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Abstract, The history of reversals of main geomagnetic
field during last 160 My is analyzed as a sequence of
events, presented as a point set on the time axis. Different
techniques were applied including the method of box-
counting, dispersion counter-scaling, multifractal analysis
and examination of  atiractor behavior in
magtidimensional phase space. The existence of a
crossover point at time interval 0.5-1.0 My was clearly
identified, dividing the whole time range into two
subranges with different scaling properties. The long-term
subrange is characterized by monofractal dimension 0.88
and by an attractor, whose correlation dimension
converges to 1.0, that provides evidence of a deterministic
dynamical system in this subrange, similar to most
existing dynamo models. In the short-term subrange the
fractal dimension estimated by different methods varies
from 0.47 to 0.88 and the dimensionality of the attractor
is obtained to be about 3.7, These results are discussed in
terms of non-linear superposition of processes in the
Earth's geospheres.

1 Introduction

In recent years estimation of self-similar properties
(scaling) of manifestations of various geophysical proc-
esses has become more and more promising from the
point of view of theoretical aspects of their driving
mechanisms. During the last decade statistical scale in-
variance was found to be an intrinsic quality of numerous
geographical, geological and geophysical features
(Mandelbrot, 1983; Turcotte, 1989; Korvin, 1992, and
others).

In this context one of the more interesting phenomena
is the geomagnetic reversal sequence that reflects the
history of changes of polarity of the main geomagnetic
field (GMF). Ever since the origin of the reversal pattern
during the last 100 My became sufficiently clear, various
attempts have been made to interpret the sequence as a

result of a stochastic process (i.e. Nadai, 1970), or as a
superposition of aperiodic and periodic constituents
(Mazaud et. al., 1983).

At the same time the idea of essential non-linearity of
the processes in the liquid Earth's core responsible for the
main GMF was elaborated, followed by a series of
numerical simulfation models (Rikitake, 1958; Lorenz,
1963; Robbins, 1976; Chillingworth and Holmes, 1980).
In this context it was reasenable to suppose that the
sequence as a whole may present a fractal set with scale-
invariant properties characteristic of various non-linear
dynamic systems (Barenblatt, 1978, Sapgdeyev et al,
1988). The sequence of GMF reversals provides a well-
documented record of the behaviour of such a system
during more than 150 My and gives an excellent
opportunity to test the hypothesis of self-similarity.

2 Data

As a base for calculations we have taken the generally ac-
cepted geomagnetic polarity time scale compiled by
A Cox (1982) that covers the last 160 My (Fig. 1).
Though some new detailed versions of paleomagnetic
scale have been suggested (Hilgen, 1991a, b; Shackleton
et al.,, 1990) they deal only with the most recent events
(down to the Miocene/Pliocene boundary, that is about 5.3
Ma), and we found it reasonable not to revise Cox's scale
in order to keep relative uniformity of accuracy of data.
Reversal times in more recent scales differ from those of
the Cox's scale by only a few per cent, and this scale is
referred to as a sufficiently reliable base for statistical
analysis (Lowrie, 1991).

Ages (dates) of geomagnetic inversion that indicate
the borders of intervals with different GMF polarity are
presented in this scale with an accuracy of (.01 My, This
is close to the theoretical limit since the very process of
polarity change may last approximately 3.5-5.0 Ky
(Prevot ct al., 1985). The authors of this scale claim that
it contains all of the chrons longer than 0.1 My, but some
subchrons of lesser duration may be omitted. In this study
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Fig. 1. Palacomagnetic scale - history of reversals of main dipole
geomagnetic field during last 160 My. Black stripes represent epochs of
direct magnetic polarity (after Cox,1982).

we accept that average conventional scale resolution is
about (.1 My though the accuracy of detcrmination of

individual events may be onc order higher, It must be
taken into account that the scale contains some episodes
with duration of 0.01 My, so its effective accuracy les
within the interval 0.01-0.1 My, and accepted value of
scale resolution is a rather rough estimate. The fact that
each event on the time axis is defined with the declared
accuracy of 0.01 My gives a formal base for analysis of
scaling behavior down to this limit, For example, the box-
counting procedure is valid here, because each event
cannot occupy more than one box of 0.01 My width, and a
box of 0.02 My may contain {and sometimes really
contains) two adjacent but different cvents. Nevertheless
one must bear in mind that the results obtained for the

N, %
100
Y
b
AN 11
CUMULATIVE
1981006 1
10 . AY
F
AY ‘l 7
Y
, /
: 11N
f’ ‘\
ik
7 AN
R
DIFFERENTIAL
-3.0140.08 '.\‘
0.1 .
N
My
0.01 L1l
1 10 100

Fig. 2. Cumulative (squares) and differential (circles) distribution functions
of intervals of constant polarity with respect to their length, Straight lines
show the best least-square fit of power law approximation.

time span from 0.01 to 0.1 My are less reliable than those
for greater intervals,

3 Results
3.1 Distribution of intervals

About 300 reversals are recorded during the period of 160
My so the average length (duration) of an interval with
constant polarity is approximately 0.5 My. Let us examine
the distribution of intervals with respect to their length for
the entire scale.

The most representative statistical characteristic of the
distribution is the integral distribution curve N(7) (Fig.2)
showing the relative quantity of intervals longer than f
with the step length of 0.2 My. It is evident from the
figure that for time intervals greater than 0.8-1.0 My the
integral curve on a double logarithmic scale may be
perfectly approximated with a straight line

log N =1og11.5-(2.0110.07)-log¢

or

N=115172, )
which proves the power-law character of the distribution
and may indicate its fractality.



Figure 2 presents also the differential distribution
curve, i.e. density of lengths distribution with the same
time step. In order to satisfy the normalizing conditions
the numbers dN within the time interval / £~4L..1+ At ]
are recalculated with respect to the position of the interval
on the £ axis according to

AN()
log(f + Af)—log(t — Af)

for Af=0.1 My. Since the distribution density in this case
is simply the time derivative of the integral distribution it
must also obey the power law with an exponent lesser by
unity. This is clearly seen from the results of calculations.

The obtained power law character of the interval
lengths distribution provides evidence of the scale
invariance of durations of constant polarity epochs and
the exponent in Eq.(1) presents a quantitative measure of
this self-similarity - fractal dimension of the lengths
distribution D - that in this case cquals 2.0. As (o the
differential curve, if we regard it as a function of the
probability density of values of interval lengths, p (£ ) ~
3, we may write a scaling relation

platyc a=3p(y), @)

valid in the whole scale range where the distribution is
proved to be self-similar, i.e. for the intervals longer than
0.3 My. The scaling relation (Eq.2) means that, say, the
probability of occurrence of an interval 2 My long is 8
times greater than that for the 4 My interval, but 8 times
less than for an interval of 1 My duration. It is important
that the scaling relation (Eq.2) fully defines the whole
interval distribution - one value of p(¥) is enough to
restore the whole curve - and represents a quantitative
estimation of relative significance of intervals of different
duration.

AN()—

3.2 Box-counting method

The fractal dimension as determined says nothing about
the structure of moments of reversals scattered along the
time axis. This kind of information may be obtained with
the use of the box-covering technique (Forrest and Witten,
1979, Sagdeyev et al., 1988). In this case the results may
be interpreted in terms of probabilities of filling of time
intervals of different length (Turcotte, 1989).

According to this approach we divide the total time
interval 1" ( 160 My ) into 7 equal intervals with length
of dt (so T = m-dt), and estimate the relative number
N; = Pr(dt) of intervals containing at least one event
(GMF reversal). Being relative, this number may be
regarded as the probability of filling of an interval of a
certain length, so it must obviously depend on the length
value dl, that is on the scale, and for a scale-invariant st
of points one must find that

log(Pr)x Cr log(d¥) (3)
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Fig. 3. Dependence of probability of filling of an interval on its duration
(box-counting technique). Explanations in text. Inset shows a portion of
the graph with exagerrated vertical scale,

so that the dependence is linear on a double logarithmic
scale. The fractal (Hansdorff) dimension of the set is

DH‘—'E- CF,

where £ is the Buclidean dimension of the embedding
space (in our case £ = 1), and C is the scaling exponent
from (Eq.3). It is easily scen that the quantity Cg- in. this
case presents the fractal codimension of the set
(Schertzer, Lovejoy, 1993).

Application of the box-counting technique to the
palaeomagnetic scale enabled us to distinguish the time
scale range from 0.2 to 30 My (that is over two orders of
magnitude) within which the existence of statistically self-
similar propertics of the reversal sequence is manifested
sufficiently clearly. In Fig. 3 a graph is presented showing
the dependence of probability of interval filling on
interval duration, Different symbols indicate values
obtained by different methods: squares - by consequent
dividing of total interval into integer number of equal
parts, dots - by consequent double increasing of
clementary time interval (10 Ky). It is clear that the
former technique must provide more valid probability
values for large time intervals, and the latter for the small
intervals.

The graph shows that for very small intervals (less
than 0.1 My) the corresponding probability grows
proportionally with interval length and that for great
intervals (longer than 30 My) it is equal to 1. These
asymptotic branches of the graph are due to the limited
temporal resolution of the data on the one hand, and to
the finite total range on the other. Since the total number
of events is limited, while decreasing the interval length
we inevitably reach the value when no one interval
contains more than one event. It occurs when the interval
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length becomes less than the predominating minimum
duration of uniform polarity (say 0.1 My}, and this value
depends mostly on scale resolution. In this scale range,
the number of filled intervals becomes strictly equal to the
total number of registered events N, and

Pr(dt) = N'm =(N/T)dl,
so that
Log (Pr) ~Log (), Cy=1,

and we approach the trivial case of zero dimension of a
finite point set (Dyy = 0). This situation is represented by
the Ieft branch of the graph of Fig. 3.

The rightmost branch of the same graph reflects
another asymplotic case - pgradual saturation of the
intervals as the box size grows. When the interval length
exceeds the maximum recorded duration of uniform
polarity of GMF (that is about 35 My) the share of filled
intervals becomes equal to 1 and the graph coincides with
horizontal asymptote Pr(df) = 1. In this case one can
see that C-= 0 and Dy = 1. This means that if temporal
resolution relative to the total record length is too poor the
time axis is filled entirely.

We are interested first of all in the behaviour of the
probability curve in the intermediate scale range (from 0.1
to 30 My) where transition from one asymptote to another
takes place. We found that there are two regions of the
graph where the curve may be readily approximated with
a straight line of the form Eq.(3). The inset in Fig.3
presents this part of the graph with magnified vertical
scale. It is easily seen that in the scale range from about
0.2 to 1 My the dependence is linear with the slope of Cpr
= 0.48, which implies fractal dimension of approximately
Dy =10.52 £0.02, close to that of Brownian noise. In the
temnporal scale range from 1 to 30 My the slope of the
approximating straight line is C F=0.12 that proves the
statistically self-similar character of events distribution in
this scale range with fractal dimension of Dy = 0.88 +
0.02,

3.3 Dispersion scating

Additional arguments in favour of the self-similarity of
the GMF reversal sequence may be obtained by means of
the analysis of the scaling properties of dispersion. Let us
define the density of events £ as the ratio of the number of
events » within a certain interval to its length df (p =
n/dlt). 1f the total time range T is divided into 2 parts (T
= m df) then in general individual values of p are
different. The set of 2 values may be characterized with
its mean value O, and mean square deviation Gy, (squarc
root from dispersion) relative to this average. It is evident
for any df that the mean density must be equal to the
average density of the whole set, that is p, = N/T ~2
{(My)~1. But the density dispersion, generally speaking,
will depend on df value and must decrease with its
growth.
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Fig. 4. Results of dispersion counter-scaling technigue calculations
showing time span dependence of external (squares) and internal (circles)
mean square deviation.

If we assume the hypothesis of statistical
independence of events and of randomness of their
appearance (Poisson process), then we may compare the
deviations of density of events along the time axis with
density  fluctuations of an ideal gas and apply
corresponding methods of statistical physics (see, for
instance, Reif, 1968) in order to theoretically estimate
them. It may be shown that the average number of events
within an interval of length df is » = p, df, and the
mean square deviation of this number from average is G,,
= (p, dt}¥/2. So for mean square deviation of density we
obtain

o= opldt = pyzdt‘lf2 ~1.4dt12 €h)

which means that for a sequence of independent events
the mean square deviation of density is inversely
proportional to the square root of the interval length
(stochastic case).

If the dispersion scales with time interval with self-
similarity exponent 2d, that is o= (p, dt) 9, then the
mean square density deviation may be defined as

on = PAdrd1, (5)

This case is a more general one and includes the Poisson
sequence of events with scaling exponent d = 0.5

Let us assess now the results of computations of
density dispersion of the GMF reversals. The descending
plot (circles) on Fig. 4 shows the dependence of mean
square density deviation on interval length. An abrupt
change can be easily observed by subdividing the whole
graph into two different scale ranges. For the intervals
iess than 0.5 My the dependence is very close to (4), and
for intervals greater than 0.5 My it is also rectilinear on



bilogarithmic scale of the type (5) with the slope b=
0.12. The scaling exponent determined from this slope
according to (5) characterizes the fractal dimension of the
set under study d = /+b = 0.88, that is equal to the
value obtained with the box-counting method.

The validity of such an estimate is also demonstrated
by the results of application of "dispersion counter-
scaling" technique (Ivanov, 1994), This approach regards
the above described dispersion as an “internal” one,
characterizing statistics of the internal contents of an
interval of a certain length. One may also compare the
average valucs of density of different intervals of equal
length and obtain an estimate of the "external” dispersion
of the set. This quantity must monotonically increase with
growth of the time intel}ral and in the statistically self-
similar case scales as df ‘d The analysis shows (Fig. 4)
that in the range of shorter intervals, fractal dimensions
defined by scaling exponents of both dispersions are
almost equal with regard to calculation errors, giving the
average value of 0.505 + 0.03, close to the dimension of a
cut (zeroset) of Brownian noise graph. For intervals more
than 0.5 My the sitvation is essentially different.
Although the power law approximation in this case is also
good, the scaling exponent of external dispersion in this
time span suggests a fractal dimension of the set to be
0.95 £ 0.01 (we remind that internal dispersion scaling
gave the value of 0.88 ). This difference of dimensions
obtained from internal and external dispersion scaling,
suggests a multi-fractality of the data set; this idea will be
tested in the next section.

3.4 Multifractal properties

As was stated earlier, the difference of values of fractal
dimensions obtained by different methods may be due to
multiple fractal scaling of the data set. So these results
must be appended with multifractal analysis. In our
computations we followed mostly the formalism described
by J.Feder (1988), though the computational algorithm
was original.

The initial sequence of reversals cannot be subjected to
multifractal analysis since this involves the assessment of
a probabilistic measure. In order to obtain such a measure
M we formed a sequence of relative durations of constant
polarity intervais m; = ( T; -Ti.; VT, , where T, is
total record length. So the supporting set in this case is
simply a segment [ 0N ], with dimension £ —» 1
while N—c0 , and m; is a fraction of total time 7,
falling into the interval T,/N. We examined the
asymptotic scaling behavior of the quantity 7 defined as

r = log(3m4)/log(dD),

where dT is temporal scale, with d7° — /N for different
values of distribution moment g from -10 to 10 with step
0.5. Resulling scaling exponents 7(g) were further
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Fig. 5. Multifractal spectra of normalized probabilities of polarity intervals
durations. Solid line on the upper graph represents theoretical singularity
spectrum of binomial muttiplicative process with p = 9,225,

recalculated into multifractal dimension spectrum D(g)
and its Legendre transform, the singularity function f{cy).

The results of multifractal analysis are presented in
Fig.5. The lower panel shows the spectrum of fractal
dimensions [) with regard to ¢ values. One can see
gradual decay of dimension values with increasing
moment from 1.91 at ¢ = -10 t0 0.61 at g = 10 . There
are three points of special interest on the graph. The value
D(0), which must represent the geometrical dimension of
the supporting set is obtained to be 1.010, which may be
regarded as equal to its theoretical value (i.e. unity). The
value of information dimension D(/), obtained from the
first order moment of the distribution, characterizes
scaling of the informational entropy of the measure, and
in multifractal context is equal to 0.874 (compare with
our previous estimates). Lastly the dimension obtained
from the second order moments scaling (2) = 0.755.
Theoretically it must represent the correlation dimension
of the set Dp, but is essentially lower than the directly
calculated value ( 0.875 - see next section). We suppose
that this difference may be due to the fact that in these
two cases we analyzed different sets - the sequence of
interval durations in multifractal analysis and the
sequence of moments of reversals in correlation integral
computations.
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The upper panel of Fig.5 presents the f{c) functions,
sometimes regarded as a spectrum of singularities of the
analyzed set. Its shape is rather symmetric, though there
exists a region of negative f{@) values for a>2.0,
corresponding to greatest negative values of ¢. The
reasons for such a situation and its meaning were assessed
by B.Mandelbrot (1989, p.35), who has shown
theoretically that under certain conditions multifractals,
generated by multiplicative processes, may be
characterized by negative values of f{@) for some &
values. He called them "latent a's" in contrast to
"manifest a's", for which f{r) is positive and even
described a situation when f{,,,,) = -20. In our case, as
it is seen in the plot, all &'s for &> 2 are "latent".

The symmetric form of the curve resembles that
characteristic of a binary multiplicative process, that is
generally regarded as a typical mmltifractal generating
process. It consists of the redistribution of initially
uniform probability on a segment into two halves in
proportion p and /-p . Theoretical assessments show the
existence of a relation between p and the value of &
where f{ @) reaches its maximum in the form

__In +In(1-p)
R TV I

Therefore one may determine the p value using f (o)
curve. The p value, obtained from the experimental curve
of Fig.5 is equal to 0.225.

3.5 Correlation dimension analysis

The above presented results clearly show power-law
dependencies of different statistical characteristics of the
geomagnetic reversal sequence, and suggest that the
process resulting in GMF reversals is deterministic rather
than stochastic. In order to test this suggestion we
examined the reversal sequence as an output of a dynamic
system, trying to trace its trajectory in the phase space
following the widely applied correlation method
(Grassberger and Procaccia, 1983; Grassberger, 1986).
Regarding each moment of reversal 1; as a state
parameter we studied the behavior of correlation integral

N@=Nidtij>1,

or in other words, number of pairs of points NV ; in phase
space with distance between them exceeding / If the
correlation integral scales with f according to power law,
its scaling exponent represents the correlation dimension
D,. The procedure includes calculations of N(%) in phase
space of different integer dimensionality £, where phase
coordinates are [7i , Ti-1, 7i-2...Ti-E]. We made our
estimates for all £ from 1 to 10. The correspondence of
the maximum embedding dimension and the correlation
dimension is discussed in the next section.
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Fig. 6. Results of dimensional analysis of reversal sequence. Graphs of
correlation integral vs time span for consequent integer embedding
dimensions from 1 (top) to 10 (bottom) with best fit linear approximations
(a), and dependence of correlation dimension on dimension of embedding
phase space for time spans less (b) and greater (c) than 1 My. Vertical
lines - error bars.

Figure 6 presents the results of correlation dimension
analysis. The upper panel shows the dependence of
correlation integral on time interval for embedding phase
space dimensions from 1 {(upper graph) to 10 (lower
graph), It is clearly seen that each graph contains a
crossover point that subdivides it into two parts with
different scaling exponents. The average position of this
point is about 1 My; the slope for greater time intervals is
approximately the same and close to 1, while for lesser
intervals gradual steepening of the log-log plot with
increasing embedding dimension is observed.

The lower panel of Fig.6 and Table 1 illustrate changes of
scaling exponents of correlation integral (that is
correlation dimension [D¢) with phase space dimension.
For time intervals less than 1 My (Fig.6b) Dc almost
linearly increases up to £ = 5 where it reaches a kind of
asymptotic regime. The average value of the correlation
dimension for £ from 5 to 10 is. estimated to be 3.72 +
0.20. Time intervals from 1 to 30 My are characterized by
a more uniform correlation dimension (Fig.6¢ - note that
vettical scale is magnified relative to that of the previous



Table 1. Values of correlation dimension of palaeomagnetic reversal
sequence for different integer dimensions of embedding phase space in two
major temporal ranges

Dimension

of embedding Correlation dimension

phase space 0.1-1.0 My 1.0-30 My
1 1.213 £0.018 0.875£0.027
2 1.928 £ 0.051 0.888 £0.017
3 2.407+0.114 0.964 £ 0.036
4 2.874 £0.144 0.944 +0.021
5 3.589 £0.244 0.971 +0.025
8 3.516 £0.182 0.995+ .027
7 3.84510216 0.990 10.024
8 0.990 +0.024 1.011 40.026
9 3.763 £0.193 1.007 £0.026
10 3.907 £ 0.140 1.020 £0.027

graph). Here we may observe more definite asymptotic
behavior of Dc for embedding dimensions greater than 5,
and individual values of Dc are approximately 1.0 within
the calculation error (mean value is 1.00 + 0.02), For
embedding dimensions >2 deviations of Dc from
asymptotic value do not exceed 10%.

So these calculations suggest a low dimensionality of
attractor of the possible underlying dynamic system, and
the dimension value is different in different temporal
regions,

4 Discussion

Generally speaking the idea of scale invariance of the
GMF reversal sequence was implicitly suggested by the
author of the palacomagnetic scale (Cox., 1982) in the
very terminology of the epochs of different behavior of the
GMF. He introduced the notions of subchrons, chrons,
superchrons and hyperchrons of geomagnetic polarity, the
length of which consequently increases by a decimal order
of magnitude - about 0.1, 1, 10 and 100 My respectively.
(It must be noted here that the palacomagnetic scale
though with lower resolution is traced down to 450-500
Ma, and this gave the grounds 1o enter such a unit as
hyperchrone.)

The reported results provide an opportunity to put these
intuitive assumptions on a quantitative base. Table 2
summarizes the values of fractal dimension of analyzed
reversal durations obtained in this study by different
methods. The most striking feature of these results is the
existence of a crossover point that divides total temporal
interval into two different parts with different scaling
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Table 2. Summary of fractal dimension values of palacomagnetic reversal
sequence obtamed with different methods for different temporal intervals
and the position of the crossover point.

Crossover

point Fractal dimension
position
(df,, . My) de<d,, dt>dt,,
Intervals distribution - 1.98
Box-counting technique 1.0 0.52 0.88
Dispersion scaling
analysis
intetnal 0.5 0.54 0.88
externat 0.5 0.47 0.95
Correlation integral 1.0 1.21 0.38
scaling
Multifractal analysis
nformation dimension - 0.87
correlation dimension - 0.76

properties. The position of this crossover point varics
from 0.5 to 1.0 My for different methods. This temporal
subdivision is not only manifested in the interval
distribution, where in our opinion the bulk characteristics
of distribution predominate, but also in the results of the
multifractal analysis, which formally implies the
existence of uniform scaling,

Though the time spans covered by these dependencies
are not large (cach about 1.5 decimal orders of
magnitade) the fitness of calculated quantities to straight
lines in log-log scale in all cases is good enough to assure
the power law character of the dependencies and the
statistical self-similarity of the data set. Since we are
dealing with an output of a certain physical process and
are inevitably limited by the data resolution on one side
and by sample volume on another, we may only consider
its intermediate asymptotics (Barenblatt, 1978), and so
can regard our results as a reliable analysis of real data.

Another essential result of this study is the value 0.88,
obtained for the fractal dimension of reversal sequence for
time intervals greater than 0.5-1.0 My. It is derived by
four different methods and therefore may be accepted as a
representative value of the (mono)fractal dimension for
longer time intervals, and as such may be used as a
quantitative statistical measure for testing various models
of GMF reversals. As to the interval durations below the
crossover point, the box-counting and dispersion scaling
techniques give the fractal dimension of the set close to
1/2, which may indicate stochasticity of data (a Poisson--
like sequence of independent events). But other methods
suggest other values of fractal dimension, evidencing
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some clustering of points in this time span, and the
question of whether the underlying process is random or
deterministic in this interval cannot be definitely
answered on the base of these computations.

It was natural 1o suppose a priori that such a complex
system as the Earth's magnetic generator may generate a
multifractal output. The results of multifractal analysis
clearly confirm this suggestion. They also add some new
topics for discussion, by which we mean the symmetry of
the singularity spectrum and, the above mentioned
possibility that the inferval durations may be simulated
by a binary multiplicative process. The bulk average
value of binary measure P was presented in Section 3-4
and was estimated to be about 0.225. We tried to test this
estimate directly, computing the relation between
probabilities of two adjacent intervals in the process of
successive division of the total segment into 27 parts.
Figure 7 shows the 1esulting graph, representing the
dependence of measure P on temporal interval. A
tendency of increasing p values for lesser time intervals
is observed. For intervals less than 0.2 My these values
reach the theoretical value of 0.5, that means that for
lesser intervals the probability is divided into equal parts
between two halves of the interval. This probably
indicates that the multifractal (and fractal) properties of
the set gradually decrease at these scales, It is not yet
cleat whether this may be an artefact caused by lack of
resolution of the data. For longer time intervals, on the
contrary, resolution is sufficient, but the number of data is
too poor to obtain reliable statistics and the error bars
reflect this situation.

In any case in the greater part of the temporal domain
we observe scaled power-law behaviour of binary
coefficient. It seems that here we encounter a special and
more general case of a multifractal - a mmltiscaled
multifractal. Thus, a classical binomial multiplicative
process has a constant value of p in the whole scale range.
If p scales with resolution it means that mmultifractality
changes with scale, and resnlts obtained with routing
methods are not as reliable as they seem to be. But this is
a special problem that lies beyond our assessment here.

The clustering of reversals in time may be a
manifestation of the self-organization of the non-linear
magneto-hydrodynamic processes within the liquid
Earth's core, responsible for the GMF reversals. If so, the
corresponding dynamical system must be characterized by
an attractor of low dimension, say less than 10, Up to date
a number of low-dimensional models of dynamical
systems with chaotic output have been suggested, among
them several directly referring to the Earth's dynamo
(Rikitake, 1958; Lorenz, 1963; Robbins, 1976,
Chillingworth and Holmes, 1980). The output of such
models, though chaotic, is not random since it is governed
by deterministic dynamics. Both model and real reversal
sequences have been thoroughly analyzed in this context
(Chillingworth and Holmes, 1980, Dubois and Pambrun,
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Fig. 7. Scaling of binary coefficient p. Explanations in text,

1990, Cortini and Barton, 1994 and others). The common
point of view on this problem is that although the
dimension of the attractor of all of these models is very
low (mostly close to 1), the dimension of the aftractor of
the actual set of reversals appears to be essentially greater,
and the authors give only the lower limit of correlation
dimension of the GMF reversals dynamics - e.g. an
estimate of Dc>3 in Cortini and Barton (1994)

Our study adds some new details to this subject.
Dimensional analysis presented in Section 3.5 shows that
the attractor of experimental reversal sequence is not
statistically uniform over the total time scale range. Here
we also find a crossover point at approximately 1.0 My,
subdividing scale subranges with different scaling
behaviour of correlation integral, as it was in the case of
direct fractal (and multifractat) analysis. In some sense
one may say that here we deal with two different
attractors, one of which describes long-term processes and
the other short-term ones. It seems that convergence of
the correlation dimension of the long-term attractor to a
value close to 1 is close to the ideal (Fig.6¢), while in the
case of the short term attractor (Fig.6b) there remains
some doubt. Nevertheless, in our opinion convergence of
its dimension to the value of [, = 3.7 is also rather good.
This conclusion is supported by the existence of a sharp
change of the form of the graph D (%), that occurs at £
= 5. We also take into account the consideration of
F.Takens (1981), who suggested that convergence of
cotrelation dimension is reliable if Do(E) is traced up to



E > 2D +1 (Ord, 1994) This condition is satisfied in
our analysis. So we may state that the geomagnetic
dynamical system as a whole may be presented as a
superposition of a very low-dimensional system, that may
be described by a disk dynamo model with [ =1, and a
refatively high-dimensional (or, that is less probable,
stochastic) system (D, = 3.7 or greater). Each of these
systems occupies different and non-overlapping temporal
domains.

JIn this context it might be very useful to assess
coupling of the Earth's magnetic dynamo with other
terrestrial and extraterrestrial systems, able to influence
the GMF dynamics. This problem was outlined by Cortini
and Barton (1994), and we think that our results may
provide new insight to this discussion. The existence of
two different temporal domains of GMF dynamics may
arise from a great gap in viscosity between inner
geospheres (core, mantle and lithosphere, that is solid
Earth) and outer medias (hydro- and atmosphere and
space). The interactions of internal and external field-
generating systems may be non-linear and different at
different time scales. From thig point of view, atiempts at
estimating the dimensionality of the Earth's climatic
system (Nicolis and Nicolis, 1984, Grassberger, 1986 and
others), which itself is a product of interaction of a
number of different driving agents, are interesting, since
they also deal with a result of non-linear coupling of
various internal and external factors.

The search for hidden signs of self-organization in
various geophysical processes on the basis of the analysis
of self-similarity of their manifestations is only getting
started. From our point of view it would be very
interesting to analyze in a similar way other global
processes in the geological history of the Earth, at least
those whose intensity in time may be quantitatively
estimated, such as tectonic activity, and so on
Comparison of these results may provide knowledge of
interrelations of different phenomena in the Earth's
history and other key problems of global evolution.
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