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Abstract. A hierarchy of low-order models, based on
the quasi-geostrophic two-layer model, is used to inves-
tigate complex multi-mode flows. The different models
were used to study distinct types of nonlinear interac-
tions, namely wave-wave interactions through resonant
triads, and zonal flow-wave interactions. The coupling
strength of individual triads is estimated using a phase
locking probability density function.

The flow of primary interest is a strongly modulated
amplitude vacillation, whose modulation is coupled to
intermittent bursts of weaker wave modes. This flow
was found to emerge in a discontinuous bifurcation di-
rectly from a steady wave solution. Two mechanism
were found to result in this flow, one involving resonant
triads, and the other involving zonal flow-wave interac-
tions together with a strong J-effect.

The resuits will be compared with recent laboratory ex-
periments of multi-mode baroclinic waves in a rotating
annulus of fluid subjected to a horizontal temperature
gradient.

1 Introduction

Since the earliest studies of Rossby waves in baroclinic
fluids the two-layer model has played an important role.
Phillips {1954) proposed the two-layer formulation as a
discretised version of a continucusly stratified baroclinic
fluid, with a possible application as an idealised model
of the general circulation of the atmosphere. Since then
it has been used extensively in investigations of baro-
clinic instability (e.g. Pedlosky, 1987), weakly nonlinear
behaviour of baroclinic waves (ibid. §7.16), or the dy-
namics of finite amplitude waves (e.g. Klein, 1990, for
a review). It is generally agreed that the release of po-
tential energy through baroclinic instability of the atmo-
spheric circulation in middle latitudes is one of the most

Correspondence to: W.-G. Friih,

important factors in the development of planetary and
synoptic weather patterns, which are the main agents for
the poleward transport of heat and momentum. Once
grown to finite amplitude, nonlinear dynamics dominate
the evolution of these weather systems and give rise to
complex—-possibly chaotic—behaviour, thereby limiting
the predictability of the weather, and even of the cli-
mate. Because it is highly idealised, the two-layer model
provides a way to investigate fundamental aspects of the
dynamics of baroclinic waves without the complications
of more comprehensive and realistic models.

While far removed from realistic atmospheric situations,
such models are much closer to laboratory experiments
of baroclinic fluids. Laboratory counterparts to the model
can be found in the mechanically forced two-layer exper-
iment of e.g. Hart (1972) or Ohlsen and Hart (1989a),
or in the thermally driven thermal annulus of e.g. Hide
and Mason (1975). In the latter, the two-layer model is
a vertical discretisation of a continuously stratified fluid.
Both experimental systems were observed to exhibit a
range of low-dimensional behaviour (e.g. Ohlsen and
Hart, 1989a; Read et al., 1992). A low-order model with
the essential ingredients should be able to produce qual-
itatively similar dynamics and bifurcation sequernces.
Before the description of the model in §2, a brief sum-
mary of the main aspects of wave interactions are given
in §1.1, followed by a description of the laboratory ex-
periments which motivated this study. In §3, the model
description is followed by an analysis of the linear sta-
bility of the imposed basic shear flow. The results from
the integrations of the different model configurations are
presented in §4 to §6, followed by a discussion in §7 and
a short summary in §8.

1.1 Wave interactions
In rotating annulus experiments, Hide et al. (1977) ob-

served strong phase locking of weaker modes to the dom-
inant zonal wave mode of azimuthal wavenumber m.
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Fig. 1. Wave interaction mechanisms for the sideband coupling,
(a) via the long wave, and (b) via the harmonic mode.

They proposed a mechanism of two resonant triads which,
beside the dominant mode, involved the long wave with
zonal wavenumber m' = 1, and either sideband, m" =
m =1 {shown in Fig. 1 a). A different scenario was pro-
posed by James et al. (1981) which did not involve the
long wave. Instead, the coupling of the sidebands to the
dominant mode was provided by the first harmonic of
the dominant mode, m’ = 2m, which could form a res-
onant triad with both sidebands, as illustrated in Fig.
1 (b) with m = 3 as the dominant mode. Both scenar-
ios contain wave triads which satisfy the selection rules
(e.g. Bretherton, 1964)

mtm'+m"’ =0, (1)

where m = m" is the wavenumber with zonal wave-
number m and meridional wavenumber n. The relative
importance of the individual triad to the dynamical evo-
lution of the fiow will depend on the degree to which the
resonance condition is met, which states that the time
scale of nonlinear interactions should be much shorter
than the dispersion time scale, or

wEow o' € W) {2)

In this condition, w,w’ and w" are the drift frequen-
cies of the wave modes constituting the triad, and {w}
is a typical drift frequency of the modes. As Brether-
ton (1964) has shown, the resonance condition is also a
function of the amplitude of the wave modes.

Tn a situation where the dominant mode is m = 3!, these
two competing mechanisms can be captured by a highly
truncated model in a rectangular zonally periodic chan-
nel with a rectangular truncation of six zonal modes
and two meridional modes. Satisfying both the zonal
and the meridional component of Eq. (1) implies that
the complete sets of triads involving 3!, 2%, 4! are, (a) for
the long-wave route: {(31]21|12), (3'|4'[1?)}, and (b) for
the harmonic route: {(6%]4[2), (6|4]22), (61|42|21)}.
In this study, such a truncation was choscn as the start-
ing point to investigate the respective ranges of possible
behaviour exhibited by the two proposed mechanisms.
Recent laboratory experiments by Friih and Read (1996)
support the notion that these few interaction terms, to-
gether with zonal flow-wave interactions, can to a large
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Fig. 2. Schematic diagram of the rotating annutus,

extent explain the observed dynamics. It is expected
that at least for the restricted range of parameters stud-
ied in the laboratory, such a model might describe the
qualitative behaviour and bifurcations of the flow ade-
quately. Once fiows have been found which are qualita-
tively similar to observed flows, the relative importance
of the triads shown in Fig. 1 and zonal flow-wave inter-
actions can be investigated by reducing this model and
thereby eliminating selected triads.

1.2 The laboratory experiment

The laboratory experiments which complement this nu-
merical study were carried out with a thermally driven
rotating annulus. The reader is referred to Frih and
Read (1996) for a complete presentation of the exper-
imental results; only a few flow types relevant to the
numerical study are summarised in this section. In the
apparatus shown in Fig. 2, a cylindrical fluid annulus is
differentially heated in the horizontal and rotated about
its vertical axis of symmetry. With the imposed temper-
ature difference and the rotation rate of the apparatus, a
stability parameter © and the Taylor number 7, the two
principal dimensionless parameters, can be defined. The
stability parameter, sometimes referred to as a Burger
number or thermal Rosshy number and related to the
rotational Froude number, is defined by

gad AT

© Q2 (b —a)?’

(3)

where g is the acceleration due to gravity, a the volume
expansion coefficient, AT the imposed horizontal tem-
perature difference, {¥ the rotation rate, and d, a, b the
height, and the inner and outer radius of the annulus
respectively. The Taylor number is usually defined by

40%(b - a)®

T= v2d ’

(4)
where v is the kinematic viscosity. The dimensions of
the apparatus and typical experimental parameters are
listed in Table 1.
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Table 1. Dimensions and typical experimental parameters of the
laboratory experiment.

outer radius a 25mm

inner radius b 80mm

fluid depths d 140mm

volume expansion coefficient o 4.0 x 107%/K
kinetic viscosity v 3.2 x 10~ *m?/s
rotation rate 0 0.5...3.0rad/s
temperature difference AT 4...30K
Taylor number T 10%...107
thermal Rossby number e 0.1...1.0

Well known flow regimes observed in this baroclinic fluid
are axisymmetric flows, steady and vacillating waves,

and irregular flow (‘geostrophic turbulence’) as described:

by e.g. Hide and Mason (1975). More recently, a mod-
ulated amplitude vacillation (MAV) regime was found
among the regular waves which was consistent with low-
dimensional chaos (Read et al., 1892).

Upocn increasing © or T from the 3MAV regime, a flow
regime termed 3/2I (see Friih and Read, 1996) was found
in which the modulation of wave 3 became more pro-
nounced and less regular, and the weaker modes became
stronger. In particular, mode m = 2 showed intermit-
tent large-amplitude bursts, which coincided with the
collapse of the vacillation of m = 3, followed by an
approximately exponential recovery of the vacillation.
This, and the bursting of m = 2, can be seen in the time
series of the amplitude of modes m = 2 and 3 in Fig. 3.
For part of the regime diagram, a hysteretic transition
from the 3/2I to a weakly vacillating structural vacil-
lation of mode m = 2 (2SV) was found after further
increase in the bifurcation parameter. In other parts of
the regime diagram, the transition to the 2S5V regime
occurred through an intermediate flow regime termed
2-3A, in which the flow switched at irregular intervals
between the 3/2I and 2SV states.
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Fig. 8. Time series of wave amplitudes of modes m = 3§ (solid
line} and m = 2 {dashed line) from the laboratory experiments in
the 3/21 regime.
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Fig. 4. The two-layer model of a quasi-geostrophic fluid in a
rectangular, periodic channel.

2 Formulation of the model
2.1 Basic equations

The numerical model uses a spectral expansion of the
quasi-geostrophic potential vorticity equation in two hor-
izontal layers. The flow in typical laboratory experi-
ments, in common with the large-scale atmospheric cir-
culation in middie latitudes, has a sufficiently small
Rossby number, Ro = U/(fL) < 0.1, to justify the use
of the quasi-geostrophic approximation. A schematic
diagram of a typical two-layer model is shown in Fig. 4
where, by convention, layer 1 is at the top, and layer 2
is at the bottom. A complete derivation is given e.g. by
(Pedlosky, 1987, $3.12 and Chapter 6). For a two-layer
fluid, the quasi-geostrophic potential vorticity equation
in each layer is

7} T2 1 _, _
{a‘*ﬂ](ﬂ’)n -)}Qz“_zv ’(}'J,-FEV ai (5)
with the potential vorticity in each layer defined by
@ = Vi + By — Fi(yn — i) (6)

@ = Vi + By — Fa(vs — ).

The term J(1,q) is the Jacobian of the two functions
% and ¢ defined by J(3,q) = 3£3% — 222%. The Ja-
cobian contains nonlinear terms which account for wave
interactions representing the advection of the potential
vorticity by the geostrophic component of the flow field.
The F-parameter is defined as 3 = 8* L?/U. Although
the laboratory experiment had flat end walls, the 5-
effect is included in the model since the vertical vari-
ation of the mean flow provides a contribution to the
mean radial potential vorticity gradient (Hide and Ma-
son, 1978). Since in the rotating annulus a rigid lid is
in contact with the fluid, both layers have an Ekman-
dissipation term of equal strength, where the parameter
r is defined by

VE_ [rh L )
Ro VDU
with the Ekman number E = v/(fpD?). The last term

in Eq. (5} is the horizontal diffusion of potential vor-
ticity, where Re = UL/v = 1/(r?Ro) is the Reynolds

r



number. This diffusion is a parameterisation of the in-
ternal viscosity under the assumption of unit Prandtl
number {Lewis, 1992). In the limit of infinite Prandt!
number, the potential vorticity diffusion would be re-
placed by a vorticity diffusion. In the formulation of
the model, the diffusion was implemented in the form of
r2 Ro, rather than specifying Re independently from r.
The rotational Froude number, F; for layers ¢ = 1,2,
which measures the relative importance of stratification
and rotation, is defined by

= L
. — g,D‘l

f2L2
~ N7 ®)

where g’ = g(pz — 1)/ po is the reduced gravity, D; the
depth of layer 4, and N? the equivalent Brunt-Vaisild
frequency N2 = —(8p/8z)g/p for the continuously strat-
ified system. The Froude number is the parameter corre-
sponding to @~ in the laboratory experiments. While
F = I?/L1% with Lg as the Rossby radius of defor-
mation, © can be seen as an external estimate of the
Rossby radius with @ = 4L%/L?. The effective horizon-
tal temperature difference in the fluid interior, however,
is usually estimated at 10% to 20% of the imposed tem-
perature difference.

Rather than using the equations for two coupled lay-
ers, a simple transformation converts them into coupled
equations for the barotropic and baroclinic component.
A barotropic and baroclinic stream function may be de-
fined as ¥, = (¥1 + 12)/2 and Ya = (Y1 — 92)/2, re-
spectively, if the two layers have identical depth. The
flow can be separated into a basic zonal flow, u, and
ug, which are independent of y and t, and deviations
from the basic flow, ¥, and ). Dropping primes, the
fully nonlinear equations for the barotropic and baro-
clinic quasi-geostrophic potential vorticity are

3193

A A 0

+J(U‘)S1 v2,¢s) + J('l,bd, v?wd)
= —rV%, + Re Vg,

+ Uy — v%bd (9)

and
(T~ 2F)a + o
a 0 o v,
+m£vw+w%vw =

+‘I(I¢Iﬂa v2d}d) + ‘I(wds vgld)s) - 2FJ(11/)33 Qﬁd)
= —rV%j,; 4 Re™! (V2 - 2F) Vy,.

2.2 Boundary conditions

Neglecting the cylindrical curvature of the annular con-
vection chamber leads to a straight chanmel which is
periodic in x with a ‘wave length’ of the mean chan-
nel length L.. Scaling the channel such that the width
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I. = 1 and the perimeter L, = o = L, /L, the boundary
condition of periodicity in the z-direction is

Pz, y,t) = 'l[l(-’l’l +a,y,1). (10)

The no-slip boundary conditions at the top and bottom
of the domain are implicit in the parameterisation of the
Ekman dissipation. Stewartson boundary layers which
form at the vertical side walls are generally assumed
to be passive in the rotating annulus; impermeable but
slippery side walls are usually assumed as the boundary
condition for the interior at y = 0,1 (see Mundt et al.,
1995, for the effect of no-slip boundary conditions at the
sidewalls). The velocity normal to the side walls, v, has
to vanish at the boundaries. For the quasi-geostrophic
approximation the geostrophic wind, v(°), and the first-
order ageostrophic component, v{1) | have to be specified,
with v(®) as

40 = g_‘i’ =0, aty=0,1. (11)

Since v does not appear explicitly in the equations,
the last boundary condition has to be formulated as
1 [* %
lim
X —oo 2X 6t6y

This formulation was introduced by Phillips (1954) to
ensure that there is no unspecified energy flux through
the side walls.

dr =0, aty=0,1. (12)

2.3 Pseudo-spectral representation

The barotropic and baroclinic components of the stream
function, 7, and ¥4 respectively, are expanded in a series
of orthogonal functions, which all individually satisfy
the boundary conditions,

N
Yo g = Z o(t)y 4 cosnmy (13)
n=1
mn __ 2m® . 2mm
+ Z_ ( ed €08 ———1 + o(t)sq sin S 9:)
sin nwy.

The ¢™ are the N modes describing the zonal flow cor-
vection, and the pairs ™", ™" are the N x M wave
modes with zonal wave number m and meridional wave
number n.

The code, which was adapted from that of Lewis (1992},
uses a 4**-order Adams-Bashforth-Moulton method (e.g.
Press et al., 1993), which is a predictor-corrector routine
with the corrector applied once. The present code was
shown to be stable for very long integrations

(> 10* time steps, see Lewis, 1988). To avoid the
cumbersome evaluation of the nonlinear terms in spec-
tral space, the spectral transform technique {Orszag,
1970) was used; the stream function is projected by
an inverse Fast Fourier Transform onto a spatial grid,
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where the Jacobian can be computed locally, after which
the results are then re-converted back into spectral rep-
resentation. Interactions between the zonal flow and
waves are problematic in that the coupling term has the
form cos(nmy), whereas the waves are represented only
by sin(nmy) terms to satisfy the lateral boundary con-
ditions. Similarly, the zonal flow correction is of the
form sin{nny), while the zonal flow eigenfunctions are
cos(nmy). Thus one has to express sin(n7y) in terms of
> et cos{lmy) and vice versa which involves the evalu-
ation of

1 2 n
Cnt = 2] dysinnmy coslmry = - (1 — (=1)™*h)
0

The zonal flow correction by a single mode m™ will con-
tribute to all odd meridional modes of the zonal flow.
In fact, if the sum of meridional modes of the wave is
even, the contribution to the zonal flow correction is in
the odd modes and vice versa. The effect of the severe
truncation of the models described in the following was
tested without any noticeable difference in the results
(cf. eg. with model Iva versus IVb described below in
§2.4 and §6.2).

2.4 Hierarchy of models

The effect of different types of wave interactions and of
specific wave triads could be studied either by a suitable
choice of the truncation or by the suppression of ap-
propriately selected wave modes. Model configurations
which only resolved the gravest meridional mode of the
waves—i.e. {(m,n)=(1,1), (2,1), (3,1), ...} —could not
sustain any triad interactions because no combination
of these modes would satisfy the radial component of
the triad selection rules. The effect of removing a spe-
cific triad interaction was also investigated by setting
the amplitude of one of the members to zero.

With these configurations, a hierarchy of models, listed
in Table 2, was used to examine the role of wave coupling
(a) via harmonic modes, (b) via the long wave, or (c)
through wave-zonal flow interactions only. The starting
point was a model with a rectangular truncation of M =
6, N = 2, which was capable of showing all of these
interactions. Results for this model, hereafter referred
to as the ‘full’ model or model I, are presented in §4.
With m = 3 as the dominant mode, its harmonic, m =
6, which provided one of the possible routes to transfer
energy to the sidebands, m = 2 and m = 4 (see Fig. 1
b), could be suppressed by reducing the truncation to
M =35, N = 2. The other route, via the long wave (see
Fig. 1 a), could be eliminated by setting the wave modes
with m = 1 to zero. A last triad coupling modes m = 3
and m = 2, not previously considered in the literature,
is the triad (5/3}2). These selective models, denoted as
models ITa to IId, are discussed in §5.

The most restricted models (models I1 and IVa to IVd)
eliminated all triad interactions by retaining only the

n?_lZ'

Table 2. Modes included in the different models.

Model
zonal {D 1), {0.2)
flow
wave (1,1, (1,2}
modes (2,1), (2,2}
(3.1), (3,2)
(4,1, (42)
(5.1}, (5.2)
(6.1), (6.2)
Model ila ITh Ilc 11d
zonal (0.1), (0,2) | (0,1), (0.2) (0,1}, (0,2) [ (0.1}, (0,2)
flow
wave (1,1}, (1,2) | (1,1), (1,2
modes (2,1), (2,2) | (2,1), (2,2) (2,1), (2,2} | (2,1), (2,2)
{3,1), (3,2) (3,1}, (3,2) (3,1), (3,2) {3,1), (3,2)
(4.1), {4,2) | (4,1), (4,2) (4,13, ( ) {4.1), (4,2)
{5,1), {5,2) (5,1),
(6,1), 62) {6,1), (6,2)
Model II1
zohal (0,1}
flow
wave (1,1)
modes (2,1)
(@)
(4,1)
Model IVa IVb Ve ivd
zonal (0,1) (0,1y...{0,8) | (0,1) 0,1)
flow
wave [5] (1.1) (1,1)
modes (2,1) (2,1) (2,1) (2,1)
{3,1) (3,1) (3,1

gravest meridional wave modes (n = 1). These are in
the following referred to as the ‘small’ models and sum-
marised in §6. Several configurations of the models were
used with a varying number of zonal wave modes as well
ag with different numbers of zonal flow modes.

3 Linear stability analysis

The first instability observed in this system is the in-
stability of the imposed baroclinic shear flow with re-
spect to small perturbations. The line of marginal sta-
bility of the zonal flow not only separates the axisym-
metric regime from the wave regimes, but it also give
information on the unstable wave numbers and their
respective growth rates, as long as the amplitude of
the waves is small. From this, onc obtains some in-
formation on which wavenumber is likely to dominate
the flow, although in large-amplitude solutions it is fre-
quently observed that the equilibrated solution has a
lower wavenumber than the wave with the largest growth
rate (Hart, 1981). Nevertheless, it is a useful guide for
choosing appropriate parameters in the integrations.

3.1 Stability condition

The linear stability analysis presented in this section
is an extension of the analysis of Pedlosky (1987, §7.9
to §7.12) to incorporate the G-effect, Ekman layers and
horizontal diffusion simultaneously. A derivation of the
stability criterion is given in Appendix A.

The assumed basic state is a constant vertical shear flow,
ug as defined for Eqgs. (9) and {10), independent of z and



Tahle 3. Parameters of main laboratory experiments and maodel
configurations.

Model Usg Ug fo" F 3 T
I 05 05 6,10 90 0.01 0.2-0.4
IIa-T1d 05 05 10 90 0.01 0.23, 0.3
I, IVa,b | 05 10 0.05 10-100 0.01-2.0 0.01-04
Ve 0.5 0.5 86,10 35 2.0 0.01-1.0
vd 05 0.5 6,10 19 2.0 0.01-1.0
[laboratory | 10~ %ern =7 30—100 <1072 05-15

y. Normal modes which satisfy the boundary conditions
are of the form

Wed = ALY sin (lay) eFn (o) 14

with I, = mn, knm = 2em/a, and « the horizontal as-
pect ratio. Inserting the normal modes into the lin-
earised equations gives, after some algebra, the criterion
for marginal stability as

2

km Re

B r\
= Im \/(K4—4F2)Uﬁ+F2 (ﬁ-i-’ba)

with a total wavenumber K defined as K? = k2, + (2.

(K2 + F)ki + (K? + 2F) (15)

3.2 Model parameters

On the basis of typical experimental conditions and the
results from the linear stability analysis, suitable values
for the model parameters were chosen which are listed in
Table 3. Most sets of integrations were performed with r
and F as the principal bifurcation parameters while Ro,
3, a, us, and uy were held fixed. The horizontal diffu-
ston term, proportional to 1/ Re, was expressed as r2Ro
and thereby changed consistently with the dissipation
parameter 7.

Using the dimensions given in Table 1 and assuming a
width of the boundary layers of 5mm leads to an effec-
tive aspect ratio of &« = 7.3 for the laboratory experi-
ments. Two extreme values of a were chosen, =6 and
=10, though the results did not appear to be sensitive
to o. The imposed shear flow was scaled to have unit
amplitude, which implies #4 = 0.5. Ro was taken to be
constant at 0.05 consistent with a typical value for the
annulus. A small, but non-zero, value of 3, 3 = 0.01,
was chosen to represent the residual f-effect due to the
structure of the mean flow.

Following the argument in relating © to a measure of
the Rossby radius of deformation, one would expect
flows observed at 0.5 < @ < (1.7 to be found in a range
of 30SFS100. Within these limits, F' was determined
from the linear stability analysis where possible, or by
trial and error, to give flows with the desired dominant
wavenumber.
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r

Fig. 5. Model I: a) r — F-plane with curves of marginal stability
for the wave modes in the model and results from the regime sur-
vey. The numbers m™ label the curves of marginal stability of the
wave mode with zonal wavenumber m and meridional wavenumber
n. The box indicates the part of the regime diagram shown in de-
tail in {b): {b) Detailed regime diagram; 38, 48, 53: steady waves,
AV: amplitude vacillation, MAV: modulated amplitude vacilla-
tion, TZM: torus-doubled MAV, 317, 31°: periodic and chaotic
intermittent bursting, and cV: chaotic vacillation.

4 The full model
4.1 Regimes

After the linear stability for two meridional modes of the
first six zonal wave modes was computed, the parame-
ter space was surveyed in the range indicated in the
linear stability diagram in Fig. 5(a) (10 < F < 110 and
0.1 < r < 2.0). Following the first Hopf bifurcation from
axisymmetric flow to a steady wave with a wavenumber
corresponding to that indicated in Fig. 5(a)}, a sequence
of mode transitions occurred to steady waves with suc-
cessively lower wavenumbers until time-dependent be-
haviour of the wave amplitudes developed. Part of the
wavenumber transitions and the time-dependent flows
discussed here are shown in the regime diagram in Fig.
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Table 4. Main sequence of integrations with model I at F = 90.

flow range of r Wy | W
regime x10~2U//L

38 r>ry = 03144 — —

31 ra>r>rp=0273 5.6 0.04...0.19

3I® rg >r >rg = 0255 54 0.19...04

3AV ro >r>rp =0.245 5.2 —
3MAV [ rp>r >rp =0.242 5.1 | 0.58...0.635
3T*M | rg > r >7p =0239 §| 5.1 0.635

cV rE > 5.0 0.2, 0.7

5(b). The abbreviations of flow regimes used in the fol-
lowing are S for a steady wave, AV for amplitude vacil-
lation, MAV for modulated amplitude vacillation, T?M
for torus doubled MAV, I for intermittent bursting, and
¢V for irregular vacillation.

In the detailed discussion of the regimes, the dissipation
parameter r will be the pricipal bifurcation parameter,
while the Froude number is fixed at F = 90. The results
from this set of integrations, together with the bifurca-
tion values of 7, labelled r4 to rp, are summarised in
Table 4. Unless mentioned otherwise, F = 90 will be
assumed throughout the rest of §4 and §5.

The sequence of wavenumber transitions was terminated
at 74, where the mode m = 3! suddenly developed a
strongly modulated amplitude vacillation, and all other
modes became active in intermittent bursts; this flow
type is referred to as '30', and is discussed in detail
in §4.2. Decreasing r further, the modulation became
faster and, after an initial increase in complexity, more
regular and weaker until, at ro, the solution hecame
a quasi-periodic mixed-mode amplitude vacillation with
m = 3! as the dominant mode (termed 3AV). For F =
90, the 3AV regime was observed only over a very small
range of r, after which the AV developed a modula-
tion again (3MAV). In a very small range of F' around
F = 90, the 3MAV underwent a torus-doubling bifur-
cation (3T?M) at rg, which then bifurcated directly to
a chaotic vacillation (cV) at rp. For all other values
of I, the 3MAV became directly chaotic without any
intermediate bifurcations.

4.2 Intermittent bursting, 31

Decreasing r from the steady m = 3 regime resulted
at r4 in a sudden transition to a complex mixed-mode
state, denoted 3I°. A time series of wave amplitudes in
this regime (r = 0.3) is shown in Fig. 6. This flow was
dominated by a vacillating mode m = 3, the strength
of which was strongly modulated, as measured by the
vacillation index, following Read et al. (1992)

Ama:c - Am'in
y = ——— 16
K Ama.:: + Amin ( )
When 7, approached its maximum, all other modes in
the model were also found to grow rapidly in a short
burst from less than 107® up to = 50% of the mean

.20

°
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Fig. 6. Model I: Time series of the wave amplitude of modes 3},
(solid line} and 2}, (dotted line) at » = 0.3.

amplitude of m = 3, at which point the vacillation
collapsed. Subsequently, the secondary modes decayed
while the vacillation of m = 3 slowly gathered strength
again. The vacillation period, T, =~ 20L/U, did not
vary significantly with r, while the bursting period var-
ied from 7; &~ 250L/U for r = 0.26 to over 5000L/U for
r = (1.31. The time between bursts, as well as the burst
amplitude, was irregular for any given value of r above
rg = 0.273.

The variability of both the average frequency and am-
plitude of the bursts, w; (Fig. 7 a) and #7*® (Fig. 7 b)
respectively, had a maximum well within the 3I° regime.
From the bifurcation at r 4, the variability increased un-
til r & 0.3 and then decreased again until, at rg, there
was no variability detectable any more in either w; or
7. The average modulation frequency also shows a
change in the scaling at rg with a scaling in the irregular
31° of '

(wi> o (TA _ T)0.8:|:0.04‘ (17)

and a scaling in the regular 3I” regime of

(wi) o (rg — )t B0, (18)
The value of the exponent, which is very sensitive to
the choice of the critical bifurcation parameter, was de-
termined to r4 = 0.3144 4+ 0.0004, and the stated error
includes the uncertainty in r4. The scaling of w; in Eq.
(17) is in good agreement with the scaling of the burst-
ing frequency observed in the laboratory by Friih and
Read (1996), who observed for the bursting in the 3/21
regime wi, exp X Y7, where vy measured the distance
from the point of bifurcation from the SMAV to the 3/21
regime. The histogram in Fig. 7 {c) shows the relative
distribution of modulation cycle times for r = 0.307,
in the chaotic regime. Most common were comparably
short periods, but there was no sharp fall-off for longer
modulation periods or any indication of a well-defined
upper limit.

For r smaller than rg, the intermittently bursting flow
seemed to be quasi-periodic, denoted as 3I7, which is
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Fig. 7. Model I: (a) Scaling behaviour of the average modulation period as a function of dissipation. {b) The maximum of the vacillation
index, 7*%*, during a modulation cycle against dissipation; plotted are its maximum, minimum, and mean. The ranges of the two regimes
31/P/ and 31/C/ are indicated in {a) and (b}. (¢) Histogram of the time between bursts for r = 0.307.
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Fig. 8. Model I: Time series of the wave amplitude of modes 3;5
(solid line) and 2], (dotted line) at » = 0.27.
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Fig. 9. Model I: Largest Lyapunov exponent against » for model.
The regimes are indicated, where T is used to denote the T2M
regime, and M the 3MAV regime.
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Fig. 10. Model I: Correlation integral for the 3I regime in model
1, at r = 0.27;, the almost perfectly coincident lines show the
correlation integral for embedding dimensions d. = 3,5,7,9,11,
and the straight line, slightly displaced to the right, shows a slope
consistent with a correlation dimension of d, = 2.2.

llustrated in the time series of the wave amplitudes of
3}, and 2}, at r = 0.27 in Fig. 8. The largest Lya-
punov exponent, shown in Fig. 9, which had a distinct
positive maximum in the 3I° regime, decreased rapidly
from A = 6 x 107% £+ 107 %bits per L/U at r = 0.29
through the 3I° regime towards the periodic 3AV regime
at r = 0.25, where it was indistinguishable from zero
within the computed error. This change, however, was
not reflected in the correlation dimension: dimension
calculations using the Grassberger and Procaccia (1983)
algorithm gave estimates of d. = 2.2 + 0.1 for all flows
in both 3I regimes (shown in Fig. 10 for r = 0.27).

Plotting both the maximum amplitude return map and
the minimum amplitude return map on the same graph
in Fig. 11 illustrates the qualitative change between 3I°
and 3I?. These return maps plot the maximum, or min-
imum, of the wave amplitude from one vacillation cycle
against the respective extremum from the previous vac-
illation cycle. The diagonal line in each frame indicates
the identity map, corresponding to the case where the
maximum does not change from one vacillation cycle to
the next, as in a pure amplitude vacillation. Points to
the left of the line denote an increase in the vacillation,
points to the right correspond to a decrease. While for
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Fig. 11. Model I: Return maps of successive maxima and minima
of the amplitude of wave 3: (a) r = 0.28, (b) r = 0.275, (¢} = 0.27.

r < rg, the curves of successive maxima and minima
formed two well separated closed loops, they seem to
have collided above rg. If the steady wave 3 solution
observed for r > r4, still exists as an unstable solution,
this phenomenon can be explained by a collision of the
attractor with the unstable 38 solution, a mechanism
known as a ‘crisis’ (e.g. Grebogi et al.,, 1982). A crisis
often leads to a sudden increase in the complexity of
the flow and of the attractor dimension. The existence
of an unstable 35 solution at the touching point of the
circles in Fig. 11 (a) and (b), with at least one weakly
unstable direction, would also explain the slow growth
of the vacillation near the steady solution. This fixed
point would be a saddle with some attracting directions
because, once the modulation collapsed, the flow con-
verged rapidly towards the 35.

4.3 Torus-doubling and irregular flow

Upon further decrease of r, from rg down to r¢, the
modulation gradually hecame weaker until, at r = r¢,
the solution was consistent with a quasi-periodic ampli-
tude vacillation dominated by m = 3 (3AV). This 3AV
was not a pure m = 3 flow, but all other modes in the
model were active and vacillated at the same frequency
as m = 3. In a very quick succession of bifurcations the
3AV gave way to an irregular vacillation, first developing
a periodic modulation (3MAV) at r = rp. This 3MAV
then underwent a torus-doubling bifurcation at r = rp,
illustrated in the maximum amplitude return maps in
frames (a) and (b) of Fig. 12 respectively at r = 0.242
and 0.240. At r = rr, the doubled torus showed the first
indications of breaking up (frame c) rather than under-
going a second doubling bifurcation, and by r = 0.235
the torus interior was completely filled out, as shown in
frame (d) of Fig. 12.

Below rg, the flow was still dominated by the m = 3
mode, though the vacillation of all waves was much
more irregular than in the chaotic 3I° regime. This flow
regime is denoted as ¢V, with a time series shown in Fig.
i3 for r = 0.23. The modulation now seems to occur at a
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Fig. 12. Model I: Return maps of maximum amplitudes of mode
m = 33, for the transition from 3MAV to ¢V; {(a) r = 0.242, (b}
r = 0.240, {c) r = 0.2395, (d) » = 0.235.
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Fig. 13. Model I: Time series of the wave amplitude of modes
33, (solid linc) and 2}, (dotted line) at » = 0.23.
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Fig. 14. Model I: {a) Power spectrum and (b) correlation integral
in the ¢V regime at r = 0.23; the curved lines show the correlation
integral for embedding dimensions d. = 3,5...15 (from left to
right), and the straight line, slightly displaced to the right, shows
a slopc consistent with a correlation dimension of d. = 6.3.



relatively high frequency: wn, = 7 x 103U/ L compared
to wy, < 4 x 1073U/L in the 31 regimes. The power
spectrum of the wave amplitude time series (Fig. 14 a},
however, only shows a very broad, continuous spectrum
at low frequencies besides the distinct, broadened peak
at the vacillation frequency, w, = 5.0 x 1072U/L. The
higher complexity of this regime is reflected in the cor-
relation dimension, which showed indications of scaling
at around d. &= 6.3 £ 0.3 (Fig. 14 b), and is also ev-
ident in the rapidly increasing Lyapunov exponent of
A1 = 1.8 x 1072 £ 107 3bits per L/U at r = 0.22 (Fig. 9
and A; =~ 5x 10~ 2bits per L/U at r = 0.20, without any
indication of reaching a final saturation level. Though
this constitutes a fairly high dimensional flow, the re-
quired embedding dimension of D > 13 is still much
smaller than the number of degrees of freedom of even
this highly truncated low-order model, which consists of
a set of fifty-two coupled ordinary differential equations.

4.4 Phase locking

To estimate the strength of nonlinear wave interactions
of baroclinic waves in the laboratory experiments, Iriih
and Read (1996) introduced a phase locking probability
density function (‘locking density’), pm—m/—m» and p.,
for coupling through resonant triads or sideband inter-
actions respectively. The formula used to evaluate the
locking density is given in Appendix B. The triad lock-
ing density, pm—m’—m", €ssentially counts the number
of time steps for which the triad phase locking func-
O Pmem! —m" = Pmr — Pmnt — Ppynir, has a specific
value—provided the amplitudes of ihe relevant modes
are within a pre-selected amplitude range. For inde-
pendent modes, pm_m'—m~ would be expected to have
a flat distribution with pm—m'—mr &= 1/{27) over ita
range of 0...2n, while a distinct peak in pm-m'—m*
indicates significant phase coherence. In the cases pre-
sented here, the coupling can be regarded as strong
if frnemieme = max(pm—m—mr) > 1.0. These argu-
ments also extend to the sideband phase locking func-
tion &, and its respective sideband locking density pm.
All flow regimes described above showed pronounced
sideband phase locking which is apparent in the clear
maximum of the density function p3 of g3 > 1.0 at
Oy = 2(;531 - ¢;41 — ¢121 = 7. Figure 15 shows the side-
band lockmg proba.blhty density function, p; in Fig. 15
(a), and scveral triad locking probability density func-
tions in Fig. 15 (b)-(i), for r = 0.27 in the 3I? regime.
ps in frame (a) has a clear peak at ® = 7 and falls off
to zero on either side, whereas the phase locking of the
harmonic triad (6/4/2) in (b) and the triad (5/3]2) in (¢)
have smaller peaks, with fg_4_2 =~ gs—3—2 =~ 0.8, at
@ = m and 3w /2 respectively. These peaks are superim-
poscd on a relatively strong background with a value of
p = 0.2,

The maximum of p3_a_; = 1.05 at w30y = 37/2
for the lower sideband/long wave triad (3|2|1) in (d)
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Fig. 15. Model I, 3If regime at r = 0.27: Locking density for {a)
®3, (b) (64]2), (c) (5]3[2), (d), (D), (h) (3]2]1), and (&), {g), (i)
(4]3/1). (d) and (e) show p over all amplitudes of m = 3%, (f) and
(g) show p over time steps when m = 3 strong (A3 > Aj), and
(h) and (i) when m = 3 weak.
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Fig. 16. Model I: Maxima of the triad locking density as a func-
tion of r for (a) (3|2|1) {solid line} and (4|3|1) (dotted line), and
(b) (6]4|2) (solid line) and (5/3|2) {dotted line). Note the different
scale of (a): (0...6) and (b): (0...2). The regimes are indicated,
where T is used to denote the T?M regime, and M the 3MAV
regime.

is as large as that of g3, while the other long wave triad
{4|3|1) in (e} has a bimodal structure in p4_3_;. Frame
{g) shows the contribution to p4_z_; when the dominant
component, m = 3!, is strong, and (i) shows the con-
tribution when m = 3! is weak. This separates the two
phase locking regimes completely with preferred locking
at ¢ & m/2 when m = 3! is strong, and very strong lock-
ing at y = 137 /8 otherwise. In this analysis, the average
amplitude of m = 3! was chosen as the crossover point
from a strong to a weak m = 3!, and this separation
was also applied to p3_z-1. The lower long wave triad
showed very strong phase coupling when m = 3! was
strong with p3_»_;(37/2) = 1.9 in (f), but only weak
coupling for a weak m = 3! with a very broad maximum
of p3_a_1(= 7/2) = 0.4 in (h). Therefore, at any time,
the difference between 3_3_; and @4_3_1 is consistent
with ®3 = @3 _2_1 —@ws_3-1 = 7, the value observed for
$3, although the role of the two triads varies during a
vacillation cycle. During half the cycle—when m = 3! is
stronger than average—the lower sideband receives most
energy, but during the other half, the upper sideband is
preferred.

When the bursting was most irregular, i.e. near r = 0.3,
the triad alternation turned into a triad competition.
Figure 16 (a) shows 5375"%3 and 52k 3 as it varies
over r. At some values of r (0.3 and 0.307), the oth-

erwise strong locking in (4]3|1) became very weak. In

these cases, both long wave triads showed strong phase
locking together when m = 3! was strong. At r = 0.3
this also resulted in dramatically improved locking in
the harmonic triad, as can be seen in Fig. 16 (b). Oth-
erwise, the harmonic triad was not active at all in the
3I¢ regime and showed only moderate phase coherence in
the 3I? and 3AV regimes. It disappeared rapidly at the
transition to 3MAV at rp. The triad (513]2), also in Fig.
16 (b), on the other hand, had the best locking in the 31¢
regime, and then gradually lost coherence towards lower
r. These two triads, however, are always much weaker
than the two triads involving the long wave, m = 12,
Especially the long wave triad with the lower sideband,
(3|2|1), became very strong after the transition to 317,
and even retained some phase coherence some way into
the ¢V regime, together with (5|3|2). The other long
wave triad, (4/3{1), lost all phase coherence at the tran-
sition to the cV regime.

The upper sideband/long wave triad almost always showed
good phase locking in the 31 and 3AV regimes with
1 < pg_3-1 €2, when m = 3" was weak (except for the
cases mentioned above where the triad was active when
m = 3! is strong). Towards the cV regime, however,
this phase coherence reduced, and finally disappeared
at rr. While in the 31° regime the upper sideband/long
wave triad was the strongest, in the 3I? regime the lower
sideband/long wave triad (3!]2!|12) rapidly increased its
phase locking until, in the 3AV flow, it reached its max-
imum of f3_5-; = 5.5 (see Fig. 16 a}). Even in the
irregular ¢V regime this triad retained some phase lock-
ing for some time, although by r = 0.2 this triad too
showed no phase coherence any more.

4.5 The regime diagram; a summary

Before individual triad interactions and mean flow in-
teractions are investigated, the results for F = 90 will
be extended to the r — F-plane shown in the regime
diagram in Fig. 5(b).

For small F, the transitions are straightforward in two
successive Hopf bifurcations from 3S to 3AV and then
to 3MAV, before the three-torus breaks up and becomes
chaotic.

At F = 37, the first Hopf bifurcation becomes suberiti-
cal, together with the emergence of a reversed supercrit-
ical hopf bifurcation from the 3AV to the 3IP. With in-
creasing F', this reversed Hopf bifurcation and the Hopf
bifurcation for 3AV < 3M AV move closer until they
merge and disappear at F' =2 92. Both bifurcations, lead-
ing to MAV and 3{Pfrom 3AV, are not simple Hopf bifur-
cations but rather generalised Hopf bifurcations (Golu-
bitsky and Langford, 1981) since the emerging frequency
does not remain constant but varies substantially over
the entire range of the regime. The frequencies increase
strictly monotonically with decreasing r. Towards the
transition from 3I to 38 the modulation frequency be-
comes very small and seems to approach zero in a ho-



Table 5. Models II compared to model I

Model 1la 1Ib Ilc I1d
nom=6 [nom=256 | nom=1| nom=1,5
r=0.3 no change no change 41 41
more
r = (.23 regular irregular 4+cV 34+M

moclinic bifurcation.

The chaotic bursting regime, 3I¢, is created from the 317
through an attractor crisis (e.g. Grebogi et al., 1982), in
which the torus of the 3I7 regime collides at the centre
with the unstable 35 solution. For large F', the line of
the crisis bifurcation connects with the torus instabil-
ity which leads to the ¢V flow, Although there is some
difference between the chaotic flow at large » (3I°) and
gmall r (¢V) at F' = 110, it is difficult to determine a
distinct transition hetween them.

5 Selected Triads

The analysis of the phase coherence in terms of the lock-
ing density supported the role of the long wave, m = 1,
as the prominent mediator coupling the sidebands to
the dominant wave m = 3 over a wide range of condi-
tions. This conclusion can be tested further by elimi-
nating specific wave triads from model I. This section
shows results from these special models, which are sum-
marised in Table 5. Parameters and unperturbed initial
conditions were taken from the two chaotic regimes of
the full model: a) 31° at r = 0.3, and b} ¢V at r = 0.23.

5.1 Model ITa: m = 6 eliminated

In model ITa the triad supported by James et al. (1981)
was removed. The solution in the 3[° regime did not
show any qualitative difference from the full model, but
the integration in the ¢V regime was much more regu-
lar. The flow is very similar to the solution of model I at
r = 0.2395 (cf. Fig. 12 ¢), and an integration of model
IIa at r = 0.225 resulted in a cV-type solution. All inte-
grations exhibit the same phase locking characteristics
as model [ for the sidebands and the remaining triads.
The 3AV flow, which showed good harmonic phase lock-
ing in model I, was also reproduced in model I1a, which
suggests that the observed harmonic locking in model I
is a passive element of the dynamics. Altogether, it is
found that the removal of the modes with zonal wave
number m = 6 does not affect the dynamics and with
it, that the harmonic triad (6]4|2) is not essential for the
observed wave coupling.

5.2 Model IIb: m = 5 and m = 6 eliminated

This configuration is an even stricter truncation of model
I, in which only triads involving the long wave are per-
mitted. As in the preceding section, the integration at
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r = 0.3 produced qualitatively the same behaviour as
the full model. At r = 0.23, the similarity between this
model and model I broke down, and the transitions be-
low rp were not reproduced. Though the triad (5|3|2)
is considerably weaker in the full model than the lower
sideband triad (3|2|1), it appears from this model that
it is nevertheless an essential part of the dynamics for
the transitions from the 3AV to the ¢V regime.

5.3 Model Ic: m =1 eliminated

Model lic was designed to exclude the sideband insta-
bility as formulated by Plumb (1977) and supported by
Hide et al. (1977}, while permitting the harmonic wave
coupling observed by James et al. (1981). Atr = 0.3 the
model settled into an intermittent bursting with m = 4!
rather than 3! as the dominant mode. It is possible that
the omission of the long wave removed an energy sink
for the baroclinic shear flow so that the zona! flow had
to redistribute the available potential energy, with the
result that m = 41, rather than m = 3!, was the most
unstable mode.

For weaker dissipation, r = 0.23, this model behaved
very differently from any flow type found in model 1.
Removing the modes with a zonal wave number of m = 5
(model 1Id) did not affect the results further.

It appears that in the absence of the long-wave triads,
other wave triads can to some extent take their place
and lead to a modified type of intermittent bursting.

6 Zonal flow interactions

The mean flow correction by the waves was the last class
of nonlinear interaction terms investigated in this study.

6.1 Model III

Model III represents the wave modes m = {1',2!,3! 41}
beside the zonal flow correction m = 0. Under identical
values of model parameters as for the previous models,
I and II, the intermittent bursting regime was lost and
replaced by a periodic amplitude vacillation. As we saw
in §5.2, the removal of modes shifted the dominant wave
mode to a higher wavenumber. Similarly, in model III
a steady m = 4 wave bifurcated to a 4AV at F = 90
and 3 = 0.01. At lower values of the Froude number,
F < 85, the 45 gave way to a 35 solution, which in turn
either developed an amplitude vacillation or continued
the sequence first to 25 and then to 1S. A modulated
vacillation was only found for very small values of r,
r & 0.1, growing from a periodic multi-mode amplitude
vacillation.

As A was increased, the extent of the steady wave regimes
relative to time-dependent flows was progressively re-
duced. Especially the modulated vacillation regime grad-
ually expanded and shifted to smaller ¥ and larger r,
thus moving closer to the steady wave regimes. At
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B =2.00 and 20 < F < 40, the transition from a steady
m = 3 was directly to a bursting regime. This tran-
sition from 38 to 3[ at F' = 30.0, r = 0.2464 was very
similar to the transition observed in model I, with a sud-
den onset of the large-amplitude vacillation of m = 3,
modulated at a very low frequency, together with the
bursting of the other wave modes. The scaling of the
bursting frequency as a function of r, — r was found by
linear regression to follow the relation of

w; o (e — )0 70T (19)

with a correlation coefficient of 0.995. Before we discuss
these results in the context of the full model I, a final
set of models of even further restricted truncations will
be presented in §6.2.

6.2 Models IV

In this set of models, the minimal models for the burst-
ing flow are formulated by removing even more modes:
in model IVa, the wave modes m = {1!,2!,3'} were in-
cluded, and this was further reduced to just two zonal
modes, namely m = {21,3'} in model IVc and m =
{1*,2!} in model 1Vd. Since the wave-zonal flow in-
teractions are the essential terms in these models, the
sensitivity of the models to the representation of the
zonal flow correction terms was tested in model IVb by
retaining a larger number of meridional modes of the
zonal flow. The results from model IVb were identical
to those of model IVa in the regimes tested, and it was
concluded that a single cross-channel mode of the zonal
flow correction was sufficient to capture the dynamics
of the investigated flows. Models with a single zonal
mode were also tested, but no sclutions similar to the
intermittent bursting were found.

At the large value of 3, 8 = 2, at which model III exhib-
ited the direct transition from the stcady wave regime
to the intermittent bursting, all models IV also showed
this direct transition. In model IVe, with m = 2,3, the
transition was between 25 and 2I, and in model IVd,
with m = 1,2, it was between 1S and 1I. The bursting
frequency was found to scale as w; o (r. —r)*3%201 for
model 1Ve, with r. = 0.2675 and a correlation coeffi-
cient of over 0.99. Model IVd, with r. = 0.1428, showed
scaling behaviour slightly closer to those observed in the
previous models with w; oc (r, — 1)0-52+0.06,

¥ Discussion

In Sections 4 and 5 we studied the role of resonant triad
interactions in establishing complex multi-mode solu-
tions. The primary sequence of regimes, as r was de-
creased, was

35 & 3I° & 3I° & 3AV & 3MAV & 3T?M & ¢V, (20)

A bifurcation analysis of a single-mode model by Love-
grove (in preparation) has shown that a steady wave

may lose stability in a subcritical Hopf bifurcation. The
divergence of the modulation period in the 3I regime
towards the bifurcation to the 35 regime indicates the
existence of a homoclinic orbit organising the dynamics.
The nearly simultaneous existence of a Hopf bifurcation
and a homoclinic orbit would suggest that we have ob-
served a bifurcation akin to intermittency of type IT (e.g.
Schuster, 1995). Both the scaling of the modulation fre-
quency as w; x v¥%—for type-Il intermittency w o
would be expected—, and the distribution of burst in-
tervals (cf. Fig. 7 ¢) could be consistent with such a
bifurcation.
Similar scaling was found in model ITI and in the labora-
tory experiments, both with w; o< 4%7, while a slightly
lower scaling exponent was found in models IVc and d,
wi & ¥9® and w; oc ¥* respectively. One should, how-
ever, be cautious in equating the flows observed in the
laboratory to those found in the models; the bifurca-
tion to the 3/2I regime in the annulus experiments was
not from a 35 but rather from a 3MAV, which itself
emerged either directly from the axisymmetric flow, or
from a dispersive flow regime, D:

Do —2—BA e
0 +— 3MAV +— 3/2] +#- 28V. (21)
While the 3MAV and 3/2I regimes were consistent with
low-dimensional dynamics, the regimes D, 2-3A, and
25V were not. The models discussed herein were there-
fore not expected to reproduce any of those flow regimes.
In the smaller models, bifurcations from a vacillating
flow to the intermittent bursting were found at smaller
values of 8 than those of the direct 35431 transition.
It is possible that an AV or MAV prior to the onset
of the bursting—and therefore closer to the transition
obscrved in the experiments—exists at other values of
F or 3, but to verify this, an extended two- or three-
parameter study with the full model is required.
With the possibility of resonant triad interactions re-
moved, it was necessary to increase 3 by two orders
of magnitude in order to reproduce the bifurcations se-
quence from the 35 to 3AV in Eq. (20). Since it was
shown in the models II that the further bifurcations
to the ¢V regime depended crucially on the presence
of several triads—(3|2|1), (4|3|1), and (5|3|2)—it is not
surprising that none of the small models showed any of
those flow regimes.
It was surprising, however, that the small models repro-
duced the intermittent bursting. In the full model it
was found that consistent sideband phase locking was
achieved through an alternation between either side-
band; when the dominant mode was strong, the lower
sideband was most strongly coupled, and vice versa.
When the long wave was removed, as in models IIc and
d, the harmonic triad could to some degree take their
place and establish an intermittent bursting, though
with a different dominant mode. The necessary increase
in [ to find the direct transition 354331 suggests that



not only affects the resonance conditions for wave-wave
interaction by affecting the phase speeds of the waves,
but that it also affects the efficiency of the zonal flow-
wave interactions. The zonal flow correction of the baro-
clinic zonal flow modes due to the zonal wave mode m is
of the form (7o' —o*x77'). The x and o are the coefhi-
cients of the cos and sine components of ¥, respectively,
as defined by Eq. (13). If J, which primarily affects the
wave propagation, has a significant effect on the phase
difference between the baroclinic and barotropic mode
of each zonal wave, this will influence the zonal flow cor-
rection. It was observed that the phase difference in the
steady wave regime increased from é¢ = ¢ — ¢3 = 7 /2
to §¢ & 37 /4 prior to the onset of the intermittent burst-
ing.

The long-wave triads, however, seemed essential in the
observed crisis bifurcation leading to the chaotic 3I° in
model I; the bursting solutions in all other models were
quasi-periodic. While in the quasi-pericdic 3I? regime
of the full model the lower long-wave triad was always
stronger than the upper long-wave triad, in the chaotic
3I° both long-wave triads were competing with com-
parable strengths. In the annulus experiments, it was
also found that in the regular 3/217 regime the lower
long-wave triad dominated the phase locking, but in the
chaotic 3/21° no triad showed clear dominance.

8 Summary

In this study we have investigated complex baroclinic
multi-mode flows which resulted either from wave-wave
interactions through three-wave resonance, or from zonal
flow-wave interactions. The flow of primary intercst
was a strongly modulated amplitude vacillation where
the modulation was coupled with intermittent bursts
of weaker wave modes. This flow appeared to involve
a subcritical Hopf bifurcation and a homoclinic orbit,
which would imply that this flow arose from an inter-
mittency bifurcation of type IL

In a model representing both types of nonlinear inter-
actions, it was found that the two triads involving the
longest wave and the sidebands of the dominant wave
were the triads showing the strongest wave coupling. In
subsets of this model, where these two strongest triads
were removed, it was shown that other triads could, for
some regimes, take the place of the long-wave triads.
Zonal flow-wave interactions alone were also found to
reproduce a subset of the full set of multi-mode regimes,
including the intermittent bursting of the weaker modes,
if the value of 8 was significantly increased.

The findings from these modes were compared with re-
cent laboratory experiments of multi-mode baroclinic
waves in a rotating annulus experiment. While the model
results do not correspond exactly to the laboratory flows,
strong similarities were seen both in the wave inter-
action properties and in the scaling behaviour of the
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modulation frequency. With the model we were able
to demonstrate that resonant triad interactions as well
as zonal flow-wave interaction may give rise to types of
fluctuations found in the laboratory. The laboratory ex-
periments and low-order models together point to these
nonlinear interactions as potential causes for some of
the low-frequency variability observed in the large-scale
circulation of the atmosphere in middle latitudes.

Appendix A Linear stability analysis
Al Linearised equations

The stability of a purely zonal flow is considered. The
flow has the velocities u; = u, + ug in the upper layer
and us = u, — g in the lower layer. The equations
describing the evolution of perturbations are the full
quasi-geostrophic equations, Eqs. (9) and (10) with ¢
as the perturbation. However, for small ¢ the quadratic
terms are negligible:

g 9| o2 9 _ p.—lg2] o2
{[E+usa]\7 +,B£+[T Re V]V thy

a o

il Al
+tg— Vg =0 (Al)
and

{ [% +uy(V? - 2F)] (V2 — 2F) (A2)

+’3c% + [r — Re™! (V* - 2F)] v2} Va

+ud9— (V2 +2F) ¢, =0.

dz :

Perturbations 5, 4 of this basic state are described in
terms of eigenmodes of the Laplace operator where
Pea € 1.
Ps,a = ATT sin (Luy) e (oY (A3)
with I, = ™m, kn = 2Zn, and & the aspect ratio. Define

K? = k2 +12, = n*(4n?/a® + m*). Then, dropping the
subscripts, the differential operators become

%f—) —ike
d )
a — 'lk?

Vi —K2

In the following subsections I shall present a stabil-
ity criterion for a uniform shear flow without any y-
dependence.
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A2 Uniform shear flow

The basic state does not vary across the channel, and
after inserting the eigenmodes into the linearised equa-
tion, Eq. (A1) one obtains

{th(c — us) K* +ikfu, — (r + Re"V K?) K*?} A,

— ikK?ugAy = 0. (A4)
Similarly, Eq. (A2) becomes
- tkug (K* — 2F) A, (A5)

+ {ik(c — us)(K? 4 2F) + ik
—(r+ Re N (K*+2F)) K*} Ay
= 0

Rearranging terms yields

K2
{(c +f§-2~+zk kRe}As—udAdzo. (AB)

and

K2 2F

—TUdAS (A?)
K?4+2F 3 r  K?*42F

+{———K2 (c—us)+ﬁ+zg+z——kRe }Ad
= 0.

This has non-trivial solutions if and only if the determi-
nant of the system equals zero:

B r K
((c )+K2+z +sz {A8)
2 2
(s o (Zil) 4
K2+2F \K?2 "%} "'k Re
K?—2F ,
“xryoptd =Y

A wave is marginally stable if the complex part of ¢ =
¢; = 0. The perturbation grows exponentially if ¢; > 0.
Rewriting the equation as a quadratic equation for c—u,
gives

(c — us)? (A9)
K:+F (3 r K?
2] — T (Lo il 44 ~
+ {K2+2F (I@“k)“k}ge] (e~ us)
_K?-2F , K? B\’
TR +oF T K0P\ K2 TR
K

L KEHE (B 7\ K2 K2\
K21 2P \K?2 '% ) FRe T \Fme) -

After some algebra one obtains

¢ Tu, {A10)
_K*+F B
K?+2F K?
o1 2 r . K?
KT L 2F ((K +F)E+(K +2F)kRe)

1 Ji} r\?
4 o—— 4 2 2 2| y .
T \/(R 4F%) us + F (K2+1k)

Hence the criterion for marginal stability is

K2
k Re

2
- Im{x/(K‘i—élFE) +F2(£2+z'%) }

The growth rate of the infinitesimal wave mode is given
by k Im{c}.

(K? + F)% + (K? 4 2F) (A11)

Appendix B Phase locking

From the integrated resonance condition for wave triads,
Eq. (2),

— Pt — Gme = constant, (B1}

Pm-m'-m" = $m

one can evaluate a time-averaged quantity which shows
how often each value of ¢ (between 0 and 27) is assumed
bY ¢m—m'—m~{t}. This ‘locking density’, pm—m’'—m,
may be defined as the probability density function
P(Pm—m'—m»)} dé over the data set, and gives infor-
mation about the time-averaged phase locking: strong
phase coherence would result in a strong peak at the
preferred value of ¢, while no phase coupling would give
a fairly flat density function over its entire range 0. .. 2x.
If no amplitude dependence needs to be considered then
the phase locking function ¢m_m _m» at time ¢ makes
a nonzero contribution to g/ —me only at

® = ©Ym-m'—m- This can be expressed with the delta
function, 8 {¢ — ¢¥m—m’—m~ (£)), which then is integrated
over time and normalised by all contributions {(i.e. the
limits of the time integration):

P m~(¢) (B2)
_ f 5 (¢~ P (£)) .

t"n to

If one needs to separate the contribution from different
amplitude ranges of the participating modes, then at
each time the contribution to the locking density has to
be weighted, either by 1 if all three modes are within
their preselected amplitude window, or by 0 otherwise.
This weighting is achieved by multiplying the delta func-
tion by two Heaviside functions, H, for each mode 7, one
setting the lower limit of the amplitude window and one
the higher limit:

W; = H{A;(t) — A’J'-’”'”)H(A;-“” — A;())lo
1 fz>0

with H(x) = { 0 otherwise °

In the following equation this weighting is applicd also
to the normalisation factor to ensure [ pd¢ = 1. With
these amplitude windows, Eq. (B2) becomes

Pra— i —m (¢; {4y ”’"“'"“}) (B3)



Jiedt 8 (¢ —o(t) T, W;(0)
ff"f dt TT; W;(#)

where j = m, m', m".

In practice, pm-m'—m~ 18 calculated by counting the
scans for which ¢ < ¢Ym-m'—m» < ¢ + 0¢, provided
the amplitudes of the waves are within a preselected
amplitude range. The density is normalised to have unit
area in the interval 0...2m:

¥

Pa—b—c(®) = (B4)
no. of ¢ S Pab—c < qj + 6¢
scans with a.nd
1 5 AP < Ay S AT, j=a,bc
(5(;5 no. of

As in the triad phase locking, a sideband locking density,
Pm can be defined as a measure of the time-averaged
strength of the wave coupling by this mechanism with
Eq. (B4}, but using ¥y, instead of om—m'—m».
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