes
clear even though probably more harder. The experi-
mental facts are that luminous matter is fractal while ra-
diation is isotropic. A theory should put together these
apparent conflicting facts. However if on one hand this
problem may appear more difficult, on the other hand
the broader framework of non-analytical structures may
open new possibilities for its explanation. For exam-
ple, we have stressed that isotropy and homogeneity are
not so closed related for non-analytical distributions, We
have shown in fact that the local isotropy implied by
the Cosmological Principle is fully satisfied by a frac-
tal structure even though this distribution is strongly
inhomogeneous at all scales (Sylos Labini, 1994).

Another important point is the following: at a first
sight one may think that the weakening of the experi-
mental support for a homogenous metric may invalidate
the Hubble law to estimate the distances form redshifts.
However the Hubble law is an experimental fact and the

homogenous metric corresponds to the simplest theo-
retical model that can describe it. Moreover, in the
standard picture we find the following paradox. In the
framework of the standard Freedman model the linear-
ity of Hubble law iz a consequence of homogeneity of
matter distribution (Baryshev et al, 1994). If we have
a strongly fluctuating behaviour for the density, we ex-
pect strong disturbances of the pure Freedman behavior.
However the observation suggest the opposite however:
a striking linearity of the redshift-distance relation is ob-
served in the distance range 2= 25h~1Af pe, while at the
same scales the luminous matter distribution is highly
irregular and not homogenous. This suggest the pos-
sibility of explaining these facts needs a more complex
model.
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