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Abstract. We examine the time series of cosmic ray (CR)
intensity recorded by two neutron monitors (NMs) at
medium latitudes for scaling properties on time scales
shorter than the diurnal variation. Scaling of the data with
10 sec as well as 1 min resolution is shown to be compli-
cated, indicating that there is probably not a unique process
governing the CR fluctuations in the whole interval studied.
For T <20 min the general characteristics are similar to
those of white noise. Above 40-60 min the scaling charac-
teristics are dependent on the level of interplanetary dis-
turbance. This is consistent with the concept of scattering
CRs by inhomogeneities of the interplanetary magnetic
field (IMF). With increasing interplanetary turbulence the
dimensionality of the CR time series decreases. The region
of stable scaling is, however, narrow, only up to 6 hours.
Multifractality signatures in the region 1-6 hours are similar
to those in the IMF, however the deviations from mono-
fractality are relatively small.

1 Introduction

The fractal and/or multifractal structure of the IMF and of
the temperature and the density of the solar wind has been
examined in several studies (e.g. Burlaga and Klein, 1986;
Burlaga, 1991 a,b,c; Burlaga, 1992). As a contrast, the
character of CR times series observed at NM energies, i.e.
those influenced by the IMF, has been studied in only a few
papers (Yasue and Mori, 1990). At higher energies, the
monofractal character of CR intensity is reported by
(Aglietta et al., 1993). This monofractality may be due to
the fact that high energy CRs are insensitive to the redis-
tribution of the small-scale irregularities in the heliosphere
which in turn arises due to the changes in solar and inter-
planetary activity. The use of the fractal dimension for
characterization of the time series from meson telescopes
was shown in Yasue et al. (1993). Several years of hourly
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measurements of CR at two NMs, namely Calgary and
Lomnicky &tit (LS), show scaling with the fractal structure
for the periods 32-256 hours (Kudela and Venkatesan,
1993).

In recent years, the search for solar neutron responses in
the NM data led to the increase of time resolution of NM
measurements (e.g. Valtonen et al., 1987; Takahashi et al.,
1990; Ye Zhonghai and Feng Hua, 1990). There are
reports on several changes in fluctuation characteristics of
NM time series with shori-time resolution during non-
stationary processes in interplanetary space like Forbush
decreases and solar flare particle events (e.g. Nagashima et
al., 1990; Fliickiger, 1990). Despite the fact that on several
NMs the measurements are run with a time resolution of
1 min or better, and much observation material is ready for
analysis, there is a lack of description of general charac-
teristics of these time series. We are using 1 min data from
two NMs, Jungfraujoch (1) and LS, to deduce the common
characteristics of such time series, to check the adequacy of
a description of the data according to the concept of
fractality, and to investigate the scaling of higher moments
of the statistical distribution of the data.

2 The data

We are using 1 min pressure corrected data for the period
March 1991 from two NMs: JI (latitude 46.55° N, longi-
tude 7.98° E, vertical cutoff 4,48 GV, altitude 3570 m,
count rate approx. 2x 104 per 1 min) and LS (latitude
49.20° N, longitude 20.22° E, vertical cutoff 3.84 GV,
altitude 2634 m, count rate approx. 2.6 X 10% per 1 min).
An additional set of data is 10 sec measurements from LS
during November 1-10, 1992, These data are from the joint
experiment U. of Turku, Finland and IEP SAS Kogice,
Slovakia. The short gaps in the data are filled by linear
interpolation.

To check the consistency of the methods used in the
following analysis, we have generated test data as time
series by adjusting power spectrum distribution and random
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phases. Since the fractal analysis is related to the power
spectrum analysis, one natural way of testing the
procedures used in fractality checking is to generate the
time series with the adjusted power spectrum density. If
the power spectrum of the time series I; is given {i.e. the
form of P(f), in discrete f;, P(f;) = (r|/2)(a.i2 + biz) where
aj = (2/n) T I; cos(2rfit), bj = (2/n) T I sin(2nfit), sum-
mation is over t=1,...n, f;=i/n, n is an odd number (Box
and Jenkins, 1976)}, the corresponding time series is not
determined uniquely, since the phases are not fixed. Any
set of random phases adjusted in such a way that real values
of time series are produced can provide a realization of the
temporal process. We have used the algorithm similar to
that of Owens (1978), and generated 214-point time series
with P(f) = const.xf “* where a. = 0, 1, 5/3, 1.75, 2 and 3,
respectively with phases uniformly distributed over (0, 2n).
For the power spectrum analysis we used the FFT method.

3 Power spectrum properties

A common, widely used method which we also apply to the
data is the power spectrum analysis. For the estimation of
the power spectrum we are using the indirect method based
on Fourier transform of autocorrelation function according
to Box and Jenkins (1970). Having N data points (the
5 min values for one day) the estimation of autocorrelation
Pk = ¢k / ¢, for k=0,1,2,... N-1 is constructed with

ek =) (x¢ - XMxgex - ) m

where the summation is taken over t=1,2,...,N-k. The value
X is the average of x,. The periodogram as defined in Box
and Jenkins (1970} and Jenkins and Watts (1968) is called
the sample spectrum and is the cosine transform of the
autocorrelation function

I(f) = (2/N) (ag? + be?) @

for frequencies 0 < f < 1/2. As an additional feature com-
pared to the periodogram defined in Box and Jenkins
(1976), the sample spectra can be used to estimate the
amplitudes of the sinusoidal component at any particular
frequency f, not only at f; = YN. This is useful in esti-
mating the integral of power spectrum density in a given
interval of frequencies. According to Box and Jenkins
(1970), the sample spectrum, I(f) is related to the estimates
of autocorrelation function ¢

I(f) =2[cy +2Z ¢ cos (2 k)] (3)

where the summation is taken overk=1,.. N-land 0 < f
<12

The power spectra of the two sets of data, JJ and LS, for the
period March 1-16, 1991, were examined by the above
mentioned method (23040 points with only 15 data gaps).
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Fig. 1. Power spectra of 1 min NM data from LS (curve a) and JJ (curve
¢, multiplied by 1000) for the period March 1-16, 1991, The power
spectra are computed according to (3). Curve b is a fit to the LS power
spectrum using a single power law index.

This interval is characterized by low level interplanetary
activity. The spectra I(f) are displayed in Fig.1. The form
of I(f) is similar on both stations over a wide interval of
periodicities. The form is not strongly different from f-573
which is expected for the Kolmogorov spectrum describing
inertial turbulence in an incompressible fluid. However,
unlike the IMF power spectrum, the CR power spectrum is
not idealty fitted by a single power law index having clear
physical meaning. Using the approximation I(f) = kxf "%,
we obtained o = 1.81 £ 0.04 for LS and o = 1.72 = 0.06 for
JJ. The transition from the fitted "global" index towards
steeper spectra (close to 2.0) is seen at lower frequencies
(f < 2x 10°% Hz), which could correspond to ordinary
Brownian motion, rather than to the Kolmogorov index 5/3.
With the increasing f the power law approximation gives
lower correlation and larger errors, and the index a is not
determined with a sufficiently low error to distinguish
conclusively between 2 and 5/3.

4 Scaling below the diurnal periodicity

To determine the scaling properties of the signal of short
time resolution data from NMs, we are using two methods,
(a) the determination of the scaling exponent and (b) the
method used by Burlaga and Klein (1986).

The dimension of the temporal process described by self-
similarity properties of the signal can be obtained assuming
that the distributions of values [T (t+t) - I (t)] has the same
properties as the distribution of at {I (t+n7) - I ()] where H
is a constant (Aglietta et al, 1993; Bergamasco et al,
1993). We start by assuming a simple, monofractal scaling,
although it is a special restrictive case of scale invariance
and probably does not describe the real situation (Lovejoy,
1995). The reason is that at higher energies the behaviour



of CR time series could be described in this approach
(Aglietta et al., 1993; Bergamasco et al., 1993), and we
wish to compare the lower energy CR behaviour with those
results. The value H is obtained as the slope of linear
interval of Al(nt) vs nt in a log-log plot. The consistency
of the conclusions about the fractal properties requires the
equality of the dimensionalities obtained from the above
mentioned methods.
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Fig. 2. Scaling of 1 min NM data from JJ. 2" data points from 00 UT on
March 1, 1991 are taken. The variance, Al (nt) vs ot is displayed. The
effect of data averaging is seen. The three sets of data cortespond to:
T = 1 min, original data {full circles); t = 10 min (crosses), T = 30 min
(open circles), and t = 60 min averages (thomboids).

Figure 2 displays the scaling properties of the 1 min
signal taken as 214 points from JJ March, 1991 data in the
plot Al{nt) vs nt. For the original data (full circles)
t = 1 min; the points on other curves cormrespond to 10 min
data (crosses), 30 min (open circles) and 60 min averages
(rhomboids). A similar character was found in the 10 sec
data. There are two apparent characteristics: (i) the effect
of noise leads to the underestimation of the scaling
exponent, which is similar to the finding in Bergamasco et
al. (1993}, and (ii) only a small stable linear interval is seen
from approximately 1 to 6 hours.

The fractal dimension can be alternatively estimated by
the method used in Burlaga and Klein (1986); Mandelbrot
(1982); or Higuchi (1988). This method was used also for
high energy CRs (Bergamasco et al., 1993). The length of
the curve, A, is measured A(nt) = I abs{lt; + nt)-I(tj)}
i=n,2n,3n,...,. A means the length of the "histogram" of the
curve for different averaging of time series defined by nt.
For a fractal self-affine signal, A(nt) behaves as nL-land as
n~%, where L will be defined in equation (6). In the method
of Burlaga and Klein (1986) the length of the curve is
measured at equidistant points of the scale log n {n is 2™, m
is integer) and the slope of linear interval of log A vs log n
of these two values, -S, is obtained. The length can be
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measured for any n. This approach is used in Higuchi,
(1988), Yasue et al. (1993), and Bergamasco et al, (1993).

The procedure is the following. We take 214 data points

{I{1),1(2),..., 1(16384)}. In the first step (m =0) we take the
original data and the "length" A2 =1 (2) - I(1)| +
+|K3)-1(2)| + ... +|I(16384) - ] (16383)|. In the second
step (m=1) we are averaging the data over 2, and construct
A( 21) = {I(3) + 1 (4)}/2 - {I(1) + I{2)}/2} + ...
+ | {I{16383)+1(16384)}/2 - {I(16381) +I{16382)}/2]. Then
follow steps m=3,....,n-1. Thus for each m the procedure
gives the length of the curve, A(2™) constructed from
averages of the original data over 2™ points; m = 0,1,..,n-1.
The linear intervals in the plot log(A) vs log(2™) provide
the information on the scaling.

The test series generated as £°, as well as other series with
adjusted form of power spectrum density, were evaluated
by the above mentioned procedure. Defining the g-th order
structure function as <|AIAD" > = ARY ) the value
L = K(1). For the simple scaling K(q)=Hq is linear in g,
and oo = K(2) + 1. For this simplest case, similar to
Bergamasco et al. (1983) , when L is deduced from the
plot, the validity of the relation o = 2L + 1 was confirmed
on the test data, even if 1. < 0. For the white noise case,
formally L. =-0.5and S = 1.5.
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Fig. 3. The yardstick length exponent for 10 sec LS data from November
1-10, 1992 {full circles), and from | min JJ data in two periods in March,
1991 (crosses: quiet period, open circles: disturbed period including the
large geomagnetic storm on March 23-24, 1991). The length A at
different averagings is displayed, the averaging time is in sec. Note that
the slope 1.5 is well seen for all data up to approximately 20 min.

The result of the method described above is seen in Fig.
3. Two sets of 1 min data (differing in the level of inter-
planetary disturbance) and 10 sec data are plotted in the
same graph. The normalization is adjusted so that A (T =10
sec) = 1. For all data sets the behaviour is clear with
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S = 1.5 up to at least 20 min. For longer times, a deviation
from that dependence is seen, the amplitude of which is a
function of the interplanetary activity.

5 Scaling of the higher moments

We have examined the scaling of higher moments of dis-
tribution of the NM time series using the method similar to
that described in Burlaga (1991c). We have N = 214 data
points. We construct the averages, I (t), over subsequent 21
points and ascribe them to t in the center of that interval,
(n=10,1,2,...,13). Values having the meaning of probabil-
ities of occurrence of the values I, ),

Py(t) =1, (H(2"/N) 4)

are also constructed (note I p,(t) = 1, summation over t =
l,..., N/27). The data are normalized so that < I,(t) > = 1.
For each averaging, 2, the g-th moment of statistical distri-
bution, Mp(q) = E [{p,(t)}1] is defined, which in discrete
form means

M,(q} = Zn(p,()lpy (D11 (5)

where summation is again over t = 1,..., N/21,  Similar to
the multifractal structure of the aggregate (Coniglio, 1986),
where the mass, M, scales with the linear size, L, as

M(q) = Sn(p)pd ~ L (4" DPq (6)

Similar to the notation of Coniglio (1986) instead of L
(the aggregate size) we have N, and instead of ¢ (the linear
size of cells) we have 2. Thus the g-th moment has the

scaling symmetry

My(@) ~ 22y @ DPg - any XD )

Since M, (q} = (N2 < p,9 >, we relate < p 4> ~
(20/N) Q) + 1, or

<I> ~ <pyd> QYN)A ~(2N) Y@ et
= (zn/N)S(CI) (8

By plotting log < I,% > versus log (2") , the values s(q)
are deduced from the linear intervals. A multifractal object
is characterized by a continuous spectrum of indices f(cx).
Values a and f can be obtained from the knowledge of D

i.e. from ¢
o (q) = d/dq [ (g-1) Dg(@)]
f=qa(®-v(@=qa(q)- (1) Dyq) 9]

according to Halsey et al., (1986). Multifractal indices can

also be studied by another method, called double trace
moment technique as used in the studies Tessier et al
(1993) and Schmitt et al. (1993). Different methods of
studying multifractality are referenced in Davis et al.
(1994).
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Fig. 4. Plot showing the properties of scaling higher moments of the CR
short time data records. The values <1, 9> , the g-th statistical moments
(around the mean) of the averages over 2" data points, versus (27} are
displayed in the log-log scale. For definitions, sec part 5. Data from 10
s¢c measurements at LS are used, n=1, ..., 13 points are shown.

We have examined the values < I,9> and plotted them in
log-log plot versus 2"  One data set from 10 sec
measurements and another from 1 min data in March 1991
were analyzed to deduce the values s(q). Figure 4 shows
the selected moments of the distribution for the 10 sec data.
There is a relatively narrow interval of times for which the
linear behaviour between log < 1,9 > and log (2") for all q
studied can be taken, namely between 2560 sec and 20480
sec. For the 1 min data a similar interval was found.
Figure 5 displays two selected moments of the 1 min data
and a comparison with the expected scaling for normally
distributed data. If s(q) is constructed from the interval
2560-20480 sec, the values have a dependence on q as
shown in Fig. 6. There is a deviation seen from linearity
which is expected for the multifractal character of the data.
However the deviation is not very clear assuming the
present statistical accuracy. According to Lovejoy (1994)
to test for multifractality, one must concentrate on the low
order moments (0<q<2). Testing the available CR data for
different periods, however, we did not find a conclusive
stable value of q, for which the linearity of s(q) is valid in
the region q > q,. It should be mentioned that recent results
on geomagnetic time series from ground based
magnetograms (Vords et al, 1995) have not shown clear



evidence of multifractality either. Cosmic ray variations
probably have an unclear degree of fractality, especially at
time periods of less than 1 hour, where the influence of the
IMF is negligible and where, subsequently, the geo-
magnetic field variations may be the dominant cause of CR
variations.
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Fig. 5. Example showing (i) the similar scaling characteristics for the
time series of CR data measured at two different NMs during the same
time interval (March 1-16, 1991) and (ii) the difference of the scaling of
CR time series and of norma! distribution data with the same variance,
n=1,.,1,1T=60sec.
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Fig. 6. Values of the slopes, s(q) for selected moments and interval 2560-
20480 sec, obtained from Fig. 4 are displayed. The nonlinear behaviour
of s(q) is seen; however, the deviation from linearity is not strong,

6 Discussion

Cosmic ray short term variations have been the subject of
studies for many years (e.g. Dhanju and Sarabhai, 1970;
Owens and Jokipii, 1973; Dorman and Libin, 1980; 1984
and many others). One of the aims of these studies at NM
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energies is to deduce the information about the dynamics of
magnetic field inhomogeneities in interplanetary space
responsible for CR scattering. Some works use the CR
fluctuation characteristics for the purpose of predicting
geophysical phenomena (for a recent review, see e.g.
Kozlev and Krymsky, 1993). An alternative description of
the most common analysis of the power spectra is the
fractal description applied here to the short time resolution
CR data. This description could be a useful additional
approach to the systemization of the fluctuation charac-
teristics, as by S or H.

The time series from high energy primary CRs are only
marginally affected by solar effects and have stochastic
monofractal character {Aglietta et al., 1993). At lower
energies and at NMs with relatively high count rate, the
effect of multifractatity due to its character at the IMF
inhomogeneities would not be an unexpected feature. Such
structure, if clearly seen on large amounts of data and in
larger numbers of NM time series, is not in contradiction
with monofractal structure seen at higher energies.

The analysis performed here has shown that the simple
scaling of CR time series (characterized by a single scaling
exponent) is not appropriate for the wide interval of charac-
teristic times from tens of seconds up to one day, contrary
to longer time scales. There are probably several processes
which simultaneously determine the scaling of CR time
series. The most important of them is the scattering of CRs
on inhomogeneities of the IMF. An effective scattering of
CR particles in the IMF can be expected only when the
magnetic irregularities have a characteristic dimension
which is larger than the gyroradius of the particle. This
makes constraints on the minimum characteristic time of
CR variations due to interaction with the IMF irregularities
(Bazilevskaya and Struminsky, 1993). For 10 GeV
particles, solar wind speed v = 400 km/sec, and B = 5nT,
the variations due to the IMF can be observed at T > Tyyin
= 40 min. Figure 2 in Kudela and Venkatesan (1995)
shows that different periods, characterized by different
levels of interplanetary activity and the associated
turbulence, yield different scaling of the CR time series
above the interval 20-40 min. Below 20 min the effect on
scaling of CRs is negligible. This supports the idea that the
fluctuation spectra and scaling properties are significantly
influenced by the IMF. We suggest this is a signature of
the action of the IMF onr CRs, which has a high frequency
cut-off. However, this does not mean that, in special
periods like Forbush decreases and periods around solar
flares, changes of the spectra and some selective peri-
odicities may not occur. Recently, Yasue et al. (1994)
reported using the large portion of the data (1985-1991)
from Matsushiro station (median energy 686 GV), that the
power spectrum consists of three parts. The second one,
with the power spectrum index close to -2.0, has a high
frequency cut-off at f ~ 8 X 10 Hz. Above this frequency
cut-off' the spectral index is zero. Assuming 686 GV
particles, the minimum time variations due to the IMF can
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be expected at 6x 10 Hz, a value (i) which is very
different from that observed as "cut-off" at NM energies,
and (ii) which is not greatly different from that expected
from Tyyijn. This conclusion, however, must be assumed
with some caution. In fact, the time series at Matsushiro
are constructed from data with a total count rate of
2.1 104 per hour, while J} NM data have the count rate
1.3 % 10 per hour and LS has 1.6 % 105 counts per hour.
Thus, for clarifying this "frequency cut-off" more stations
with different count rates at similar rigidity cut-offs as well
as stations with similar count rates at different rigidity cut-
offs shonld be checked.

Once the action of the IMF is assumed to be one of the
dominant processes in the formation of CR fluctuations
above 40 min, one can expect that the distribution of the
IMF inhomogeneities described by the characteristics of the
IMF time series will have some similarities if compared to
CR fluctuations. Burlaga (1992) has shown that the IMF
has multifractal scaling in the interval of 2-32 hours and
that the lower cutoff (2 hours) is related to the use of hourly
averages. The shape of scaling characterized by s(q) shown
here is similar to that published in the mentioned paper (cf.
Fig. 3 from Burlaga, 1992). One significant difference is in
the values of s(q). For CRs the s{q) absolute value is much
smalier than that for the IMF. This is not unexpected.
Cosmic rays are flowing into the heliosphere from the inter-
stellar region and their intensity is only slightly modulated
(by some 10-15% during strong, disturbances) by the IMF,
Thus the modulation effect of the IMF is small in the abso-
lute values of CRs and hence the small dynamics of the
total flux of CRs measured by NMs. This fact can also
explain the relatively small signature of multifractality in
the data.

There are, however, other effects acting on the formation
of CR time series recorded by NMs which influence their
scaling properties. The most significant one is the diurnal
variation. At higher energies this effect is not significant.
However, at NM energies, the diurnal variation is a
persistent, clear feature in the data. Thus a wide interval of
scaling is not expected, and the scaling itself, if examined
by the scaling exponent H, at times more than about §
hours, is distorting the result. We have performed such an
analysis on test data with f-1.75 and random phases and
simulated the diurnal variation by applying a slight signal
of the proper periodicity. Depending on the amplitude of
the additional periodical signal, a deviation from linearity
of Al (n7) vs nt in the log-log plot appeared, similar to that
observed in Fig. 3 above T> 6-8 hours. Other additional
effects which can influence the scaling are the atmospheric
processes which are essentially of multifractal character
(Tessier et al.,, 1993; Schmitt et al., 1993). The most signi-
ficant of them is the effect of the variable total amount of
material above the detector, taken into account in first
approximation by barometric pressure correction.

7 Summary

We present the results of the first analysis of scaling pro-
perties of short time variations of CRs measured by NMs.
The analysis has shown that the characteristics of time
series at two NMs are similar for the same periods of obser-
vations, that scaling with unique characteristic is not
observed in a wide interval of times, and that scaling itself
is dependent on the level of interplanetary turbulence.
Nevertheless the fractal description of the NM time series,
as characterized by the scaling index H, or the yardstick
length index L, can be useful in a systematization of CR
fluctuations over different time scales and can be used as a
complementary description of power spectrum analysis.
Similarities in the power spectra and in the scaling of two
closely situated NMs provide the potential for an extensive
detailed study of the general characteristics of CR fluctu-
ations below the diurnal periodicity (different cut-off rigidi-
ties, different levels of solar activity).

The analysis leads to more specific conclusions:

a. A high frequency cut-off in scaling is observed at
approximately 20 min on both monitors and using the
measurements with different time resolution. At times
above 40-60 min and lower than 6 hours, where scaling is
observed, the dimensionality of the process decreases with
increasing interplanetary disturbance. The minimum time
of 40-60 min agrees with the action of the IMF inhomo-
geneities on CRs at NM energies and confirms the
importance of CR scattering on interplanetary turbulence.
The multifractality seen in the data is not too pronounced
because of the low dynamics of CR intensity variations.

b. For time < 20 min the general characteristic of the CR
time series is similar to that of white noise, and no effect of
the IMF is observed.
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