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Abstract. Long-time evolution of large-scale geophysical
flows is considered in a 3-plane approximation. Motions in
an infinite 2-layer model ocean are treated as a system of
weakly nonlinear Rossby waves (weak geostrophic turbu-
lence). The evolution of the energy spectrum of the baro-
tropic and the baroclinic modes is investigated on the basis
of numerical experiments with the kinetic equation for baro-
clinic Rossby waves.

The basic features of free (nonforced inviscid) spectral evol-
ution of baroclinic flows are similar to those of the barotropic
motions. A portion of the energy is transferred to a
sharp spectral peak while the rest of it is isotropically distrib-
uted. The peak corresponds to an intensive nearly zonal baro-
tropic flow. Typically, this well-defined barotropic zonal an-
isotropy inhibits the reinforcement of its baroclinic analogy.
For a certain set of initia! conditions (in particular, if the baro-
tropic zonal flow is not present initially), a zonal anisotropy
of both modes is generated. The interplay between the multi-
modal nearly zonal flow components leads to the excitation
of large-scale (several times exceeding the scale of the initial
state), mostly meridional, baroclinic motions at the expense
of the barotropic nearly zonal flow. The underlying mechan-
ism is explained on the level of elementary mixed-triad inter-
action.

The whole wave field retains its essentially baroclinic as well

as spectrally broad nature. It evidently tends towards a ther-
modynamically equilibrated final state, consisting of the su-
perposition of a (usually barotropic, but occasionally multi-
modal) zonal flow and a wave system with a Raleigh-Jeans
spectrum. This evolution takes place as a multi-staged pro-
cess, with fast convergence of the modal spectra to a local
equilibrium followed by a more gradual adjustment of the en-
ergy balance between the modes.

Correspondence to! 'T. Soomere

1 Introduction
1.1 A beta-plane model of synoptic motions

The synoptic motions on the Earth typically have a charac-
teristic horizontal scale I, 2 100 km, a vertical scale of the
order of the full depth of the ocean (atmosphere), and a time
scale of several dozen days. Their propagation may be de-
scribed (to a first approximation) by treating the Earth’s sur-
face as an infinite flat plane (#-plane) in which the Coriolis
parameter varies linearly in the North-South direction (e.g.,
Kamenkovich, 1977; Pedlosky, 1985). This approximation,
although excluding the features associated with a countable
set of wave harmonics on a sphere (¢.g., Reznik et al., 1993)
and the effect of the shores, greatly simplifies investigation
into the equations of the motion. The mathematical descrip-
tion of synoptic-scale motions is reduced to a general problem
of quasi-2D (-plane flows. In the pure barotropic case, their
nondimensional equation reads

HAY — a®) [0t + 89 [dx = eJ (A, ), (1)

wherte ¥ is the stream function, (z, ¥) - the Cartesian coordin-
ates on the S-plane (the x-axis is directed to the East and the
y-axis - to the North); ¢ - time, ¢ = U/(SL?) - the measure
of nonlinecarity; 4 - the North-South derivative of the Cori-
olis parameter, I/ - the characteristic velocity scale, J{f,g) =
fz9y — fy9z and a~? - the Rossby radius, Eq. (1) coincides
with the equation for drift waves in plasma (Hasegawaet al.,’
1979).

A principal difference of the motions in question as compared
to the classical 2D trbulence (Kraichnan and Montgomery,
1980) consists in the presence of anisotropy. It is represented
by the 042/ dx term and results in the existence of wave solu-
tions to the linearized Eq. (1) called Rossby waves. Aniso-
tropy is created owing to the interplay of the rotation and the
sphericity of the Earth. The resulting variation of the Cori-
olis parameter distinguishes the preferred direction: the ar-
bitrary rectilinear flow along parallels (zonal flow) described
by ¢ = f(y) satisfies Eq. (1).



1.2 Kinetic approach

Natural motions usually consist of a vast number of harmon-
ics. They can be treated as random wave fields with continu-
ous spectral density (spectrum) of energy. Their evolution is
governed by an infinite system of equations similar to the
BBGKY system (Tapp, 1989) for their statistical moments.
As a general rle, it cannot be truncated because of the incess-
ant generation of the higher moments by the nonlinear coup-
ling (Monin and Yaglom, 1975).

We shall concentrate on the weakly nonlinear particular case.
Heuristically, for a weakly nonlinear field, nonlinear effects
are negligible on time scales comparable with its character-
istic period, but for longer time intervals nonlinearity may
have a significant impact. Mathematically, such systems are
described by equations [e.g., Eq. {1)] in which the nonlin-
ear terms are small as compared to the linear ones. Physic-
ally, this means that the velocities of the particles involved in
waves are small as compared to the phase velocities of wave
harmonics. In this case, synoptic motions can be regarded as
a system of weakly nonlinear Rossby waves (weak turbulence
of Rossby waves or weak geostrophic turbulence).

A principal advantage of this restriction is that the fourth and
higher order cumulants can be discarded (Hasselmann, 1962)
in deriving an equation {kinetic equation } for the energy spec-
trum. This equation describes the slow (as compared to the
characteristic wave period) spectral evolution of wave fields
owing to the lowest-order resonant interactions. Itis a hydro-
dynamical analogue of the Boltzmann equation, in which the
colliding particles are represented by interacting wave pack-
ets. A formal difference here is that at least three packets must
meet each other in order to interact. Travelling through each
other during a short time interval (as compared to the time
scale of spectral evolution), they execute an “elementary” in-
teraction and propagate into various directions afterwards.
These interactions are integrated by the kinetic equation in the
same way as the Boltzmann equation integrates collisions of
material particles.

1.3 Barotropic and baroclinic synoptic motions: numerical
experiments and analytical results

The main features of barotropic motions on a 3-plane or on
a rotating sphere are summarized, e.g., in (Kraichnan and
Montgomery, 1980; Rhines, 1979). With time, a clear dom-
inance of the zonal component of the motion (usually intense
zonal jets) is found to arise (Williams, 1978, among others).
The jets are superposed by regions of mostly vortical motions.
In terms of the energy spectrum, a well-defined peak in a cer-
tain area of the wave vectors arises, but the whole motion re-
tains its spectrally broad nature. This behaviour results from
the interplay of the 3-effect and the nonlinearity. The former
stabilizes motions with the dominating zonal component; the
latter is responsible for widening the energy spectrum as well
as for creating “strongly nonlinear™ structures.

The basic theoretical features of the 3-plane turbulence co-
incide with those of the isotropic 20 turbulence. Both mo-
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tion systems possess two quadratic motion invariants - energy
and enstrophy. The energy flux is directed to larger scales (the
mean scale of motions increases with time) and the enstrophy
flux towards smaller scales.

Predictions concerning the long-time evolution of the -plane
turbulence can be divided into two classes. First, the direc-
tionally averaged nontruncated spectra of forced dissipative
systems should reach the classical K~/ or k=% laws within
the inertial intervals (Rhines, 1975; Pelinovsky, 1977). Sa-
zontov (1981; 1983) proved the formal existence of aniso-
tropic power laws k%17, where a,7 € R, & = (k,1) is the
wave vector and & = |&|. In a number of investigations into
drift waves the system of motions is expected to decay into a
zonal flow (e.g., Balk et al., 1990; Mikhailovsky et al., 1988).
This belief has also been quite common in geophysics (e.g.,
Monin, 1990; Vallis, 1983).

Second, free (without energy sources and sinks) systems
should evolve towards a “thermal” equilibrium state. In com-
mon with classical fields, which exhibit an ultraviolet cata-
strophe, the equilibrium statistical mechanics of these sys-
tems is meaningful only if the latter are spectraily truncated,
i.e., include a limited set of wave harmonics, say,0 < R <
K < Ry < oo. There exists a unique equilibrated energy
distribution F,;' = a + bk? with two “temperatures” a, b
(Kraichnan and Montgomery, 1980; Camevale et al., 1981,
Carnevale, 1982; Carnevale and Martin, 1982). Thus, the
zonal anisotropy of geophysical fiows may arise during a lim-
ited time interval and may finally be stirred (e.g., Salmon,
1980; Vallis and Maltrud, 1993).

Those predictions show fundamentally different directional
structures of the final states. In the case of dissipative flows, a
highly anisotropic scenario is believed to be true, while a per-
fect isotropy is expected to appear in the truncated inviscid
case. This discrepancy can be resolved by showing that the
B-effect occurs only in disequilibrium phenomena and does
not affect the equilibrium mechanics (e.g., Holloway, 1986;
Rhines, 1986),

The weakly nonlinear theory makes a step towards combining
those scenarios. It predicts an anisotropic equilibrium state
consisting of a superposition of a rectilinear zonal flow and a
wave system with F,, (Reznik and Soomere, 1983b). Phys-
ically, the existence of such states is a fine expression of an
“gquilibrium” between the impact of the 3-effect and weak
nonlinearity. This concept is supported by the results of nu-
merical experiments with the kinetic equation for barotropic
Rossby waves (Reznik and Soomere, 1983a; 1984a; 1984b;
Reznik, 1986). A porticn of the energy is always transferred
to the zonal component of the flow. The rest of the energy
is distributed more or less isotropically. The whole spectrum
evidently evolves towards a specific distribution, consisting
of the sum of a delta-shaped spectrum of a nearly zonal flow
and an isotropic part (Fig. 1). Therefore, an intensive energy
transfer to the zonal component of the motion by no means
contradicts the fact that the system tends towards a thermo-
dynamical equilibrium. However, the balance between the
zonal and non-zonal components as well as the spectral shape
of the equilibrium zonal flow still remains unclear. Further-
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Fig. 1. Spectral evolution of barotropic Rossby wave systems. Interactions with waves with x < 4 are ignored (Section 2.3). The sign of the k-component
of the wave vector is reversed hereinafter. The initial states (the uppermost row) are normalized and spectrally isotropic (left column; spectrum is proportional
to . exp(—«?)), with initially dominating meridional motion component (middle column; proportional to & exp(—#x2) cos* i) or with initially prevailing
zonal component (right column, proportional to & exp(—s2) cos? ). The Rossby radins Ly = a™2 = oo (medium rows) or Ly = a2 = 1 (the lowest
row). The main energy-containing area 0 < k&, < 2 is represented in every panel. Contours are plotted in the logarithmic scale (four lines per decade at

1.0/1.78/3.16/5.62) starting from 0.01. Dashed lines show relatively small spectral level.




more, the exact equilibrium state cannot be reached owing
to the inability of the resonant interactions to alter the zonal
flow.

It is of interest that spectral pictures computed from differ-
ent sources (direct numerical simulation, closure models with
strong nonlinearity, weakly nonlinear framework) demon-
strate a concordance (Vallis and Maltrud, 1993; Lee and Held,
1993: Reznik and Soomere, 1984a; Reznik, 1986). In all the
listed cases, a strong medium-scale zonal anisotropy com-
bined with a spectrally broad system of motion was detected.
The described results are directly applicable to vertically ho-
mogeneous (barotropic) motions. However, synoptic mo-
tions are, as a rule, essentially depth-dependant (baroclinic).
The vertical structure of stratified flows may be described in
terms of a linear combination of a barotropic and a certain
{maybe infinite) number of baroclinic modes (Phillips, 1966).
This decomposition is equivalent to a model consisting of
non-mixing vertically homogencous layers. Since a substan-
tial amount of the synoptic energy is usually contained in the
two lowest modes, we shall use, to a first approximation, a
two-layer model in which the motion contains only the baro-
tropic and the (first) baroclinic vertical mode.

The basic features of the spectral evolution of barolinic mo-
tions on a 3-plane coincide with those of the barotropic case.
Energy mostly moves towards larger scales and enstrophy to-
wards smaller scales (e.g., Salmon, 1980; Charney, 1971).
However, a number of studies have shown that even the
simplest baroclinic (2-layer) flows exhibit interesting
new features. Significantly more intensive zonal flows have
been detected, and an extraordinarily long time needed
for obtaining statistical stationarity of the zonal flow was re-
corded in numerical experiments (Bartello and Holloway,
1991; Panetta, 1993; Vailis and Maltrud, 1993), The scale-
increasing process is no longer universal and depends on de-
tails of the energy flux between the modes (Marshall, 1986).
Within the kinetic theory a number of mathematical problems
arise (Soomere, 1992; 1993), There exist different evolution
scenarios of the energy balance between the motion compon-
ents. Nontruncated forced (as well as realistic) systems are
believed to fully barotropize (Rhines, 1977; Monin, 1990},
while free truncated systems are expected to evolve towards
an energy equipartitioning between modes (Salmon et al.,
1976; Holloway, 1986).

The current study focuses on the effects of baroclinicity on
the spectral evolution of free 8-plane turbulence. It is mostly
based on numerical experiments with the kinetic equation for
Rossby waves in a 2-layer basin. A few typical runs will be
presented in detail. A number of finer effects (balance
between the generation of spectral peaks and spectral broad-
ening, balance between the growth of a zonal flow and spec-
tral isotropization, evolution towards thermodynamically
equilibrated distributions and parameters of such distribu-
tions, details of energy and enstropy fluxes) are presented
only in short (and are hoped to be discussed in forthcoming
papers). Although the study uses the parameters of synoptic
motions in the oceans, the basic mechanisms apparently be-
come evident also in the dynamics of the atmosphere.
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Section 2 presents an introduction into the numerics of the
kinetic description of baroclinic flows. Section 3 describes
typical evolution scenarios. Section 4 discusses some details
of energy redistribution mechanisms.

2 Numerics of the baroclinic kinetic equation
2.1 Baroclinic kinetic equation and its equilibrium solutions

Let us consider an infinite ocean of constant depth on an even
B-plane consisting of two non-mixing homogeneous layers
with densities p; < ps and mean thicknesses h1, ha, respect-
ively. The subscript "1” corresponds to the upper layer, ”2"
- to the lower layer. Equations for stream functions ¥y, 4
within this mode] are analogous to Eq. (1) (see, e.g., Kamen-
kovich, 1977; Kamenkovich and Reznik, 1978; Pedlosky,
1985; Kozlov et al., 1987). The flow is decomposed into a
barotropic ¥y = 4 + 5012 and abaroclinic ¥y = 9y + 81 ¢
mode, where s > §; are solutions of the equation

hip182/pa + (h1 — ha)s —hy = 0.

The slow evolution of the spectral components is described
by the following system of equations (Kozlov et al., 1987}

dF, :
F = 8r Z Ipm'n;
m,n=0
b = [ L Ko Ny S8R0 . @

Here F, = F,(R, 7) is the spectrum of the barotropic (p = 0)
or the baroclinic (p = 1) mode, 7 = e~2¢ - slow time, Ipma,
p,m,n = 0,1 - collision integrals describing the energy al-
teration of the wave with £ of mode p due to interactions with
waves belonging to modes m, n; 202:’;,? =P R X By %
x(k? + a2 — k7 — a,) - interaction coefficients; v5,, =
(1 -2lm—=n|)(sp + S1—mS1—n)i Kpmn = CEIRET:F%FTE +

CIE™ B, FY + Cod FpF2; F' = Fy(Rm)s Npmn = (K7 +

KKy
a2)(r? + aZ)(3 + a2); wp(R) = —k/(x* + a3) - disper-
sion relation of the Rossby waves of the p-th mode; w2, =
wplR) + wm (R1) + wn(R2); Rorz = R + K1 + Ro; dR12 =
dky dl; dks dly, and the integrals are taken over the four-
dimensional space R%(R;) x R?(z). The quantities a; ! are
equivalent to the barotropic (p = 0) and the baroclinic (p =
1) Rossby radii and equaltoa? = fEhT" —p1sp/(pah2)l/g',
where f is the mean value of the Coriolis parameter, g - grav-
ity acceleration and ¢’ = g(p2 — p1)/p2. For simplicity, we
shall call Egs. (2) a baroclinic kinetic equation. It contains
the simplest partial differential operator 3/87 and several in-
tegral terms [,,,,,, with quadratic nonlinearity. The unknown
functions Fj, both depend on slow time and two wave vec-
tor components. Each collision integral contains three Dirac
delta functions and may be reduced to a one-dimensional in-
tegral. The delta functions reflect the fact that the most intens-

ive energy exchange occurs between the wave harmonics the
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wave vectors and frequencies of which satisfy the resonance
conditions wilZ = 0; Kp12 = 0.

A free wave system governed by a kinetic equation always
conserves its energy, enstrophy and meridional component of
the wave impulse [see below, Egs. (5), (6), (7)]. Furthermore,
an analogy {Eq. (8)] to Boltizmann’s H-theorem (which
proves the irreversibility of the spectral changes) holds. Thus,
the systems in question evolve towards a thermodynamically
equilibrated state. The corresponding solutions to the kinetic
equation are called equilibrium solutions.

There exists only one family of differentiable equilibrium
solutions F.2 = a + b(x? + a2} to Egs. (2) (Kozlov et al.,
1987). The equilibrium “temperatures” e, b are the same for
both spectral components. These spectra coincide with the
equilibrium spectrum of the isotropic 2D turbulence and are
meaningful for spectrally truncated systems only. In common
with the general geostrophic turbulence (Holloway, 1986),
the final state of the spectral evolution of the flows in ques-
tion is essentially baroclinic. Although in case ay = 0 there
exists a pure barotropic solution F; = 0 to Egs. (2), the cor-
responding flow will evidently lose its energy to baroclinic
disturbances.

The theory of anisotropic equilibrium solutions to the kinetic
equation is generalized to the 2-layer case in (Kozlov et al.,
1987). There exists a family of equilibrium solutions Frreq =
Jp(1)6{k) + Fpeq to Egs. (2). The continuous functions f, (1)
representing the barotropic and baroclinic components of the
zonal flow are independent, whereas the smooth parts of the
spectra are related,

2.2 Reduction of the kinetic equation

Since the density of the water masses in the Earth's aceans
varies insignificantly (it increases from surface to bottom typ-
ically by 0.5%), in Egs. (2) it is allowed to disregard the
quantities of the order of its alteration. We shall drop the
terms O((pz — p1)/p2) and replace p; /p» by 1. These ap-
proximations yield (Kozlov et al., 1987):

so = hafhy; s1=-1,
2 f02 . 2 _ foz(hl +h2)_
ay = e 4] = "
g(h1 + ha) g'hihy
Mo = YW =70=0 o=14 =7 =50 +1;
Mo = 851 4% =so(so+1).

In particular, we obtain Ingy = Ig;p = Ijo0 = 0, which
reflects the fact that the interactions between two barotropic
waves and one baroclinic wave in the oceans are much less
intensive than other resonant interactions (Jones, 1979; Mi-
rabel, 1985).

The natural boundary between the lavers in the oceans is the
main thermocline, usually located at a depth of h; ~ 1 km.
The mean depth (h; +hz) of the ocean is approximately 5 km,
With these values, the kinetic equation contains factors (sg +
1) ~ 30, which can be removed by defining

T =r1(ha/h1 + 1)2 = 7{s0 + 1)2. €))]

By using (3), replacing Fy by F and Fy by G = a2F;, we
obtain:

8F

7 = 8m(Jooo + afo11);

oG

T = 8m(1 — )11y + 1671110, (4

where a = h /h; and the kernels of the collision integrals
are modified in an obvious manner. Egs. (4) have the same
basic properties as Eqs. (2). Namely, the conservation laws
for energy E, enstrophy Y and the meridional component of
the wave impulse M as well as the law for the increase in en-
tropy H = [ In FG dk dl, are satisfied:

E= f (F + oG) dk di = const; )

Y= f [(k? 4+ @)F + a(x? + a})G ] dk dl = const; (6)

IF alG
M= f[wg(k') + m] dk dl = const; (7)
dH d
—_— = > 0. 8
T dT/lnFGdkdl_D (8)

Also, the sets of stationary and equilibrium solutions of Egs.
(2) and Eqs. (4) are identical.

The kinetic equation maintains spectral symmetry about the
coordinate axes. A proof for the barotropic case given by
Reznik and Kozlov (1981) can be easily generalized to the
case in question. The tendency of barotropic spectra to move
fast towards a symmetrical state (Reznik and Kozlov, 1981;
Reznik and Soomere, 1984a) makes it natural to assume that
an analogous mechanism also works in the baroclinic case.
Below we shall consider only symmetrical initial spectra.

In order to remove the §-functions from the collision integ-
rals we perform integration over ks, [ and then introduce the
polar coordinates k, ¢, Ko, ¢, where & = (kcos p, k sin @),
2;{1 = EQ — K 21-52 = "'EQ - E; (,0" = L(E, -‘_C'U); Ky = |i_€'0|
{Longuet-Higgins and Gill, 1967). The argument of the re-
maining §-function can be written as

Wi = kP J(16Np2),

P
where
Pomn = —16NM2 w02 (kcosyp)™ =
= nﬁ + 2Apmnrc§ +4Bpnkg + Cpmn;
Apmn 2(a2, +a%) + (x* + 2a2) cos 2’ —
— 2(x? + a2) sin 2¢' tan @;
Bpmn = 2(a2, —a®)}s! x

x [(k® + a2) sin 2¢’ tan ¢ — a;, cos 'j;
Cpmn = —-3x* — 452((1% + a?n + ai)

2 2
+ 16a2.a2 — 8a§(afu +aZ).



The interaction integrals are reduced to

2w
|k¥1|_/0‘ jlEOKF””"“' pmn' dy',

Ipmn = Z

#0>0: Pprmn (Ko )=0

where kg = ko(y') is a positive solution of the equation
Pyn(ko, ") =0 and

8Ppmn
48&0

Rpmn = = ""‘38 + A;pmnK«O + Bpma.

Taking into account that in case g, = an, we have

2T
/ k0K pmn |R;,,1m| dy = 2/ ko Kpmn IRpmn| d¢',
0

Kol Ryt = |42, — Comn and By, = 0, we can

reduce the collision integrals of Egs. (4) to

|—1/'2

T C
Tooo = / x ©
0 64 |k| \/ Ag[][) —_ Coog
x[2CF,F, — (C + D)FF, + (D — C)FFy}dy';
Iy = f (1%
K;U 64”‘:1 | 011 - CU].I

x[26CG1Ga+ (45— C— D)FGy +(D—C —4S)FGy) dy';

I = / © x an
o 64]k| /A — Cin
X[2CG\ G2 — (C + D)GG + (D — C)GGa) di;
2
K‘.o C 25
I =
110 }CZ}Uf 128|kR1101 (12)

X [2(0*25)G1F2—Q(C+D)GG1 +(4S_C+D)F2G] d(p’.

Here 2k) = &g cos(w+yp') —k cosw; 2 = ko sin(p+y’) —
ksing; C = k26%sin2¢"; D = (3x% — &i)kok sin ¢’ and
§ = Kok sin ¢’ (@ —a?). Thus, we have reduced the collision
integrals to integrals over a bounded interval. The arguments
1. Ko of the spectra lie on a specified curve called resonance
curve.
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2.3 Numerical method

A generalization of numerical treatment of the barotropic
kinetic equation (Reznik and Kozlov, 1981; Reznik and Soo-
mere, 1983a; 1984a) is used for the Cauchy problem for Egs.
(4). The spectra are computed at the nodes of a finite reg-
ular grid on the wave vector plane. In the case of a finite-
enstrophy Rossby wave system F, o« o{x™*), thus, in the
event of a sufficiently large computational region {2, the trun-
cation error should be small, at least during the initial phase
of the simulations. The collision integrals are replaced by a
quadrature formula and the values of the spectra at points not
coinciding with the grid nodes are interpolated (Scomere and
Rannat, 1991). Since the interaction coefficients for Rossby
waves have a relatively simple form, the “straightforward”
method is competitive with the “symmetrical” method pro-
posed for surface waves (Hasselmann and Hasselmann, 1980;
Hasselmann and Hasselmann, 1985; Hasselmann et al., 1985;
Komen et al., 1994).

The rectangular grid consists of 49 x 66 nodes within the seg-
ment 2 = {k < 4,0 € ¢ < w/2} and is equivalent to the
97 x 114 grid used in the barotropic studies. The grid has
a finer resolution in the vicinity of the I-axis. The singular-
ity points of integrands (see next section) are initially com-
puted and stored. The contributions from these are estimated
on the basis of an asymptotic analysis of (Scomere, 1993).
The quadrature method [ordinarily the Gauss’ quadrature for-
mula with 6 nodes in each segment [m= /4, (m+1)m/4)],0 <
m < 7] is modified as occasion requires within subintervals
between the singularity points. The specira at points &y, Kz,
not coinciding with the grid nodes, are interpolated (using a
double linear interpolation method) between the nodes adja-
cent to Ky, Kz. Typically, the rms. error of the calculated col-
lision integrals does not exceed 1%.

The resulting system of ordinary differential equations is not
closed because in any finite region {2 there exist vectors &,
interacting with vectors lying outside {}. Two sorts of trunca-
tion were used in the barotropic experiments. First, the zero
energy level {equivalent to infinitely fast dissipation) was as-
sumed outside 2. A disadvantage of this assumption is that
the basic feature of irreversibility is lost. Another truncation
scheme consists in completely ignoring all interactions in-
volving vectors £ ¢ £ and is equivalent to replacing the in-
finite integration area in Eq. (4) by (R;) x Q(&2). Iten-
sures that all the conservation laws as well as the H -theorem
remain valid. In what follows only a modification of the latter
closure is used. By analogy with the barotropic case it can be
expected that the main features of spectral evolution are in-
sensitive with respect to the particular closure, at least in the
main energetical area x = 1. However, a comparative study
of closures could be of interest.

Eqs. (4) were integrated by alternately using an explicit
second-order Adams scheme (predictor) and an implicit
third-order Adams scheme (corrector). Mostly, a value of the
time step AT was used, for which one iteration of the cor-
rector ensured the calculation of the spectra with a certain ac-
curacy. The latter condition was always satisfied provided the
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whole method remained stable. Numerical stability is en-
sured by the proper choice of the time step AT". There exists a
critical value AT,,, which depends on both the initial condi-
tions and on the current time T'. If AT < AT, the method is
practically insensitive with respect to the time step (a double
decrease in the time step leads to an alteration of the main in-
tegral characteristics of an order of 10—° per time unit). When
AT > AT,,, the calculation becomes unstable after a few
steps. The critical value was estimated experimentally and
the runs were mostly performed with AT = AT, /2.

An essential reason for the numerical instability is insufficient
accuracy of computing the collision integrals, with several
specific error components. First, the nodes of the quadrature
formula are distributed regularly within the integration seg-
ment [0, 2] but usually very unevenly along the resonance
curve, This property often results in a certain raggedness of
the integrand. Second, the error of the interpolation proced-
ure (which is negligible for the relatively smooth initial spec-
tra) essentially increases when sharp spectral peaks arise (see
below). Third, the length of the resonance curve crucially de-
pends on the direction of the wave vector & and varies more
than by one order of magnitude for waves of equal length. A
part of this curve often lies outside the computational area,
resulting in a low resolution of the quadrature formula.

2.4 Applicability of the kinetic equation.

The kinetic equation is valid for limited time intervals
(T £ €~?) and for limited wave vector areas (x < e=2). If T
is of greater value, higher order interactions may become sig-
nificant (Benney and Newell, 1969). For interactions of very
short waves (k >» €~2) the assumption of weak nonlinearity
generally fails (Reznik, 1984; Reznik, 1986), The former re-
striction is apparently satisfied in our simulations, performed
until 7' = 5...15. The latter is achieved through neglecting
the interactions with short waves.

The integrals Jygp and 7 are identical with the collision in-
tegral of the barotropic kinetic equation and are in no way ex-
traordinary. Other integrals may contain singularities, Some
of the barotropic waves cannot interact with the baroclinic
mode (Jones, 1979), for them the equation Pymp (o) = O has
no positive solutions and fy;; = 0. The integrand of fy;; has
singularities, if any, only provided x* < 4/3 (Fig. 2a). The.
singularities of J11¢ arise in an infinite area in the vicinity of
the /-axis (Fig. 2b). Most of such singularities are integrable.
A collision integral I, (%) may diverge (equivalently, the

kinetic equation may fail) if the function w3LZ, has multiple

zeros on the surface Rp1, = O. Generally, this equation is
valid for the vector £* only provided that the guantity A =

Vwm(R) — Vw, {K2) | has a nonzero lower boundary for all

vectors £y, K3, resonantly interacting with £* (Reznik, 1984;
Reznik, 1986). {For brevity, we shall speak of interactions
of wave vectors, meaning wave interactions with these wave
vectors; V = (8/8k,5/81) is the group velocity operator.]
The case A = 0 is called double resonance and the corres-
ponding points £* in the wave vector space - double reson-
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Fig. 2. Map of singularities of collision integrals for the case ag = 0;a; =
1.

a) Set of double resonance points for the barotropic mode (collision integral
Ip11). The small circles mark the singularity points of the double resonance
curve. At its circular branch integral Jo11 converges. In the no resonance
area interactions with the baroclinic mode are inhibited. Integrable singular-
ities of the collision integral occur within the fishhook-like area between the
double resonance curve and the I-axis.

b) Double resonance curve (bold line) and the area of singularities for the
baroclinic mode {collision integral I110). Singularities arise in the fishhook-
like area (bounded by the double resonance curve and the -axis) and in the
infinite region between the {-axis and the triple resonance curve {dashed line;
at this curve the function w)1Z, has a wriple zero). Dots mark the grid used in
simulations. For better comparison of the mutual location of the curves and
grid points two enlargements are plotted.



ance points. It indicates that two harmonics of a resonance
triad have equal group velocities and the underlying hypo-
thesis of random phases does not apply.

The double resonance points for baroclinic Rossby waves
form an algebraic curve on the (k, {)-plane called double res-
onance curve (Soomere, 1992). It always contains the -axis
and in the cases ¢, > a,, = ap and a,, # a, also one
or two closed branches (Fig. 2). Double resonance of waves
with & = 0 has no impact on the total energy exchange and
the kinetic equation remains valid in the vicinity of the l-axis
(Reznik, 1986). It also remains correct in the neighbourhood
of the k-axis as well as in the vicinity of the circular branch
of the double resonance curve in the case a,, = a,. For other
double resonance points collision integrals generally diverge
or remain undefined and the kinetic equation fails (Soomere,
1993).

The values of 8F/JT, 3G /AT may be distorted in the vi-
cinity of the double resonance curve, The total error caused
by the inability of the kinetic equation to describe the energy
exchange of “almost” double resonance waves is in a certain
sense small in comparison with the integral intensity of non-
linear interactions (Soomere, 1993). That allows us to hope
that in numerical experiments it is admissible to disregard the
evolution of the spectrum in the vicinity 6f the double reson-
ance curve and that the arising inaccuracy will not essentially
distort the whole spectrum.

A set of experiments with the initial spectra of run 1 (see be-
low) was performed in order to estimate the influence of such
a distortion. At the grid points £*, located in the neighbour-
hood of width ¢; of the double resonance curve, the derivat-
ives F /8T, 8G /0T were approximated using their values
at the grid points closest to £* located outside of this neigh-
bourhood. On changing €; from 0.005 to 0.1, the behaviour
of the spectra, their derivatives and the basic integral char-
acteristics remain practically unchanged until ' = 3. That
suggests that the distortion caused by double resonance ap-
parently has no cumulative influence on the spectral evolu-
tion. Since no peculiar values of the spectra were detected
in the test computations including all the grid points, we per-
formed calculations with the complete grid. Also, the satis-
factory temporal behaviour of the integral constraints (see
next section) implicitly confirms that the effect of double res-
onance is negligible.

2.5 Experiments and their reliability

In this paper we shall mostly discuss results of runs 1...9,
performed in order to generalize the results of barotropic sim-
ulations to the 2-layer case (Table B1). The initial energy dis-
tributions are proportional to  exp(—+~2) and occasionally
contain spreading factors sin* p or cos? . Several runs were
initially performed with a modest resolution of the quadrature
formula (Soomere and Rannat, 1990; Soomere and Rannat,
1991) and repeated now with a greater accuracy.

Other simulations (runs 10. . . 21) will be discussed in part IT
of this study. They cover the following subjects: generation
of barotropic motions from pure baroclinic flows and evolu-

Energy
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Fig. 3. Temporal behaviour of total energy, enstrophy and their derivatives.
Runs 1 (both initial spectra isotropic), 5 (both with initial meridional aniso-
ropy), 9 (both with initial zonal anisotropy), 10 (nearly barotropic isotropic
initial state) and 13 {pure baroclinic isotropic initial state) are represented.
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tion of barotropic flows in the presence of baroclinic disturb-
ances (runs 10...15), dependence of the spectrat evolution
on the vertical structure of motions (runs 16... 18) and the
location of the initial spectral maximum {runs 19...21).

The values of the parameters @, are chosenasag = 0;2; = 1
(i.e., the barotropic Rossby radius is infinite and the charac-
teristic length scale L equals the baroclinic one). The para-
meter a (the ratio of the layers’ thicknesses) is set at o« = 0.2
except for runs 16...18. The initial total energy £ = 1. A
selection of the characteristics of the experiments is given in
Table B1. A typical simulation consists of ca 1000 time steps
and takes ca 2 hours of CRAY-2 single CPU time.

A permanent check is made on the proper operation of the
scheme through the behaviour of the constraints {Egs. (5),
(6)] and the law of increasing in entropy [Eq. {8)]. The iden-
tity M = 0 [Eq. (7)] is maintained numerically. Typically,
the total energy F alters less than by 1% per time unit. At
the beginning of most of the runs, the energy alteration rate
|OE /8T is approximately 0.3% and somewhat increases in
their final phases (Fig. 3, Table B1). It exceeds 0.01 only in
afew experiments (runs 9,12...14,17...21; exceptionally,
inrun 15,0.01 < |0E/9T| < 0.03). However, the total in-
teraction intensity in the listed simulations exceeds its typical
value several times (see Table B1).

Apparently, the system enstrophy Y is more sensitive to com-
putational errors because of the factor x? + @2 in its spec-
tral representation. Since the spectra are evidently most dis-
torted near the boundary of the computational area, the en-
strophy flux towards shorter waves may be computed relat-
ively inexactly. Indeed, the total enstrophy usually alters by
1...2% per time unit. Its alteration rate ordinarily increases
in the final phases of calculations, achieving in extreme cases
(runs 15, 18 and 20) values Y =1 8Y /8T | max = 0.04...0.05.
Thus, the variation of both the constraints is quite satisfact-
ory. As the Adams scheme conserves both the energy and the
enstrophy, their behaviour indicates that with time the total
accuracy of the quadrature and the interpolation procedures
decreases to some extent,

Still another property that indirectly permits judging the op-
erational correctness of the scheme is the total spectral width.
In fact, nonlinearity should destroy spectral peaks and work
towards widening the total spectrum (defocusing or spreading
assumption). The spreading of an initially narrow wavenum-
ber peak is intuitively reasonable and is commonly found in
numerical simulations. For the barotropic case this assump-
tion reads E~1[d [(x — k.)?*F dk dl]/dT > 0, where . =
E~! [ kF dk di is the spectral centroid (the mean wave num-
ber).

However, the effect of spectral widening is caused by the non-
linearity, which is now supposed to be small (as compared to
the 3-effect) and restricted to the specific geometry of reson-
ant interactions. Nevertheless, in the barotropic experiments,
the effect of spectral widening was obsarved in all cases in
spite of the incessant generation of spectral peaks (Reznik and
Soomere, 1984a).

We have used the following formulation of the spreading as-
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Fig. 4. Temporal behaviour of spectral centroids of total energy (upper-
most panel}, barotropic mode (middle panel) and baroclinic mode (the lowest
panel). Notations are the same as for Fig. 3.

sumption (Marshall, 1986):

(‘;—P; = %/[(m— keo ) F +a(k— ka1 )2 G dk dl > 0,(13)
where k.0, k.1 are the spectral centroids of the barotropic and
the baroclinic mode, respectively, In most of the experiments
Eq. (13)holds true. Its slight violation occurs only in the final
phases of runs 12 and 135, evidently owing to computational
errors. (Both the energy and the total spectral width W in-
crease in these cases, but the normalized values W, = W/E
decrease.)

For inviscid nonforced 2D flows, the spreading assumption
is equivalent to dx./dT < 0, i.e. to the scale-increasing pro-
cess (Merilees and Warn, 1975). Stratified motions possess
an additional degree of freedom and even for 2-layer flows
this assumption does not antomatically yield a decrease in the



mean wave number. Let us start from the following formula-
tion of the spreading assumption:

a
3T (k — Ko — Ke1)2(F + a@) dk dl > 0, (14)
where K.q, ko1 are now normalized by using the total energy.
From Egs. (14), {5), (6) and the normalizing condition £ = 1
we have that

i(nco + ke1)? < —8E4 /0T, (15)
oT

where E; is the baroclinic energy. Eq. (15) is a straightfor-
ward generalization of a result by Marshall (1986) stating that
the total energy centroid K, = K.p 4+ K1 of a 2-layer 3-plane
flow must decrease only if the baroclinic energy increases.
However, the latter condition is not always satisfied.

Figure 4 shows the temporal behaviour of the spectral
centroids {the baroclinic and the barotropic centroids are nor-
malized with the use of the energy of modes; the total centroid
- with the total energy). In conformity with Eq. (15), . de-
creases in all experiments showing energy conversion into the
baroclinic form. Contrariwise, the mean wavenumber in-
creases (in apart of runs 8, 13 ... 15, 17) simultaneously with
an intensive energy flow into the barotropic mode. Still we
observe a general preference of the scale-increasing process.
Namely, the mean swavenumber often decreases in spite of
the energy flux into the barotropic mede (permanently in runs
1,4...7,9andinapartof runs 8,13 ...15, 17) and always in
runs not revealing any considerable energy exchange between
the modes.

Thus, an energy cascade to smaller scales appears only sim-
ultaneously with an intensive energy conversion to the baro-
tropic form and is evidently restricted to special types of
flows. An analogous phenomenon is mentioned by Rhines
{1977; 1979) as a scenario consisting in the generation of
small-scale baroclinic vortices at the expense of large-scale
baroclinic flows. In realistic quasi—2I turbulence this pro-
cess may temporarily block or weaken the inverse energy cas-
cade. However, such an anomalous cascade evidently ap-
pears during extreme events when baroclinic energy consid-
erably exceeds its equilibrium level.

It should be noted that all the initial fields have small amp-
litudes of the waves with k > 1. Hence, their evolution to-
ward an equilibrated distribution is accompanied by an en-
ergy transfer from the area x ~ 1 to shorter waves. Further
on, in the course of time quite powerful spectral peaks arise
(see below). [t is remarkable that the spreading assumption
as well as very often an increase in the scale hold true.

3 Typical scenarios

3.1 Generation of a barotropic nearly zonal flow as a major
scenario

Let us track some typical examples of spectral evolution.
First let us look at the evolution of the initial spectra
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F(R,0) = G(R,0) = prexp(—«?)sin*p (run 9). Here
p = 16/[37%%(1 + )(1 + p'})] is the normalizing factor,
¢’ = erf(4)—1 ~ 107, and erf(z) is the probability integral.
The correction term p’, arising from the truncaticn in use, is
evidently negligible as compared to computational errors and
will be omitted hereafter. The initial conditions correspond
to a system of motions with predominating zonal compon-
ents of both modes. Simulation was performed until 7 = 5.
During the experiment, the intensity of interactions I [see Eq.
(17)] decreases more than 17 times as compared to its value
at T' = 0) and the system entropy attains a practically constant
level.

We found interesting behaviour of both the spectra and their
time derivatives (Fig. 5). The evolution of the barotropic
mode resembles that of the 1-layer case (Reznik and Soomere,
1984a). At T = 0 curves 8F /8T = 0 divide the 0F/dT
field into four parts. Areas of energy inflow 1, I1I are placed
near the /- and the k-axis, respectively. Although the max-
imum values of 8F/JT in the relatively narrow area I exceed
those in area I11, the latter is much greater and gains more en-
ergy than area I. Physically, that distribution supports a spec-
trally narrow almost-zonal flow with ! ~ 1 and a mostly me-
ridional flow with £ ~ 1 with a wide spectrum. The former
process generates an extremely sharp and high barotropic
spectral peak in the vicinity of the l-axis at k =~ 0.6...0.7.
As the peak corresponds to a nearly zonal flow, we call it a
zonal peak. The latter process decreases in intensity and ap-
parently only adjusts the spectrum F' to an isotropic state re-
mote from the !-axis.

The absolute values |[§F/3T| in area Il exceed those in area
IV by at least one order of magnitude; thus, the latter does not
play any essential role in the energy exchange. Area II con-
tains two local minima at « = 0.5 and x =~ 1.3. The former is
probably connected with initial zonal anisotropy since it does
not appear in runs with other initial distributions of barotropic
motions. Its disposition does not alter significantly during the
experiment. At T = 2 the latter extremum shifts closer to the
l-axis, into the area covered by the zonal peak. This peculiar-
ity causes an "erosion” process of the upper right slope of the
zonal peak, a typical phenomenon in all the experiments. It
additionally enhances the steepness of the slope and evidently
adjusts the peak towards a delta-like cusp.

In the course of time the values of {0 F /8T | decrease all over
the wave vector plane. Areas I, IIT decrease as well and a new
inflow area V remote from the origin splits off from area III.
Area II increases to some extent and stretches out along the
[-axis. These topological changes have a negligible influence
on the spectral evolution in all the experiments and hereafter
we shall omit the minor details of the derivative fields.

At the outset, the evolution of the baroclinic mode is charac-
terized by an intensive energy inflow at ! < 1 (areaI of the
distribution G /0T and an energy outflow at I 2 1 (area
II). Energy exchange in areas ITI and IV is negligible. Area
I has two inflow maxima (similar to those in areas I and IIf
of the F /0T field) corresponding to the reinforcement of
both the nearly zonal flow and the mostly meridional disturb-
ancies. The former process rapidily ceases and the baroclinic
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Fig. 5. Temporal evolution of energy spectra and their time derivatives. From left: cvolution of the barotropic spectrum and its derivative; evolution of the
baroclinic spectrum and its derivative,

Tnitial conditions are F(&,0) = G(R,0) = pk exp(—x?}sint ¢, 16p~! = 37%/2(1 + &) (run 9). Contours are plotted in the logarithmic scale (four lines
per decade: 1.0/1.78/3.16/5.62) starting from £+0.01. Dashed lines in the left column cotrespond to smaller values of spectrum; in the right column - to negative
values of the temporal derivative. Dotted line marks curves 8F /8T = 0,8G/8T = 0, Area < k,I < 2 is represented in every box. Inflow and outflow
areas with no plotted contours are marked by symbols € or S, respectively. Areas are numbered according to references in text. An additional short-dashed
contour at 8F /8T = —0.00562 or G /8T = —0.00562 is plotted at T = 5. '
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Fig, 6. As for Fig, 5, but for isotropic initial functions F(&,0) = G{&,0) = pxexp(—x?), Zp=1 = x%2(1 4 a) (run 1). An additional short-dotied

contour at 3F/8T = —0.00562 or 3G /8T = —0.00562 is plotted at T = 10.
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zonal flow is suppressed starting from 7" ~ 0.5. Differently
from the barotropic mode, the latter process remains active
during whole the experiment (there permanently exists an in-
tensive inflow region close to both the k-axis and the origin).
The resulting spectrum is nearly isotropic, whereby the iso-
tropization process acts much faster than in the barotropic
case. Baroclinic energy mostly flows along the [-axis, while
both in the 1-layer experiments and in the case of the baro-
tropic mode energy exchange mainly occurs between waves
nearly equal in length.

Consider also the evolution of a spectrally isotropic initial
state F'(K,0) = G(&,0) = prexp(—«?), 2p~! = #3/2(1 +
@) (run 1; Fig. 6). Both the distributions 8F/8T and 8G /8T
mitially contain a small region of intensive energy inflow I
near the [-axis and a large outflow region II. Areas III-V of
weak outflow or inflow are dispensable. Thus, at the outset,
barotropic and baroclinic medium-scale zonal motions are
both supported at the expense of all other wave harmonics.
Barotropic energy outflow region II mostly increases with
time. Itis accompanied by an initial decrease in the maxirum
values for |0F /0T | until T ~ 0.8 and by a transition of their
location from £ =~ (1.2,1.2) to £ = (0.2,1.2). The inflow
region gradually shrinks, and towards the end of the calcula-
tion it forms only a narrow band in the neighbourhood of the
{-axis. The maximum values for 8F /87T in it mostly increase
to some extent. In the course of time their location shifts to
the origin and somewhat approaches the l-axis. This leads to
the formation of a high peak near the /-axis. The transition
of the energy outflow maximum causes, as above, its erosion
in the final phase of the experiment. Remote from the [-axis,
spectrum F' preserves a more or less isotropic shape.
Outflow region I1 for the §¢7 /AT field initially somewhat de-
creases in size. Starting from time T = 1.5 itexpands and oc-
cupies, as in the case of 9F /T, nearly all the computational
region. Simultaneously, the outflow maximum shifts closer
to the I-axis and starts to stir the zonal anisotropy. Differ-
ently from the barotropic evolution, the energy inflow region
is compressed towards the k-axis. The initial inflow max-
imum near the [-axis only leads to a tempotary increase in the
zonal component of the baroclinic mode. Towards the end of
the simulation, the baroclinic spectrum obtains a nearly iso-
tropic shape.

The temporal evolution of the time derivatives of both the
spectra is similar to either of the described scenarios in all
the runs with comparable initial energies of both modes (runs
2...8; also some other experiments). They always initially
reveal a characteristic two-lobed (or three-lobed, in the case
of initial zonal anisotropy only) structure with an intensive
inflow area close to the I-axis. However, towards the end of
simulations, energy is mostly transferred into the barotropic
neatly zonal flow and (occasionally) into large-scale baro-
clinic meridional motions.

The evolution of the barotropic mode is always similar to that
in the 1-layer experiments (Reznik and Soomere, 1984a;
1984b; Reznik, 1986). A portion of the energy is transferred
into a zonal peak, while the rest of the spectrum tends to be-
come isotropic. The peak is placed between [ ~ 0.3 and { =

1.0, has its minimal width near to the origin, widens to some
extent at medium wavenumbers and has the universal form
of an elongated hogback. It has abrupt slopes near to the ori-
gin, an enlargement near its maximum at x = 0.7 and a gently
sloping end at & =~ 1. The isotropization process is the fastest
in the case of medium scale processes (x = 1...1.5), butless
evident for short and long waves (see below, Figs. 10, 12). At
& < 1 the interaction coefficients tend to zero as x4, deceler-
ating the whole evolution process. For smaller scales, energy
transfer can be distorted owing to the limited computational
area {x < 4}.

Typically, the baroclinic spectrum soon takes a practically
isotropic shape and/or preserves it until the end of the exper-
iments. Thus, resonant interactions always form a powerful
spectrally natrow barotropic zonal flow but usually do not af-
fect the zonal component of the baroclinic mode.

In order to check the further behaviour of such systems, we
continued runs 1 and 5 during extra 5 nondimensional time
units (in addition to the data listed in Table B1). The baro-
tropic spectral peak keeps increasing and concentrates with
time in an ever narrower vicinity of the [-axis, but there ap-
pears no sign of baroclinic zonal anisotropy.

3.2 Role of intermodal interactions

Since Eq. (3) introduces a new time scale, the quantitative
features and the time units of the current study are not directly
compatable with the 1-layer case. The previous section also
reveals a few major deviations from the barotropic scenario,
obviously caused by intermodal interactions. First, the baro-
clinic zonal flow is typically not excited. Second, baroclinic
meridional motions are supported to some extent. Third, al-
though the increase in the Rossby radius causes a shift of the
zonal peak closer to the [-axis, as well as a certain increase
in its amplitnde (Reznik and Soomere, 1984a; Fig. 1), the
extremely high amplitude of the barotropic zonal flow appar-
ently does not result from the assumption that ag = 0 only.
The current model contains three types of interactions. Two
of them (involving waves belonging to a fixed mode, called
self-interactions and integrated by collision integrals oo and
I11y) are identical to interactions of the 1-layer flow. The
third class is formed of mixed triads consisting of one baro-
tropic and two baroclinic harmonics (intermodal inter-
actions). They are responsible for both the energy flux
between the modes and an additional energy redistribution
within the modes. Triads containing one baroclinic and two
barotropic waves are neglected (Section 2.2),

Let us examine the energy fluxes created by self- and inter-
modal interactions. First, the results of run 9 (Fig. 7).

At T = 0 the fields of self-interactions of both the spectral
components 3F; /0T, 8G 5; /0T resemble those in the baro-
tropic experiments. Minor differences between them result
from the difference of the Rossby radii and from the weight
{1 ~ a)? = 0.64 at the integral I;,;. The intensity of baro-
tropic self-interactions exceeds that of the baroclinic mode
more than twice and the main inflow area for the barotropic
mode is concentrated in the narrower neighbourhood of the
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Fig. 7. Instantaneous fields of spectral fluxes created by self- and intermodal interactions for run 9. In the columns the following distributions are drawn (from
left to right): sclf-interaction of the barotropic mode 8F,; /8T, interactions of the barotropic mode with the baroclinic harmonics 8F;; /8T, self-interaction
of the baroclinic mode 8G,; /8T, interactions of the baroclinic mode with barotropic harmonics #G; /8T . Contours are plotted in the logarithmic scale (four
lincs per decade: 1.0/1.78/3.16/5.62) starting from 20.01. Dashed lines correspond to negative values of the derivative components; dotted line—their zero
values. Area 0 < k,I < 2 is represented in every box. Symbols & and & mark inflow and outflow areas, respectively.
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{-axis.

Their further evolution, however, shows hardly any concur-
rence. On the one hand, the evolution of the 8F;; /AT field
resembles that of the barotropic simulation: both inflow areas
decrease and move closer to the [-axis while the outflow area
(with two relative minima) widens. Towards the end, the in-
flow area close to the k-axis practically disappears, but the
analogous area close to the {-axis maintains its intensity. In
other words, after a “saturation” of the meridional flow com-
ponents, encrgy is gradually transferred to a nearly zonal
flow. On the other hand, the intensity of the baroclinic self-
mteractions 3G, /OT falls rapidly, no prevailing energy flow
being observed during the later phase of the experiment.

At T = 0 the total energy flux between the modes

IFG Sﬁffﬂll dkdl = —1671'/1110 dk dl

dEy/dT = ~dE, /dT

is of the order of 5% of the total interaction intensity I (see
below), decreases rapidly, and remains small until the end of
the experiment. Thus, intermodal interactions result rather
in energy redivision within the modes than in the creation of
an intermodal energy flux. The field of AF; /9T (describ-
ing the interactions of the barotropic mode with the baroclinic
harmonics) vanishes in the non-interaction area (Fig. 2) and
remains small in the vicinity of the k-axis during the whole
computational time. The remainder of it is qualitatively sim-
ilar to the field of OF; /3T . A relatively narrow inflow area
is located in the neighbourhood of the I-axis. A wide outflow
area covers most of the {k,I)-plane. At the outset, it has a
tongue-like extension between the inflow area and the non-
interaction area. The tongue is narrow and it does not pre-
vail in the integral energy transfer, but its presence results in
a steepening of the barotropic spectral peak. With time, it
shortens and nearly disappears at T ~ 1.5. Therefore, in-
termodal interactions unnoticeably affect mostly meridional
barotropic motions but essentially amplify the barotropic
zonal flow. For this particular run, the absolute values of
OF;; /0T are, as a rule, smaller than the values of 8F,; /aT
during the whole simulation, except in the closest vicinity of
the {-axis.

AtT = 0 the field of 8G:;/8T consists of two main parts
roughly divided by the line / = 1. The energy flux is directed
from the area ! > 1 into the area! < 1 (i.e., to mostly meri-
dional flow components). The inflow area contains an exten-
ston near the [-axis, which corresponds to a weak tendency to
amplify the nearly zonal flow. Since typically |8G,; /07| >
|0G i /0T, intermodal interactions mostly determine the
baroclinic energy alteration. Indeed, the temporal evolution
of the 8G;; /0T field resembles the behaviour of the total de-
rivative 9G/JT. In the course of time, its extremes move
closer to both the {-axis and the origin. The extension of the
inflow area along the [-axis recedes and soon disappears. Fur-
ther on, the energy transfer mainly tends to stir the initial
zonal anisotropy and to create a peak near the k-axis.

The described features of self- and intermodal interactions are
qualitatively common for all the runs with initially compar-
able cnergies of the modes. An initially two-lobed structure
as represented in Fig. 8 is also possible. The majority of the
energy redistribution for the barotropic mode takes place ow-
ing to its self-interactions, the field of which is always sim-
ilar to that in the 1-layer simulations. They support the nearly
zonal flow, which is additionally reinforced owing to inter-
modal interactions, Contrariwise, the behaviour of the baro-
clinic mode is mostly governed by intermodal interactions,
which mainly support meridional flow components. Baro-
clinic zonal anisotropy is generated only at the outset. As
time goes on, mixed interactions destroy it and amplify large-
scale non-zonal motion components,

The intensity of baroclinic self-interactions decreases more
rapidly than that of other interaction types (Figs. 7, 8). From
the barotropic experiments it follows that the tendency to-
wards & zonal anisotropy ceases only for systems, close to the
thermal equilibrium (Reznik and Soomere, 1984a; 1984b).
Thus, intermodal interactions apparently force the baroclinic
component towards a local equilibrium G* = (a* + b* %%~}
(with “temperatures” ¢*, b” not necessarily coinciding with
those of the actual final state).

3.3 Generation of two-modal nearly-zonal flow

Obviously, the spectrally isotropic evolution of the baroclinic
mode cannot be an overall feature of the motions in question.
For example, in the case of a pure baroclinic initial flow, inter-
modal interactions are initially small and the baroclinic zonal
anisotropy should be generated, at least, during some time in-
terval. This is demonstrated by integrating the initial states
with the mostly meridional anisotropy of the barotropic mode
(run 6; Fig. 9).

In such cases, the evolution of the barotropic mode and its
derivative is in no way extraordinary (cf. Fig. 1). Also, it
has many common features with the evolution of initially iso-
tropic systems {only the smallest outflow area ITI lacking and
inflow areas IV,V are replaced by a prolongation of the main
inflow area I; cf. Fig. 5). With time, a typical high and sharp
zonal peak emerges while the rest of the energy apparently
tends to an isotropic distribution.

However, both the initial and the further evolution of the
baroclinic mode are similar to that of the barotropic mode,
At the outset, the derivative 3G /87T contains a well-defined
maximum in the vicinity of the I-axis in inflow areaI. Its other
peak is located close to the k-axis and expresses a tendency
to support non-zeonal flow components. Further on, outflow
area II gradually widens and later embraces most of the com-
putational area. Area III is dispensable and areas IV,V show
up temporarily.

With time, the derivative field permanently manifests an in-
tensive baroclinic energy inflow close to the [-axis. Corres-
pondingly, a baroclinic zonal peak emerges near the [-axis
and continues to grow during all the computational time. Its
disposition and geometrical features are analogical to those of
the barotropic one. However, it is somewhat lower and wider
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Fig. 10. Behaviour of barotropic (left) and baroclinic (right) spectra at the lines x=const. The results of run 6 are given. Note the evidence of the “erosion”
process of the baroclinic zonal peak at £ = 1, as well as the nearly perfect isotropy of the baroclinic spectrum at ¢ < 37 /4, T > 5.

than the barotropic one, has slightly shelving slopes, is placed
at a greater distance from the {-axis (Fig. 10) and, in general,
is similar to that of the 1-layer experiments with the Rossby
radius ag = 1 (Fig. 1).

Therefore, the modal structure of the zonal flow tums out to
be strongly dependent on the initial state. For forced dissip-
ative systems, as might be encountered in nature, this fact is
counter-intuitive. However, for the irreversible case in ques-
tion it is somewhat unexpected. It can be interpreted as a tem-
porary feature, but apparently it is related to the indetermin-
ated structure of the equilibrated zonal flow.

As in (Panetta, 1993), this feature may show that the concept
of full barotropization is only applicable to particular flow
types. Usually, the barotropic zonal flow will be excited
faster and after some time will “inhibit” the generation of an
analogical baroclinic motion. Contrariwise, if occasionally
the baroclinic zonal flow has been excited, it evidently will
compete with the barotropic flow and a significant baroclinic
component of nearly-zonal jets can be expected. This res-
ult may reflect the fact that a zonal shear flow of a certain
structure is stable with respect to small perturbations (Rhines,
1977; Kamenkovich et al., 1986).

3.4 Baroclinic meridional anisotropy

In the 1-layer computations, the energy transfer from zonal
to meridional motion components is detected only in some

particular cases and identified as the tendency towards energy
equipartition between waves equal in length (i.e., towards
spectral isotropy). No nonlocal (in the sense of wavelength)
energy redistribution was observed (Reznik and Soomere,
1984a; 1984b). However, with the use of another closure a
nenlocal directional energy transfer was noted, for example,
in (Holloway and Hendershott, 1977).

A nonlocal energy exchange becomes evident in the later
phase of several current experiments. Namely, a large-scale
mostly meridional flow is generated starting from a certain
time moment. This phenomenon appears explicitly only in
the cases where also essential baroclinic zonal anisotropy is
present, and becomes active after both zonal flow compon-
ents have obtained a certain intensity (Figs. 11, 12).

Consider an example of the evolution of a wave system with
an initially nearly absent zonal component of the barotropic
mode (run 4; F(£,0) = prexp(—«?)cos?p; G(R,0) =
prexp(—k2); 16p~! = #x%/2(8 + 3a)). Differently from
the above-discussed experiments, baroclinic energy now ex-
ceeds barotropic energy three times. Thus, baroclinic self-
interactions will be relatively intense, at least during the ini-
tial phase of the experiment.

The evolution of the barotropic mode and its derivative, nev-
ertheless, insignificantly differs from the above-described
scenario (cf. Fig. 9). However, the baroclinic derivative field
is greatly different from that in, e.g., run 1. At the outset it
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contains inflow area I near the I-axis, outflow area II remote
from this axis and two areas 111 of weak outflow. It more re-
sembles the field of the barotropic derivative of run 1 (cf. Fig.
6}. This predilection continues during most of the computa-
tional time: the 8G /8T field permanently retains an area of
intensive inflow in the closest vicinity of the [-axis. Respect-
ively, there arises a well-defined baroclinic zonal peak.
Further on, another maximum of 3G /3T close to the k-axis
arises at T' ~ 2, gains intensity fast, and remains comparable
to the maximum near the {-axis. As a result, a relatively flat-
tish spectral peak, a bit elongated in the {-direction, arises in
the vicinity of the k-axis. It remains essentially lower than the
zonal peak, but increases during all the later phase of the ex-
periment. The peak is placed nearly completely closer to the
origin than the zonal peak. Its maximum is located at £ =
{0.3,0.1). It corresponds to a mostly meridional flow with a
horizontal scale approximately four times exceeding the scale
of the initial motion. It is noteworthy that, differently from
the zonal anisotropy, there is no significant frequency shift re-
lated with the generation of this peak.

The baroclinic meridional peak obviously arises owing to in-
termodal interactions. It is evidently unstable because baro-
clinic self-interactions should smooth it. However, this pro-
cess apparently takes a long time, since the mean intensity of
the interactions for x = 0.25 is at least by two orders of mag-
nitude less than at x &z 1.

4 Details of energy redistribution

4.1 Elementary interactions supporting the meridional an-
1sotropy

The above has shown that an intensive energy inflow into the
vicinity of the k-axis sets in only after both the modes have
developed considerable zonal anisotropies. The observed
zonal peaks often by more than one order exceed the mean
energy level. Since the collision integrals are quadratic with
respect to the spectra, the energy exchange rate of a certain
wave vector £* may contain an extraordinarily large contri-
bution if vectors K7, £3, resonantly interacting with £*, both
happen to lie near a zonal peak. Therefore, the energy flux to
the meridional flow (i.e., to the baroclinic wave vectors £ ==
(FE, 0)) may be related to interactions of nearly zonal harmon-
ics.

The modes develop a zonal anisotropy, if any, at E < 1,
[ ~ 1. An arbitrary triad 2* = (k,0), &} = (0,1), &} =
(—k,—1) satisfies the resonance conditions provided the
waves with £*, 7 represent the baroclinic and &3 the baro-
tropic mode (Fig. 13a). If & & 0.2, both the vectors &}, &3
lie close to their modal maxima. The main contribution to
8G(K*)/OT is roughly proportional to G{R; ) F (K3} and ex-
presses an energy flow to . This particular case demon-
strates the possibility of supporting relatively large-scale me-
ridional baroclinic disturbances at the expense of the baro-
tropic nearly zonal flow. Obviously, this mechanism is act-

=tk =g

ive for other wave vectors &, K1, Ky &= K, K}, K} as long as
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the described conditions are satisfied. There is no signific-
ant increase in energy for very long waves because the inter-
action coefficients of Rossby waves C’g:';‘ decrease as x* if
& — 0. The area of actual energy inflow is restricted to the
values K, for which the interaction coefficients are big enough
and there exist appropriate resonantly interacting waves with
vectors positioned near to either spectral peak.

An analogous effect may occurin the case of self-interactions.
However, the spectral maxima are usually too modest (baro-
clinic mode) or badly placed (barotropic mode) to activate
such an energy transfer. The contribution including, say, the
product F(£} ) F(K3) with both £}, £ close to the barotropic
maximum, remains small since this maximum is located ex-
tremly close to the [-axis and the vectors k7, K3 are nearly
colinear. However, the energy removed from the barotropic
zonal peak via the “erosion” process discussed above may be
transformed a to mostly meridional flow and only then be iso-
tropically redistributed. The energy inflow areas at x < 1re-
mote from the {-axis in the later phases of some experiments
(e.g., Fig. 6), may be related to this mechanism.

4.2 Interactions with baroclinic zonal flow

Let us consider interactions with the baroclinic zonal flow in
mixed resonance triads. They involve vectors £ = (k,1),
RT = (0,—1 F la), RF = (—k,£ly), where Iy = (I* +
a? — a2)1/2 (Fig. 13b,c) and without any loss of general-
ity we suppose k,! > 0. Since w(KF) = 0, the frequen-
cies of waves with &, K are equal. The spectral symmetry
yields F(R; ) = F(R]) and the contribution into 8G(&) /8T
is [e1 G(R] )+ caG(R)][F(RS ) — aG(R)|, where ¢1, ¢z > 0
are proportional to |£] x &3 |.

Thus, the described interactions always try to decrease the
difference | F(k,l;)—aG(k, )|, hence creating an intermodal
energy flux along the [-axis. The energy exchange takes place
between harmonics of equal frequency [thus, Hasselmann‘s
(1967) criterion is not violated] but of different wavelengths.
For k <« 1 this wavelength shift may result in energy ex-
change between motions of crucially different scales.
Basically, every perpetual tendency reveals a certain feature
of the equilibrium state. In the case of barotropic Rossby
waves an analogical mechanism (interaction between har-
monics symmetric to the l-axis through the zonal flow)
creates a tendency to spectral symmetrization (Reznik and
Kozlov, 1981; Reznik and Soomere, 1984a). It is also act-
ive within the self-interaction of both the modes in the case
in question. Its presence proves the impossibility of nonsym-
metric equilibrinm distributions.

Both interactions with the zonal flow occur between harmon-
ics with equal frequencies and p-wavenumbers x(®) = (k? +
12 +a2)'/? (Jones, 1979). It is easy to see that, in the equilib-
rium state, the amplitudes of nonzonal harmonics with equal
p-wavenumbers must be equal regardless of their relevance to
the modes. Thus, intermodal interactions with the baroclinic
zonal flow tend to adjust an appropriate balance of the modes.
The above yields that interactions with the zonal flow tend to
“copy” the spectral inhomogeneities between the modes, sim-
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Fig. 12. Behaviour of the baroclinic energy spectrum (left) and its temporal derivative (right) at the curves £ = const < 1, The results of ran 6 (upper panels)
and run 4 (middle and lower panels) are given. The meridional peak is mostly located at k < 0.25 and tends to move closer to the origin.
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ultaneously “shifting” them by the distance I, = I; — [ along-
side the I-axis. Energy conversion from the barotropic to the
baroclinic mode canses a shift towards larger scales. Thus,
barotropic peaks will be shifted towards the k-axis, whereby
the inhomogeneities at § < (a? — a2)!/? will be lost. Liter-
ally, the baroclinic meridional peak reflects only the *“tail” of
the barotropic zonal peak, farthest removed from the origin.
Since the disposition of spectral peaks shows only a weak de-
pendence on the nondimensional Rossby radii, the intensity
of this mechanism may essentially depend on particular scal-
ing.

Contrariwise, the inhomogeneities of the baroclinic spectrum
will excite their smaller-scale barotropic “copies™. With the
current scaling, a barotropic zonal anisotropy may be anticip-
ated at & 1.3 with the baroclinic zonal peak arising simul-
taneously at ! =z 0.7. Indeed, a prolongation of the barotropic
zonal peak at ! =z 1.3 in run 4 (Fig. 11) may be related with
the mechanism discussed. However, this process may take a
longer time because its intensity is proportional to the amp-
litude of the relatively long or short components of the baro-
clinic zonal flow G(XKT).

It should be noted that the cascade to higher modes owing to
this mechanism results in enhancing mostly meridional mo-
tions. Contrariwise, an inverse process always increases the
zonal anisotropy of the barotropic flow. As a fine conclusion,
the generation of tocal spectral peaks within the modes finally
results in an additional increase in the zonal anisotropy of the
lower modes.

As compared to the pure barotropic case, the mechanism dis-

cussed above is a principally new phenomenon, created ex-
clusively by the presence of the vertical structure of the mo-
tion. It is described by the collision integrals I;1¢ and o311,
from the thermodynamical viewpoint responsible for creating
the proper balance of the modes. A “catalysi™ here, playing
a central role in this process and amplifying it with its pres-
ence but itself remaining unchanged, is the baroclinic zonal
flow. In contrast with the spectral symmetfrization, the en-
ergy moves along the I-axis and may be redistributed between
waves of drastically different lengths.

4,3 Entropy and interaction intensity

A fundamental property of Egs. (2) and Egs. (4) is that the
system entropy necessarily increases with time [Eq. (8)]. In-
tegral H = [ In F'G dk dl over R? diverges for nonzero non-
truncated equilibrated spectra Foq,Geq. The absence of a
mean flow results in another singularity at the origin. {Eqs.
(2) are derived using this restriction; otherwise the kinetic
equation would have an essentially different form (Benney
and Newell, 1967)]). The former inconvenience is removed
by the truncation introduced in Section 2.4. It is convenient
to remove the latter by using an arbitrary bilateral truncation
0 < § < k¥ < 4, where § is smaller than the grid step.

A well-known result states that 3F, /0T > 0 at points where
F, = 0. Thus, in the course of time ordinarily both the spec-
tra will obtain positive values. An exception is constituted
by singular spectra; e.g., stationary spectra concentrated on
a circle & = const or on a line ¢l + bk = 0 (Soomere, 1987).
At the [-axis always 8F, /9T = 0, reflecting the fact that
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Fig. 14. Temporal behaviour of entropy (upper panel) and its derivative
{lower panel}. Notations are the same as for Fig. 3.

Rossby-wave resonant interactions do not alter the zonal flow,
The absence of the latter is, however, hardly possible in real-
istic situations. On the one hand, it can easily be avoided by
assigning to F, a small positive value at each node. If small
enough, its effect is evidently negligible. On the other hand,
we are mostly interested in the entropy variation and its actual
value in the narrow vicinity of the [-axis may be neglected.
Thus, we exclude the points with FG = 0 when comput-
ing the entropy and its derivative (inruns 2,4...6,8,10...12
during all the simulations, in runs 3,7,9,13.. . 150onlyat T =
0).

The entropy increasing law was found to hold in all the ex-
periments conducted. The entropy derivative is initially of
the order of 107 . . . 10, but decreases fast and monotonously
with time (Fig. 14). To the very end of some runs it reaches
small negative values evidently owing to computational in-
accuracy, The initial fast entropy alteration results from both
the weakness of shorter waves and the absence of a motion
component (runs 2...8,11...12,14...16).

The total entropy increases roughly twice during our exper-
iments and usually remains nearly unchanged in their final
phases (Fig. 14). Only inruns 10 . . . 12 does the entropy grow
up to the end of the simulations, evidently owing to the in-
activity of the generation of baroclinic motions. The manner
of the temporal entropy alteration suggests that computed fi-
nal states are close to equilibrium ones. The entropy of iso-
tropic equilibrium states forruns 1. . . 9 is roughly -550 (Ap-
pendix A). Its good concordance with the simulated values

Interaction intensity

4

Barctropic interaction intensity

Fig, 15. Temporal behaviour of the integral intensity of interactions I (upper-
most panel), its barotropic (middle panel) and baroclinic (lower panel) com-
ponents. Notations are the same as for Fig, 3,

apparently shows that zonal peaks do not play any important
role in entropy alteration.

Another important measure of the processes in question is the
integral intensity of interactions

I=IL+5L= /(|6F/6Ti +aldG/OT| dkdl.  (16)

It vanishes for an arbitrary stationary state and apparently is
small for the spectra close to them. It may behave nonmono-
tonously, as noted in several runs. However, a temporary in-
crease in I or its components takes place only in initial phases
of runs 5, 11 and 14 and is evidently connected with the low
initial level of the zonal component of the motion. Since the
latter serves as a “catalyst” of resonant interactions, the inter-
action intensity may increase to some extent as it enhances.

The values of I, and I; fall off monotonously, beginning
from a certain time moment (Fig, 15). The details of this fall-
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Fig. 16. Temporal behaviour of the non-zonality index By z (uppermost
panel), its barotropic (middle panel) and baroclinic (lower panel) compon-
ents. Notations are the same as for Fig, 3,

off essentially depend on the initial conditions, but typically
it takes place quite rapidly. During the computational time, J
usually decreases more than 10 times as compared to its value
at T = 0 (Table B1). In the few runs with nonmonotonous
behaviour of I, it falls by a factor of 3...4 as compared to
its maximum value. As noted in section 3.2, the intensity of
interactions for the baroclinic mode usually decreases faster
than that of the barctropic mode.

4.4 Balance between motion components

Although the zonal peaks are extremly high, they are also
concentrated within a relatively small area of wave vectors.
The balance between the zonal and the isotropic motion com-
ponents may be characterized by the "non-zonality” index

Byz = BnzotaByzi=
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which vanishes if the wave system decays into a zonal mo-
tion. Typically, By z decreases to some extent (and increases
only in a few simulations with a considerable initial zonal an-
isotropy), confirming an average intensification of the zonal
component of the motion (Fig. 16). The quantity By zg or-
dinarily decreases, while By z, (which increases in some ex-
periments) becomes nearly constant at T > Ti.,./3. This
also confirms that the barotropic flow intensively gains zonal
anisotropy while the baroclinic mode reveals no directional
preference.

Nevertheless, no essential decay of any of these measures is
observed. All of them rather have a nonzero limit; thus, the
ultimate decay of the wave system (or one of its modes) into
a zonal flow is unlikely.

An interesting detail is the energy balance between the modes.
Rhines (1977) suggested that barotropization occurs fast
owing to phase locking between coherent structures in adja-
cent layers. A similar conclusion has been reached by Sal-
mon {1980). Within isolated triads energy is more likely to
move into the lowest mode. Barotropization of the synop-
tic motions was detected during the final stage of the "POLY-
MODE” experiment {e.g., Kamenkovich et al., 1986). In nu-
merical experiments, ordinarily a system of barotropic zonal
jets arises.

Still, the full barotropization of the flow in all cases is unlikely
(Rhines, 1977). It is inhibited in both the equilibrium stat-
istical mechanics and the classical weakly nonlinear theory
(Holloway, 1986; Kozlov et al., 1987). Also, the treatment
given above has demonstrated no decay of the baroclinic en-
ergy. Nevertheless, the full barotropization of the weakly
nenlinear flows through exciting a total barotropic zonal flow
cannot be excluded.

The modal structure of classical equilibrium states is uniquely
defined by the initial energy and enstrophy (Appendix A). For
the actual final states, the ratio of the modal energies E; / Eq
also depends on the energy and enstrophy fluxes into the
zonal flow. Since details of these fluxes are unclear even for
the 1-layer case, to a first approximation, we shall neglect
them.

The initial ratio E, /Ey for runs 1...9 varies from 1/3 to 3.
Its equilibrium value depends on the truncation radius and the
ratio Y/ E of the total enstrophy 10 energy (see Appendix A).
The latter equals (3 + 5a)/(2 + 2a) = 5/3 for initial states
with energy equipartition between the modes (runs 1, 5,6, 8
and 9), or (24+15a) /(16 +6a) = 1.57 for the runs with ini-
tially dominating barotropic or (9 + 40a)/(3 + 8a) ~ 1.85
for the initially dominating baroclinic mode. These values,
as well as the equilibrium ratic F, /Ey (it equals to 0.259,
0.243 or 0.289, respectively), vary insignificantly. Therefore,
at T = 0 this ratio typically (except for runs 2, 3 exceeds the
equilibrium one) several times.

Figure 17 shows the behaviour of the modal energies. Quite
surprisingly, in several runs baroclinic energy increases ad-
ditionally and starts to decrease only in their final phases. In
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somte runs, the energy transfer rate into the barotropic mode
is nearly constant until the end of the simulations, which sug-
gests that the computed final ratio E; /Eq is quite far from
that of the equilibrium state,

The fact that the baroclinic energy permanently exceeds its
predicted level suggests that the energy and enstrophy fluxes
into the zonal flow are unmatched. Fig. 17 shows that the
equilibrium ratio F, / E, increases with the increase in Y/ E.
Therefore, the energy flux into the zonal flow apparently ex-
ceeds that of the enstrophy flux. This is possible only if en-
ergy cascades into either smaller wavenumbers of the zonal
flow or into the lower modes. Since energy typically flows to
the baroclinic mode (Fig. 17), the generation of zonal peaks
apparenily enhances the scale-increasing process.

It should be noted that barotropization of both simulated and

realistic synoptic motions does not contradict the features de-
scribed. They only indicate that it may occur highly select-
ively and its intensity depends on the initial state. We have
seen that it is always active for the zonal part of the motion,
but may have an essentially weaker effect on other flow com-
ponents.

5 Discussion and concluding remarks

The main evolution scenario of weak geostrophic turbulence
consists in the generation of a fully barotropic nearly zonal
flow accompanied by damping of the baroclinic zonal aniso-
tropy. Another (less frequent) scenario consists in the gener-
ation of a multi-modal zonal flow. However, the mutual rela-
tionship of these scenarios as well as their concordance with
the evolution towards an equilibrium state still remains un-
clear.

As a basically new phenomenon, large-scale mostly meridi-
onal baroclinic motions may be excited owing to interactions
between nearly zonal flow components. It arises from the in-
terplay of the S-effect, the nonlinearity and the vertical struc-
ture of the flow. A principal point is that these baroclinic mo-
tions may gather energy from the barotropic nearly zonal flow
while all the other processes seem to support it.

The phenomena of reinforcement of the zonal component and
the barotropization of large-scale geophysical flows are both
widely known. An interesting peculiarity of the described
spectral evolution consists in the highly selective joint influ-
ence of these effects. It ordinarily supports the barotropic
flow components relatively short in wavelength at the ex-
pense of baroclinic harmonics. Also, mixed-triad interactions
usually tend to amplify the barotropic zonal flow; thus, the
energy flux into the lower modes results in an additional en-
hancement of the zonal component of motion.

Several of the features discussed do not coincide with the
classical concept of final energy equipartition between all the
waves. First, the incessant generation of anisotropy for the
system evolving towards a thermal equilibrium. However,
for the particular case of (specifically anisotropic) geophys-
ical dynamics the appearance of ordered flows possessing the
entropy maximum has become traditional (Holloway, 1986,
among others). Second, the dependence of the modal struc-
ture of the equilibrium zonal flow on the initial conditions. It
might be explained in the same way as the equilibrium “tem-
peratures™ depend on the initial energy and entropy. The third
parameter of the (generalized) equilibrium distributions may
arise from the singular conservation law (7¢). Third, the fact
that there arises an additional (mostly meridional) spectral
maximum is deeply nontrivial. Even its provisional genera-
tion reflects a specific self-organization process, activated by
the vertical structure of the motion. In multi-layer models,
multiple peaks may be generated in the spectra of the modes.
Although the 2-layer model poorly represents the dynamics
of the Earth’s atmosphere and the oceans, the latter feature
suggests that frequent evidence of large structures with a con-
siderable meridional component of the flow (e.g., blocking
events) may be a built-in feature of stratified geophysical



flows. The fact that the meridional peak becomes evident
only after the excitation of a multi-modal zonal flow may be
useful in predicting these phenomena,

The intensive energy transfer into extremly low-frequency
nearly zonal moticns may, in principle, indicate that spectra
of free Rossby wave systems evolve only to a certain degree
and then “freeze”. Once generated, barotropic zonal motions
may be regarded as practically insensitive to weakly nonlin-
car interactions since the time scale for their changes may
considerably exceed the time of their generation, Also, after
they have gathered a certain amplitude, assumptions of the
kinetic approach may not hold. Such a “frozen” state would
have nothing in common with thermodynamics and probably
would represent a stationary solution to the kinetic equation.
Nevertheless, several facts show that the zonal flow plays im-
portant roles in weak geostrophic turbulence. It serves as a
“catalyst” of spectral changes towards an equilibrium. The
interplay of its components leads to the excitation of the baro-
clinic meridional anisotropy. lncessant “copying” of zonal
spectral peaks takes place between the modes. These features
suggest that such simple “freezening” is unlikely.

here is a great deal evidence to show that the computed final
spectra are close to the (at least local) equilibrium. Namely,
the immense decrease in the entropy alteration rate, the
drastic decay of the interaction intensity and the isotropiza-
tion of nonzonal spectral components are weighty arguments
proving that spectral components match a Raleygh-Jeans dis-
tribution. Analysis of the modal structure, however, shows
that the total spectrum is still far from its final state, The evol-
ution process can be interpreted as multi-staged adaptation
towards an equilibrium, similar to that in (Errico, 1984). As
the first step, the nonzonal parts of both spectral components
take a form close to a “local” thermodynamical equilibrium
F; = {a; + b;x?)~1, with “temperatures” a;, b; not necessar-
ily overlapping. The second step consists in a more gradual
adjustment of the “temperatures”.

The presence of spectral peaks may break the latter into sub-
stages. A “copy” of the barotropic zonal peak emerges as the
baroclinic meridional peak. Later on, it will evidently be
smoothed owing to baroclinic self-interactions. The charac-
teristic time of the latter process probably exceeds the dura-
tion of the earlier stages by several orders of magnitude.
This concept suggests an in itself interesting cascade-like
approach to the final state, with alternating generation of a
medium-scale zonal flow, then a system of large-scale mostly
meridional motions and, at the very end, a new phase of ex-
tremely slowly-changing motion components. This peculiar-
ity may be one of the reasons why direct simulations of the 2-
layer 3-plane turbulence need an enormous time interval for
zonal components to become statistically steady (Vallis and
Maltrud, 1993).

Realistic synoptic-scale motions evidently have a spectrally
wide “background” of weak Rossby waves. [t should also
be implicitly present in high-resolution numerical models of
oceans and/or the atmosphere. The current study describes a
part of the background evolution, which happens owing to the
weakly nonlinear interactions. The interactions of the “back-
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ground” with strongly nonlinear structures as well as the ef-
fects related to wave generation and decaying processes ad-
ditionally affect its evolution. Nevertheless, the principal ef-
fects described above are always present. Owing to their
“eternal” nature, their joint effect can apparently be detected.
The extreme sharpness of computed zonal peaks suggests that
the flows generated as a result of weakly nonlinear interac-
tions may compete with quasi-stationary currents.

Appendix A Calculation of equilibrium “temperatures”

Physically, there must exist a one-to-one relationship between
the values of constraints F, Y [Egs. (5,6)] and the equilib-
rium

“temperatures” a, . From the mathematical viewpoint, this
declaration needs a rigorous proof. Let ¢ = a/b; the conser-
vation laws then read

1Il(:+16 alnc+17=@, (AD)
c+1 7r
16(x+ 1) —cln c+16 acln cc-:_lf = ﬁ (A2)

Eqs. (Al) are derived for the truncation « < 4 and the set
of Rossby numbers ap = 0; @1 = 1. Their generalization
for other values of these parameters is straightforward. From
Egs. (Al) it follows that

oE +bY = 16n(a + 1), (A3)

an elementary result warning that the initial energy and en-
strophy cannot be chosen arbitrarily. With the help of
Eg. (A2), Eq. (Al) is reduced to

In(e+ 16) — Inc + aln(ec +17)
—aln(c+1) = 16{(a+1){c+g) ' =0, (Ad)

fle} =

where g = Y/E. Eq. (A4) demonstrates that the ratio of the
equilibrium “temperatures™ only depends on the ratio of the
enstrophy and the energy. From the general features of log-
arithmic and rational functions it can be understood that Eq.
(A4) has, if any, a unique positive solution ¢(¢, g).

Since f(0) = oc and f(o0) = 0, Eq. (A4) has a positive zero
only provided the function f{c) has a minimum f(é) < 0,
where 0 < é < co. The derivative f'(¢) is a rational function
and the equation f'(c) = 0 is reduced to

dsc® + dac® +dic+dg =0, (A5)
where

ds = —2¢+16+2s,

do = —g°—36g+4sg+ 288+ 17s,

dy —18¢” + sg® — 34g + 34sg + 272,
do = =17¢°+17s9? (A6)
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Fig. 18. Dependence of the equilibrium “temperatures™ a (left column) and b (middle column) on the ratio of initial energy to enstrophy. Right column shows
the analogical dependence of ¢ = e/b and the ratio E; / Eg of the baroclinic and the barotropic energy in the equilibrium state.

and s = a/(a + 1). Obviously, dy < 0 provideda > 0.
Further, the coefficients d;(g = 0, ) > 0,4 = 1,2, 3, tend to
negative infinity as g — co and have exactly one zero g; > 0.
Itiseasytoseethat3 < g < 4,5 < go < 6and gz =
8 4+ af(a + 1). From the mutual location of the points g; it
follows that the function f’(c) has exactly one zero 0 < & <
oo provided

9 < Omez =8+ f(a+1). (AT

If g is of greater value, Eq. (A4) has no positive solutions.
This condition limits the set of physically realizable values
of energy and enstrophy. For pure barotropic motions it reads
g < 8. Thus, stratified flows offer more freedom in choosing
their initial states.

If (A4) is satisfied, the derivative f'(c) < 0; ¢ < é&and
f'(e) > 0; ¢ > é Since f/(0) = —o0; f'(c0) = 0, the
function f(c) decreases if 0 < ¢ < ¢, has one extremum
F(€) < 0 and increases for ¢ > ¢, asymptotically reaching
zero from the negative side. Therefore, Eq. (A3} has exactly
one solution ¢* € (0, ).

Figure A1 shows the behaviour of the quantity ¢ = c(g) as
well as of the equilibrium “temperatures”. The value of ¢ van-
ishes at ¢ = 0, is quite small in all the cases considered in
this study (typically of the order of a few thousandths), but
increases extremly fast starting from g & 6, and tends to in-
finity as ¢ — 8 + s. Both the equilibrium “temperatures” re-
veal quite versatile behaviour in their domains. At g = 0 the
“temperature” b has an infinite value, while a vanishes. The

corresponding spectrum is formally devoid of enstrophy, sin-
gular and concentrated at the origin. As g increases, a also
increases while b decreases. At the limit ¢ — 8 + s we have
b — 0and o — oo. This limit, however, leads to a contro-
versy and the commesponding spectrum cannot be constructed.
The reason is that Eq. (A7) serves as a condition ensuring the
existence of an extremum of f(c). In order to reach its zero
value the parameter g must be strictly less than its limiting
value gp ez . Differently from the “temperatures”, the equilib-
rium ratio of baroclinic to barotropic energy reveals a nearly
linear dependance on g, with a sornewhat weaker increase for
g > 5. For most of the performed experiments, the equilib-
rium “temperatures” a ~ 0.01; b ~ 40.

For the equilibrium entropy with “temperatures” a,b, we
have:

Hir = 32(1-1Inb)+clnc+ (c+1)In(c+1)}
—(c+16)In{c + 16) — (¢ + 17)In(c + 17)

The equilibrium values of the entropy for runs 1. .. 9 differ
insignificantly and are close to -550 (Table B1).

Appendix B Parameters of numerical simulations.

The main parameters of experiments are listed. Simulations
are classified (type of run) as follows. Basic runs (1...9) -
with initial conditions resembling those of the pure barotropic
simulations {(Reznik and Soomere, 1984a), mode generation -



Table B1. Parameters of numerical experiments

Type Initial |Time 8E/8T(%) Y /9T (%) Isotropic equilibrium | Interaction intensity

No.| ofrun | spectra |steps|Tmax |ATi=0 |ATmean [T =0 max Tyox |T =0 max Tmax [Y/E b H |T=0 min 22
1 1,1 520 | 10 | 0.025 0.019 031 [0.65] 10 1.66 (-3.32| 84 {1.67 [0.0102|36.2(-551| 0.45 |0.053( 8.4

T 1,2 700 | 10 | 0.025 0.014 0.18 |0.68| 10 136 [-2.75( 9.5 0.48 |0.051| 9.4
T 1,3 700 | 10 | 0.025 0.014 0.38 [0.59] 10 1,67 |-2.741 9.2 1 1.57 [0.0052|38.4|-557| 0.48 | 0.05 | 9.5
T Rasic 2,1 900 [ 15 | 0.025 0.017 .10 |0.76| 15 1.05 |-2.63; 12 | 1.85{0.0284)32.6(-541( 0.28 | 0.06 | 4.7
_5— ns 2,2 550 | 15 0.1 0027 | -0.04 |035]| 4 -0.04 |-3.26; 13 0.09 |0.053( 4.9
—g— 23 600 | 10 | 0,025 0017 | -0.12 (062 3.5 | -0.78 [1.04] 1.2 | 1.67|0,0102(36.2|-551! 0.33 |0.061| 5.4
T 3,1 700 5 0.01 0.007 0.54 (080 0.5 | 2.96 |3.03] 1.5 | 1.85}0,0284|32.6|-541| 1.02 (0079|129
T 3.2 TO0 5 0.01 0.007 | -0.01 |075] 35 1.89 [2.39] 0.3 1.32 |0.070] 18.8
T 33 700 0.01 0.007 0.80 [1.05( 03 | 2.66 {3.29( 03 | 1.67 |0.0102|36.2|-551| 1.20 [0.068{ 17.6
10 6,1 1350( 10 0.01 0.0074 | 032 |131] 1.4 57 [-7.58( 7.1 2.27 10.108| 21.0

T Mode 6,2 1450 10 0.01 0.0069 | -0.29 (3.89| 10 | -0.29 |-9.17[ 6.1 | 2.5 [0.325124.0{-510| 032 | 0.11 | 8.5
T gene- 6,3 1800 5 0005 | 00028 | 1.21 (288 0.7 | 10.20 |[12.39 0.3 385 |0.115]33.5
F ration 1,6 700 | 10 | 0025 0.014 026 10| 10 1.43 [-1.55] 8.5 042 |0.045| 8.6
14 26 700 | 10 | 0.025 0014 | -0.04 |042| 45 | -0.04 [-1.64] 10 1.5 (0.0031140.2(-562( 0.09 |0.068| 3.7

15 36 950 | 10 | 0.0125( 0.0105 | 0.34 |L.57| 10 1.65 | 28] 0.5 1.14 [0.047| 243
16 | Depen- | = 0.05| 280 5 0025 | 0018 028 |045] 1.2 1.53 |-2.67] 5§ 1.55 |10.0122134.11-545| 0.44 |0.072| 6.1
17 | dance a= 700 10 | 0025 | 0014 0.14 [L11} 1O 1.33 [ 165 0.6 | 2.0 [0.0015(50.3]|-584| 039 [0.061| 6.3
18| one a=>5 |1500{ 10 0.01 00067 | 034 |1.05] .2 45 1687 68 |233|0.084|29.3|-678] 1.57 |0.091|17.3
19 | Shif- 71 2000 10 0.05 0.005 041 [1.19] 10 2,37 {534| 69 |2.04|0.0707|29.5|-530| 0.70 |0.065) 108
7 ted 838 1700 10 0.01 0.0058 | 0.44 |2.21| 10 306 {-8.7( 53 | 2.5 | 6.331 |23.9(|-510| 1.03 |0.078]13.2
?maximun‘q 9,9 1200 15 | 0.025 | 0.0125 | 0.07 (0.27| 47 | 0.55 |0.77| 2.6 | 092 (0.0%15|658|-611( 0.16 | 0.03 | 5.2

with a purely baroclinic (10 . .. 12) or with a practically baro-
tropic initial flow {13...15), dependance on - run 1 with
isotropic initial conditions is repeated with various values of
the ratio of the layers’ thicknesses, shifted maximum - exper-
iments on isotropic initial spectra with their maxima at differ-
ent wavelengths.

The shapes of the initial spectra are coded as follows:

(1) x exp(—&?) (isotropic);

(2) & exp(—&?) cos? ¢ (mostly meridional motions);

(3) k exp(—&?) cos* ¢ (mostly zonal motions);

(6) F = 0 for barotropic mode; G = 0.001x exp({—x?) for
baroclinic mode;

(7) & exp(—2&?) (isotropic; with maximum at & = 0.5);

(8) k exp(—«®/3) (isotropic with maximum at x = 1);

(9) & exp(—~1/10) (isotropic with maximum at & ~ 1.25).
The first number in this column indicates the initial shape of
the barotropic mode, the second index that of the baroclinic
mode. The spectra are normalizedto E =1 at 7T = 0.
Further, number of time steps performed, time moment by
which a simulation was ended (T,,,,); the initial (AT;—)
and the mean (AT, ) values of the time step are given.
The relative alteration of the total energy (0F/&T") and the
total enstrophy (8Y/9T) are given in percentages at T' = 0,
also their maximum values are presented (max) together with
the time moment at which the maxima are reached. Next, the
characteristics of the isotropic equilibrium distributions cor-
responding to the ratio of initial enstrophy and energy (Y/ E),

equilibrium “temperatures” (a, b} and the equilibrium value
of entropy are printed. For the total interaction intensity
(Eq. 17), its initial (T' = 0) and minimum (min) values are
given together with the total decrease in this parameter
(max/min). This measure behaves nonmonotoneously only
in runs No, 5 (maximum value .., = 0.26 is achieved at
T = 1.5),No. 11 (Inygr = 093 atT = (.7) and No. 14
(Imez = 0.25at T = 1.5),
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