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Abstract. Using a recently proposed technique for
statistical analysis of non-gridded satellite altimeter data,
regime of long equatorially-trapped baroclinic Rossby
waves is studied. One-dimensionat spatial and spatio-
temporal autocorrelation functions of sea surface height
(SSH) variations vield a broad spectrum of baroclinic
Rossby waves and permit determination of their
propagation speed. The 1-d wavenumber spectrum of zonal
variations is given by a power-law k'2 on scales from
about 103 km to 10 km. We demonstrate that the
observed wave regime exhibits features of soliton
turbulence developing in the long baroclinic Rossby waves.
However, being limited to second statistical moments, the
present analysis does not allow us to rule out a possibility
of weak wave mirbulence,

1 Introduction

Baroclinic Rossby waves represent an important
component of equatorial wave dynamics. Of particular
interest is the question about these waves' nonlinearity,
One of the goals of the present work is to detect
manifestations of the nonlinear nature of equatorially
trapped baroclinic Rossby waves.

Weakly-nonlinear long Rossby waves obey the
Korteweg-de Vries (KdV) equation and, in a stationary
regime, form solitons (Boyd, 1980; Marshall and Boyd,
1987) or "soliton trains” (Boyd, 1991). When their
amplitude is sufficiently large, the solitons acquire
properties of westward propagating mid-latitude modons
(Boyd, 1985). In particular, they carry a region of closed re-
circulation - an important feature with respect to mass and
heat transport in equatorial regions. A set of solitons with
randomly distributed amplitudes, hence speeds, is referred to
as a soliton gas or soliton turbulence (Kingsep ct al., 1973;
Gorshkov et al., 1977, D'yachenko et al., 1989). Osborne
(1993, 1995) showed that a 1-dimensional wave field
composed of random solitons (plus a transient component
referred to as "radiation”), satisfying the periodic KdV
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equation, is characterized by the wavenumber {power)
spectrum of form kY. A special case of y= 2, studied by
Osborne (1993) in detail, finds confirmation in our
experimental data, Sects, 3 and 5. A brief summary of
basic notions related to soliton turbulence is provided in
Appendix B to facilitate the interpretation of our
experimental findings.

An alternative regime of nonlinear wave dynamics is
represented by weak wave turbulence (Zakharov et al.,
1992). Spectral cascades of energy, enstrophy and other
conserved quantities which are manifested in a cascade
pattern in the surface topography are an important feature of
this particular regime (Monin and Piterbarg, 1987;
Mikhailovskii et al., 1988; Novakovskii et al., 1988; Balk
and Nazarenko, 1990). In either case, the characteristic
propagation speed of nonlinear waves is greater than that
predicted by linear wave theory, and the wavenumber
spectrum of sea surface height (SSH) zonal variations tends
1o be rather broad. One formal distinction between soliton
and weak wave turbulence is the degree of phase coupling
between individual Fourier components of the wave field:
while being weak for wave turbulence, this coupling is
strong for solitons; see Appendix B for further discussion.
Unfortunately, the present analysis does not allow us to
estimate this coupling, although the wavenumber spectrum
of zonal SSH variations and other properties of the wave
field reported in Sect. 5 suggest that the waves are
essentially non-lincar,

Using a recently developed statistical approach (Glazman
et al,, 1996), we examine SSH variations in a narrow zonal
channel located at 07578 in the Pacific. Sampling
limitations related to the satellite orbit configuration
determine the temporal and spatial resolution of our
analysis. As explained in Sects. 2 and 3, we can presently
resolve variations with time scales greater than about 10
days and spatial scales starting at about 800 kin. Wave
motions with smaller scales are filtered out due to the
averaging procedure described in Sect. 3.  In order to
emphasize this filtering property, a remote analogy
between our statistical approach and the quasi-geostrophic
approximation may be pointed out. While insufficient for
studies of baroclinic Kelvin and all types of barotropic
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waves, our technique is adequate for analysis of long
baroclinic Rossby waves. Indeed, as shown in Fig. 1, the
period of the first meridional, first baroclinic Rossby mode
is at least three times as large as the corresponding Kelvin
wave period for the same wavelength - ie., is always
greater than 35 days.

As an alternative to a statistical analysis, large-scale
zonal motion in equatorial regions can be deduced from a
sequence of SSH contour plots by tracking propagation of
individual, conspicuous features of the SSH field (e.g.,
Delcroix et al. 1991; Musman, 1992), However, such a
"deterministic” approach permits positive identification of
only rather intense events of equatorial waves, on a case-by-
case basis. Altimeter measurement errors, not suppressed
by averaging over a large data sample, make it difficult to
resolve small-amplitnde SSH oscillations (under 5 cm or
s0). Moreover, the plots of an "instantaneous" SSH field,
based on observations over a large time interval (at least 17
days in the case of Geosat altimeter measurements and at
least 10 days for Topex measurements), do not permit an
accarate determination of the shape of observed waves.

The satellite data and their reduction are described in
Sect. 2. OQur statistical technique is sketched in Sect. 3.
Section 4 reviews properties of autocoirelation functions
important for our analysis. Results of the data analysis are
reported in Sect. 5. In Appendix A we present linear
model predictions for the autocorrelation function of a
broad-band system of baroclinic Rossby and Yanai waves.
This facilitates the interpretation of the statistical quantities
in Sect. 6. Conclusions are summarized in Sect. 7.
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Fig. 1. Period of linear baroclinic Rossby (solid curve) and
Kelvin {dashed curve) waves (1st baroclinic, 1st meridional
mode) versus wavelength, based on Eq.(Al). The Kelvin wave
speed is assumed to be 2.5 m/s and the (1st baroclinic) Rossby
radins of deformation 250 km.

2 Dataset and data

subsetting

of SSH observations

As described in (Benada, 1993), Topex altimeter data
contain a number of standard corrections. For our
application, the most important ones are the static
atmospheric pressure ("inverse barometer”), electro-
magnetic ("sea state™) bias, tidal (solid Earth and ocean) and
geoid. The residual r.m.s. error in SSH measurements is
presently believed to be about 5 cm (Fu et al., 1994), In

B8 s
VAN | AN PN ] s
’f S o S, . . S
4 e " S . Vs > Fs
R4 . P ~ / NS
N S o
2 ', ¥ o
- by S N 7 AN PN
- Y
@« 0 N I’ N S Sy S N
Re) ™, N ry Y s ]
2 T — L —_ e S
= . A
= A N hd \
4 \
§ 2 L X ‘ ¥ -
rd
SN AN AN -
4 - \, ; \, 4 - s
I N , . g X, P
3 , yd . Vi N i
i N, ’ * Vd P
6 | | ~ \
200 202 204 206 208 210

Longitude, deg (East)

Fig. 2. Satellite ground tracks in a tropical Pacific region
during a 10-day cycle. A horizontal dotted line illusirates the
position of a zonal string: the SSH data are sampled from
groondtracks at intersections with the string.

addition to the standard corrections, we introduce an orbit
correction in the fashion of (Tai, 1989), as discussed in
detail in (Glazman et al,, 1996). Finally, we remove the
time-invariant trend in the SSH field. This is done by
subtracting the mean (over the period of observations) SSH
value at each spatial point from a current value. Usually
this procedure is employed to eliminate remaining
uncertainties in the Earth geoid. In our case, it also serves
to remove spatial trends doe to stationary features of ocean
dynamics,  Specifically, it eliminates a stationary
component associated with the mean east-west slope of the
sea level (caused by Trade winds) along the equator, Our
check of the thus processed data showed the remaining
linear trend along the equator to be 3 x 10-5 cm/km, i.e.
practically absent. The dataset includes 530 days worth of
Topex observations, covering cycles 13 through 65 - the
June 93-Aug. 94 period characterized by a pronounced
sequence of Rossby waves.

We consider SSH spatial and temporal variations in a
12,200 km long zonal channel centered on the equator.
SSH measurements are spaced roughly 6 km along the
altimeter groundtracks. Figure 2 illustrates geometry of
the tracks for a small area of the equatorial Pacific.
Apparently, the minimal spatial separation of SSH
measurements in the zonal direction depends on the latitude.
At +20 off the equator this separation is down to about 10
kmm. However, on the equator this distance exceeds 150 km.
This factor, along with some additional requirements
described in the next section, constrains the spatial
resolution of our analysis.

Altimeter SSH measurements from all ascending and
descending passes, extracted at fixed latitudes, were grouped
into 1-dimensional strings of data points aligned along the
equator. These zonal strings are spaced about 5 km in the
meridional, i.e., y - direction. To estimate spatio-temporal
autocorrelation function W(r,7) at a given latitude, we
employed four adjacent zonal strings centered about this
latitude. The spatial lag, r, is along the equator. The
autocorrelation functions calculated for individual strings in
a group were ultimately averaged - to increase the statistical
significance of the W(r,1) estimation, The mean W(r,1)
was referenced to the central latitude of the group.
Therefore, our spatio-temporal autocorrelation function
represents an average for a zonal "sub-channel” 20 km wide,
The analysis presented in the following sections employs



four strings centered at about 0.759S. The choice of this
particular latitude is based on the fact that the amplitude
ratio of the first meridional mode to the second mode attains
a local maximum here. The shape of the autocorrelation
function cstimated for other strings was essentially the
same.

3 Evaluation of spatio-temporal autocorrelation
functions and power spectra

Accurate wavenumber-frequency spectra $(w.k) would
be most useful for analysis of wave processes. However,
practical estimation of ®(w,k) requires data on a regular
space-time grid. The actual format of satellite altimeter data
is not suited for the task, and interpolating the SSH data
onto a regular grid would drastically degrade the spatial and
temporal resolution of spectral analysis.  Autocorrelation
functions W(r,t) provide an effective alternative, for they
are much easier to estimate based on non-gridded data.
Their use for analysis of wave processes is explained in the
next section.

For each zonal string, the data were analyzed in the
following manner. In order to estimate spatio-temporal
autocorrelation function Wir,t), we calculated SSH products
N{x.tm{x+r,t+t) for all possible pairs of points on the (x,t)
plane and grouped them by values of spatial and temporal
lags into (Ar, At) bins on the (r,t) plane. Ultimately, all
products within each bin are averaged. Therefore, the
absolute times and longitudinal positions of individual
measurements are "forgotten." Strictly speaking, this is
justified only for a statistically stationary and spatially
homogeneous random function n{x,t). The assumption of
spatial statistical homogeneity and stationarity implicit in
our analysis is quite common in ocean and atmaosphere
studies. However, possible effects of non-stationarity
remain largely unknown, hence the results should be treated
with some caution,

The minimum size Ar of the spatial-lag bins is
constrained by the longitndinal separation of satellite
gromndtracks. We selected Ar = 350 km as the optimal
size. The choice of At is based on the following
compromise, On the one hand, the greater this interval, the
more SSH products become available for estimating the
antocorrelation function on the r-grid for a given 1. On the
other hand, if interval At is large, the distance traveled by
an ocean wave during time At may well exceed the size of
the Ar-bin. This would distort the autocorrelation function.
Obviously, for studies of Rossby waves, we should choose
At € Ar/Cy where Cg is the characteristic phase speed of
baroclinic Rossby waves {Cp = 1 m/s). The surface's
variations during this time interval can be neglected.
Therefore, At is called the "synchronicity interval." The
averaging over At bins filters out SSH oscillations with
periods smaller than 2At. Most of the resulss described in
Sects. 5 and 6 are obtained with At = 4 days. Obviously,
the choice of Ar = 350 km and At = 4 days is quite adequate
for analysis of baroclinic Rossby waves. However,
information on gravity and Kelvin waves will be suppressed
because their wave period is relatively small. In reality,
Kelvin waves would travel 860 km in 4 days, hence they
would cross two Ar-bins. Their effect on the
autocorrelation function W(r,0) is illustrated later in this
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section.,

The averaging of all S8H products within the (Ar, At)
cells yields an unbiased estimate of the autocorrelation
function W(r,7) on the regular r-t grid. Error analysis for
this technique is presented in (Glazman et al., 1996). The
averaging suppresses the impact of altimeter measuring
errors and has other advantages. The r.m.s. error of the
autocorrelation function estimate, caused by SSH
measuring errors, is AeW~e2/YN where N is the mean
number of independent products n{xm(x+r) in Ar bins and e
is the r.m.s, error of SSH measurements. Fore = 5 cm
and N=3x10°, we find AgW=0.5 cm2, The histogram of
the number, N(r), of SSH products falling into Ar bins is
presented in Fig. 3 for =0, for several values of At. The
fact that this distribution is highly non-uniform
complicates estimation of error bars, However, it is easy to
see that, with the lowest values of N(r) being of order 103,
the overall accuracy of our statistical technique is sufficient
to study SSH variations with the amplitude as small as 1
cm. A more detailed description of cur statistical approach
is provided in (Glazman et al., 1996).

Figure 4 illustrates an effect of the synchronicity
interval on the spatial autocorrelation function W(r), for a
full-length zonal sub-channel centered at y = 0.759S. The
diamond represents the total variance of SSH, <n?> =
W(0), for which both temporal and spatial lags are exactly
zero. The points connected by the solid curve have the
synchronicity interval ranging from 2 to 10 days (panels A
through D); the actual time difference in individual SSH
products is always greater than zero: point <n2> is not
included into the curve (and is also ignored in the following
discussion) because this point is dominated by a delta-
correlated (i.e., "white") noise due to instrumental and
measuring errors.

On a close examination of panels C and D in Fig. 4,
one can notice a slight eastward displacement (about 600
km in Panel C) of the peak of W(r). We explain this shift
by the influence of baroclinic Kelvin waves. With a 7-day
synchronicity interval, Kelvin waves will make their
largest positive contribution to W{(r) at spatial lags r = ckt
where 0 < t < 7 days and cg is the Kelvin phase speed.
Consider a Kelvin-wave-induced component, Wg(r), of the
estimated autocorrelation function W(r), Effect of a
synchronicity interval, T, is found by averaging the true
spatio-temporal autocorrelation function, K(r,7), of Kelvin
waves over all time-lags within T. For simplicity we
assume the distribution of the time lags to be uniform,
which yields:

1T 1 T2
Wip(r)==[K@-cgt)dt=——[K(p-§)d§
Ty cxT ey

Here we introduced £=cgt-ckT/2andp=r-cgT/2. As
a function of p, this autocorrelation function is even:
Wi(p) = Wi (-p), which yields 1 = cgT/2 for the point at
which Wk (r) attains its maximum. With T = 7 days and
cK = 2.5 m/fs, we find 1y = 750 km. The importance (f
not the dominance) of the Kelvin-wave-induced component
of W at these small time lags explains why thisp isina
reasonable agreement with Fig. 4(C).

The spatial autocorrelation function, Fig. 4, shows a
near-linear behavior for large spatial scales -- from about
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Fig. 3. Number N(r) of SSH products falling into 350 km r-bins for W(r,0) of the full-length zonal string. Values of the

synchronicity interval are provided on top of each panel.

1000 to 9000 kin. The corresponding shape of the
wavenumber spectrum is inferred based on the following
argument. The 1-d wavenumber spectrum of form

F(kyoc k> M
with |t > 0, yields the following asymptotic form of the
spatial autocorrelation function:

W(r)=W(0)-Br= 3 | @
[e.g., (Glazman and Weichman, 1989)]. Here, B is a
constant. Hence, when W{(r} is a linear function (U = 1/2),
the spectrum follows power law F(k) .. k-2 in the
corresponding range of wavenumbers.

The spatio-temporal autocorrelation function for the
Pacific equator (at 0.759S) is illustrated in Fig. 5.

In principle, autocorrelation functions permit evaluation

of power spectra. However, random errors in the estimated

values of W(r,7) and the rather narrow range of r and <t for
which W(r,t) is available from altimeter data greatly limits
the accuracy of the corresponding Fourier transform.
Therefore, the direct use of autocorrelation functions for
analyzes of wave properties has great advantages.

4 Using autocorrelation functions for analysis
of wave processes

The spatio-temporal autocorrelation function, Fig. 35,
contains a great deal of information on processes occurring
within our 530-day petiod of observations. For example,
let us notice that the secondary ridge of W(r,7) is separated
from the main one by T~ 1 year. This ridge (and its mitror
image at negative t) is associated with the anmual
variability rather than the intrinsic period of Rossby waves.
Most relevant to our problem is the main ridge of W(r,1),
especially the part for which the lag is well within 100 days
-- the time required for long baroclinic Rossby waves to
freely traverse the equatorial channel at the speed = 1 m/s.
For this range of T, W(r,1) is related to the wavenumber
spectrum of SSH zonal variations by

W(r, 1) = [ F(k)e*lr—<®rlgy | @)
where c(k) is the wave phase velocity. For a narrow-band
spectrum F(k), the integral can be .evaluated by the

stationary phase method. This would immediately
demonstrate that the most prominent feature of the 2-
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The diamond represents

W(0) = <n%>. The solid curve approximating W(r) ignores this special point because this is the only point for which both r and t

are exactly zero (see Sects. 3 and 5 for detail).

dimensional function W(r,7) is a "ridge” on the 1-T plane
passing through the origin. Its orientation yields the
propagation speed of a wave train, do/dk. The latter, of
course, is the wave group velocity. (If the spectrmm were
sufficiently narrow, a system of parallel ridges of a rapidly
decreasing height would also be visible on this plane.) In
a non-dispersive case (c(k) is const), (3) reduces to

W(r,t) = W(r-c1) @
In other words, W(r,7) at time 7 is obtained from W(r,0) by
a uniform shift along r. The wave propagation speed, ¢,
is found as

c A ®
T

Here, r(t) is the position of the correlation maximum at
time 1. Obviously, Eq.(4) remains also valid in the case
of wave solitons because wave dispersion is exactly
balanced by effects of wave non-linearity: the wave shape
travels without distortions.

For a broad-band spectrum, such as (1) with u > 0, the
interpretation of the autocorrelation function is not trivial.

In Appendix A, we carry out numerical simulations of
W(r,t) for a special case of linear Rossby waves whose
spectrum contains a power-law range k2,

5 Statistical of baroclinic Rossby

waves

analysis

a) Spatial autocorrelation function and wavenumber
spectrum

Figures 4 and 5 point to the existence of two regimes of
SSH spatial variations. The small-scale variations
responsible for a narrow peak at the origin have spatial
scales under 1000 km and are characterized by SSH variance
<nZ> = 16 cm? estimaied as W(0)-W(A) where A is the
characteristic spatial lag (A = 103 km) at which W(r) starts
displaying the linear trend, and W(0) is presented in Fig. 4
by a diamond. The large-scale variations (corresponding to
the linear trend in W(r)) have spatia! scales greater than
about 1000 km. Their variance, <n2> =~ 8 cm2, is found
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as W(A). A more formal evaluation of the SSH variance
for large spatial scales can be done by fitting a parabola ag-
a2r2 to several points with Irl > 1000 km surrounding the
W(r)'s narrow peak: its maximum, ag, provides the desired
result.

In accord with (1) and (2), the linear behavior of W(r) on
scales greater than 103 km corresponds to the k-2 range in
the 1-d power spectrum F(k). The power spectrum for this
large-scale regime can be idealized as

2 2

F(k) = const- e~ %00 ¢~ (kiK™ =2 6
where the exponential factors serve as the high- and low-
pass filters, respectively:  kp representing the lower-
wavenumber boundary of the lincar range and koo serving
as the "microscale” or the "inner scale™ of the spectrum
[see, e.g., (Glazman and Weichman, 1989} for a discussion
of this type of spectra]. The use of a low-pass filter is
necessary only for the study of the SSH realizations
(reported in Sect. 6) -- to ensure the convergence of an
improper integral. To better understand the narrow peak of
Wi(r) associated with small-scale variations of SSH one has
to analyze the temporal evolution of W{r,7).

0

T, days

<n?>). Bold

b) Spatio-temporal autocorrelation function

Figure 6 illustrates several sections of W(r,7) for fixed
values of the temporal lag. Ignoring for a moment the
evolution of W(r;T) near its peak, we can estimate the specd
of the westward propagation using (5). Based on the last
three panels in Fig. 6 - with T = 40, 60 and 80 days - we
find € = 1.1 m/s - in agreement with previously known
estimates for baroclinic Rossby waves, see e.g. (Delcroix et
al., 1991) and references therein.

A more formal estimation of this speed can be done, for
instance, as follows, For a fixed value of T onc can
estimate the r-coordinate of the autocorrelation maximum
by approximating ‘W(r;t) by a quadratic polynomial
ag+a 1r+a2r2 and solving equation dW/or = 0 = aj+2azr
for r. A set of such points on the r-t planc allows one to
fit a straight line r(1)=ct which yields an estimate of the
wave propagation speed, ¢ With step At = 4 days (for
values of T from 20 to 80 days), this procedure yields ¢ =
1.11£0.22 m/s where the uncertainty of (.22 m/s is taken
as the standard deviation of experimental points from the
straight line r(x) = Ct. Since the total number of such
points is n = (80-20)/4 =15, we estimate the confidence
mtervals as Ac = t 6/¥n where o is the standard deviation,

= (.22 mfs, and t is found from Table 26.10 of
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(Abramowitz and Stegun, 1970) for a specified value of the
significance level, A. Taking A = 0.9, we find Ac = (.1
m/s, Therefore, at the 90 percent significance level, we
have ¢ = 1.11 £ 0.10 m/s.

If the wavenumber spectrum were narrow, C could be
viewed as the wave group velocity of baroclinic Rossby
waves corresponding to the spectral peak wavenumber, In

our case, C strongly depends on the spectrum shape.

Hence, its usefulness as a characteristic of the equatorial

waveguide is not very high. In this respect, the Kelvin

wave speed represents a more fundamental quantity, for

Kelvin waves are non-dispersive and their velocity is

determined by the Brunt-Viisili frequency. A detailed

analysis of this issue is presented in the next section.

As evident from Figs. 4 through 6, the sharp peak in
Wi(r,1) is confined to the shortest temporal and spalial
scales. These short-scale variations may be caused by the
following factors:

1) SSH measuring errors, such as the electromagnetic (sea
state) bias causcd by wind-generated surface gravity
waves. With respect to the coarse spatial and temporal
resolution of our technique, this factor represents a delta-
correlated noise, hence it contributes only to W(0,0).

2) High-frequency SSH oscillations due to barotropic and
fastest baroclinic gravity wave modes. Considering the
relatively large size of the time-lag bins, AT,
contribution of these fast waves is similar to that of a
delta-correlated noise: they increase W(r,1) only for
smallest values of T.

3) Kelvin waves. Similar to other high-frequency
oscillations, Kelvin waves - due to their short wave
period (2.4 days for a 500 km wavelength) - would
require a very small synchronicity interval for their
detection. Although these waves are not observed in
Figs. 5-6 (because of the large lag bins used in our
analysis), they manifest themselves in the eastward shift
of the W(r) peak in Fig. 4 pancls C and D -- as
explained in Sect. 3.

4) Short Rossby waves. These are defined as the waves
whose wavelength is shorter than 2nR where R is the
Rossby radius of deformation. Considering the relatively
large size of the spatial-lag bins, effect of short
(although very slow) Rossby waves is analogous to that
of fast waves: both manifest themselves as a delta-
correlated noise, although the short Rosshy waves
represent a spatial noise. Therefore, they could increase
Wi(r,t) only at short spatial lags r.
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For our analysis of long baroclinic Rossby waves, all these
small-scale processes present little interest.

6 Interpretation of the results

Since we have no information on higher statistical
moments of the SSH field, the interpretation of Figs. 4 - 6
depends on our assumptions regarding the phase coupling
between Fourier components comprising the power
spectrum. The simplest assumption is that the SSH
variations represent a Gaussian random field. In particular,
there is no phase coupling between the Fourier components
- the waves are linear. In Appendix A, a linear-wave
analysis is presented to relate the propagation speed, <, of
the autocorrelation maximum, which was estimated based
on our SSH data, to the phase speed, ¢ R (0), of longest

(non-dispersive) baroclinic Rossby waves. In this section
we show, in particular, that the observed C is higher than
predicted by linear theory. This and other arguments
presented in this section lead us to suggest that linear
theory of baroclinic Rossby waves is at odds with our
observations. An alternative interpretation is offered based
on a view of equatorial Rossby waves as a sequence of
solitons or equatorial modons,

Most of the earlier experimental studies reported the

value of the Kelvin wave speed, cg, rather than the

Rossby wave speed. Indeed, ¢g is a convenient intrinsic
property of the equaterial waveguide becausc it is
unambiguously related to the Brunt-Viiisili frequency. In
order to express our experimental quantity € in terms of
the Kelvin speed, we need the following theoretical
relationship between ¢ g and the phase speed, cg ,,(0), of
the longest Rossby waves of the m-th meridional mode
(e.g., LeBlond and Mysak, 1978):

cg =—(2m+1)cg u(0) , )

where Cp (k) is the phase speed of the m-th Rossby

mode for wavenumber k. Equation (A8) shows that
€pm(0) must be about 1.15 times as high as the

propagation speed of the autocorrelation maximum, Using
€=1.1 m/s this yields cg ,,{0)=1.2 m/s. According to

(7), our measured ¢ would correspond to the Kelvin speed
of 3.6 m/s. This value is well outside the range of typical
Kelvin speeds ( 2.3 to 2.8 m/s) reported for the equatorial
Pacific.

The hybrid, Rossby-gravity mode, m=0, (also known
as the Yanai wave) does not agree with our observations
either. As shown in Appendix A, this mode is inconsistent
with the shape of W(r,7) in Fig, 6.

Of course, one may try explaining the high value of
Cg1¢0) by possible inaccuracies of our data analysis.

However, we believe that a more relevant explanation can
be suggested based on nonlincar theories of equatorially-
trapped waves.

Let us show that a soliton gas hypothesis is consistent
with the observed autocorrelation funclion of SSII
variations. As evident from Fig. 6, the peak valuc of

W(r,1) established at t = 20 days does not drop as the lime
lag continucs to increase. For dispersive waves this can
happen only if the effect of wave dispersion is counteracted
by the effect of wave non-linearity, as is the case for
Rossby solitons; whereas the linear theory predicts a
monotonic decrease of the W(r,t) peak value with an
increasing 1, Fig. Al. The other argument in support of the
soliton gas hypothesis is that the longest waves in the
spectrum, being near the basin length size, would be
affected by the western boundary which would prevent their
propagation as ecither free or forced progressive waves.
However, as the Fourier components of a compact,
soliton-like formation, these waves cause no Controversy.
Realizations of a non-Gaussian random field with power
spectrum {6} can be constructed based on the following
idealization. Let the instantaneous wave field n(x;t) bc
comprised of surface disturbances ("solitons™), np:

nx)=3¥Nn,(x—x,). (8)

satisfying condition M,{x) — 0 at [xI2L where L

characterizes the width of a soliton. Let us also assume
the solitons to be well separated in space, i.e. Ixg- xp-11>>
L. To make this consideration even simpler, we can
assume all individual solitons in (8) to be identical in shape
and size. (A more general case is discussed in Appendix
B.) Fourier transform f(k) of surface profilc n(x) is
approximated by the Fourier transform of a single soliton
M times a constant which is inversely proportional to the
number of solitons per umit length of the surface.
Obvionsly, this Fourier transform is related to the power
spectrum (6) by F(k) [f(k)]z. Therefore, a segment of
the surface profile containing one soliton is found as the

real part of (27)1 [[F(k))"2e ®¥dk. This profite

— DD

is illustrated in Fig. 7. Unfortunately, in the small vicinity
of its peak, the shape of this "soliton” is affected by our
choice of the low-pass filter in (6). Not knowing the
"amplitude" (in terms of the thermocline depth
displacement) of these disturbances, we cannot indicate their
theoretical propagation speed. However, the fact that this
speed exceeds the phase speed of linear Rosshy waves
indicates that a Rossby soliton (or its higher-nonlinear
version - the modon) is consistent with our obscrvations.
The theoretical shape, (B1), of Rossby solilons (Boyd,
1980) is slightly different from that in Fig. 7. llowever,
since the width, amplitude and spacing of actual solilons
vary, the above analysis should not be viewed litcrally as a
derivation of the mean shape. This shape also depends on
statistical distributions of the quantitics entering (8). Our
main goal here was only to show that a broad-band
spectrum, such as k'2, may be produced by single-hump
formations whose horizontal extent is comparable to that of
Rossby solitons. Additional considerations regarding the
soliton gas hypothesis are reviewed in Appendix B,
Alternative explanations are also possible. In particular,
one could argue that the observed specirum k-2 is the result
of weak turbulence of Rossby waves. Present theorics of
Rosshy wave turbulence (e.g., Mikhailovskii ¢t al. 1988,
Novakovskii et al.,, 1988; Balk and Nazarenko, 1990} for



_2.0 1 1 PR 1 I\ 1
60 40 -2.0 0.0 2.0 4.0 6.0
X
Fig. 7. Non-dimensional surface profile, ﬁ(i) , for

spectrum (6) with ko / koo = 0.1. Sea surface is assumed to

be a sequence, (8), of single-hump disturbances (the "soliton
gas™), Vertical axis: arbitrary units of nondimensional

length, Horizontal axis is scaled as ¥ = xko where x is the
dimensional distance along the equator and kg is the low-

Therefore, X =1
the expanded region in

wavenumber cutoff introduced in (6).
corresponds to x=J500 km. Inset:

the vicinity of ¥ =0.

long weakly-dispersive waves yield spectra which (in tecrms
of the potential energy distribution relevant (o our SSII
analysis, and for the zonal wavenumber) fall ofl as k32,
Although this prediction is rather close to our obscrvations,
some troubling questions regarding their physical
realizability and locality of the corresponding Kolmogorov-
type cascades arise.

7 Conclusions

Equatorially-trapped waves represent a rich dynamical
system characterized by many degrees of freedom,
Statistical analysis of ocean wave observations offers a
natural way of studying such systems. This is especially
true with satellite-altimeter data because (heir temporal and
spatial resolution and measuring accuracy are nol very high,
whereas the geographic and time coverage, for our goals, is
practically unlimited. The technique employcd in the
present work allowed us to detect some new important
features of baroclinic Rossby waves.

Our main finding is that, in a widc range of scales (from
about 103 to 10* km), zonal spectra of equatorial Rossby
waves exhibit a power-law behavior (k) ~ k*2. Our
present interpretation of these waves as a scquence of
baroclinic Rossby solitons is tentative, for we have no
information on higher-order statistics of the wave ficld.
Such information is necessary in order to dircctly assess the
degree of the phase coupling between Fouricr components.
The main arguments in support of the soliton gas
hypothesis are summarized as follows:
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1) At sofficiently large values of time lag, 20 days <1
< 80 days, our function W(r,1) preserves ils shapc as 7
continues to increase, see Fig. 6. (The upper bound on 1

represents the time taken by a signal to pass 8103 km at
speed 1.2 m/s.) We interpret this observation as an
indication that wave dispersion is balanced by wave non-
linearity - as expected of a collection of solitons.

2) The observed propagation speed, € =1.1 m/s, appears
to be higher than the prediction of linear theory.

" 3) A power-law spectrum k-2 of westward propagating
waves with length scales up to 8-103 km - comparable 10
the basin size - is compatible with a sct of compact,
soliton-type formations. This spectrum was also predicted
theoretically by Osborne (1983) for a set of random solilons
in the presence of a radiation background, based on analysis
of the KAV equation with periodic boundary and random
initial conditions.

In the absence of higher-order statistical momcents we
cannot eliminate a possibility of weak wave turbulence as
being responsible for the observed spectrum. However, at
the present time, estimation of bispectra or other
characteristics is impeded by the relatively low measuring
accuracy, limited spatial and temporal resolution and still
insufficient volume of SSH observations. The vse of
altermative approaches, especially the nonlincar filtering
technique (Osborne, 1993, 1995), might prove
advantageous in future stodies.

Appendix A:
waves

Linear model of Rossby and Yanai

Linear theory yields the following dispersion
relationship for the m-th meridional mode Rossby waves:

_ kCK
2m+ 1+ 2(kR)*

where cg is the Kelvin wave speed, ¢y =+/g'h = 2.5
m/s, and

—\1/2
R= [ﬂ] (A2)
23
is the internal Rossby radius of deformation, and § ~
2.310°1 (m s)'l. In the case of a two-layered occan, g’ is
the reduced gravity and h = H\H, / (H; + H,) where
H; is the thermocline depth and Hy+H3 is the lotal ocean
depth, H. For the first vertical mode in a conlinuously
stratified ocean, h in (A2) is replaced with (N]’Ilrc)zfg where
N is the Brunt-Viisili frequency, and g' is replaced with g,
We are concerned with the case when the Rossby radius is
small - as specified later in this section. For brevity, lct
us re-denote the Rossby wave phase speed cgp (k) by c(k)
and cp,m (0) by cp . For long Rossby waves, the
dispersion relationship can be simplified by assuming

(Rk)2 <<m+1/2 for k in the range (kg ., koo).
Thus, the phase speed is

c(k) = co(1—ek?) (A3)
where

(Al)
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Fig. Al. The non-dimensional spatio-temporal

autocorrelation function (AS5) (normalized to unity at r=0) for
linear Rossby waves with spectrum (A7). Horizontal axis: the

non-dimensional spatial lag, 7, (scaled by L=5-103 km).
Other scales are indicated in Appendix A. Numbers at the

curves are values of T with time scale Licg = 70 days. Dashed

curve: %=0.

g’h _ R2
2m+1’ m+1/2
Let us write (3) with (A3) in a non-dimensional lorm

0=

(Ad)

W(,%) = [ F()expliQk(F—%) + itk 1dk  (AS)
: |

where the non-dimensional variables are related to R, cg and
kg by the following scaling relationships:

x=klky, F=r/L, =<0t

0=k, i=%RQ
m+1/2

Here, the spatial length scale L is arbitrary, Sclecting L =
5103 km, kg~ 2n-10 -4 rad/km and cg = 2.5 mfs, we
have for m=I1: R = 233 km, cp=~ 0.83 m/s and
€ =0.04. These values of cxg and R are typical for the
equatorial Pacific (LeBlond and Mysak, 1978). The
corresponding time scale Licg = 70 days.

The non-dimensional version of (6) is

(AG)

F()=exp(-1/ x*)x 2 (AT)

{We omit the low-pass filter in (6) because the integral (AS)
converges sufficiently fast.) In Fig. Al, the rcal part of
{AS) is plotted based on numerical integration. At time
moment T =1 (corresponding to 70 days), the maximum of
W(r,1) is found at a point 7=-0.87. In the absence of
wave dispersion it would be at a point F=-1. This dclay
allows one to estimate the ratio of the longest-Rossby-wave
speed to the propagation speed of the austocorrelation
maximum (5):

€ 1T=1/0.87=115. (AB)

' Appendix B:
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Fig. A2. The same as Fig.Al, but for linear Yanai waves
with v = 0.14. Numbers at the curves are values of 7. The

curve for T=0 is not plotted - as it is identical to the dashed
curve in Fig. Al.

In order to show that the mixed Rossby-gravity mode,
m=0, cannot be responsible for the observed W(r,1), one
may use the (non-dimensional) dispersion relationship for

these waves, @ =[1++1+2/(vk)? 1/2, in (hc lincar
model analogous to (AS). Here, v=k;R. The result is
shown in Fig. A2 (all scaling parameters as the saine as for
Fig. Al). Evidently, the broad-band spectrum of the Yanai
waves is inconsistent with our estimate of the spalio-
temporal autocorrelation function.

An overview of equatorial Rosshy
solitons

We present here a bricf summary of basic notions relied
to soliton turbulence. Tor a more technical account of this
material, the reader is referred to (Boyd 1980, 1985, 1991)
and (Osbome 1983, 1985).

For odd-numbered meridional modcs, non-lincar theory
of equatorial Rossby waves (Boyd 1980, 1985) yiclds a
single-hump soliton or a modon - provided the amplitude is
above a certain threshold.  In either case, the zonal
variation of the surface topography (or of the zonal
component of the velocity field) is given by

A(x,2) = 125? sech?[s(x — c1)] (B1)
where s is a constant, and the propagation speed, ¢, exceeds
¢R,m by an amount proportional to the wave amplitude,
In the case of solitons, the latitudinal variation ol pressure
(hence, sea level) and velocity fields is the same as lor
linear waves (Moore and Philander, 1977). 'or equatorial
maodons the latitudinal structure is more complicaled: wave
field kinematics are characterized by dipolar vorticity (two
equal and opposite centers of rotation), closcd slreaklines,
etc. - in close resemblance to mid-latitude modons (Boyd,
1985, 1991).

Under periodic boundary conditions, the KdV equation
yields cnoidal waves:



A(x,ty=-24s/m+ X125%sech’{s(x - ¢t - nm)]
FI—= = 0ty

(B2)
The fact that this solution can be viewed as a sum ol ¢venly
spaced solitons (compare with (B1})) was used by Boyd
(1991) to promote a concept of "soliton (rains.” A
stochastic version of this concept requires a random
distribution of soliton phases and amplitudes. 1.et us notice
that, while the phases of individual solitons may be
uniformly distributed in the interval (-m,m) - hence not
coupled to each other - the phases of individual Fourier
harmonics comprising each hump are strongly coupled.
The physical meaning of the Fourier phases and of the
soliton phases is thus quite different. Only in the limit of
linear waves - when the hyperbolic functions in (B2)
degenerate into cosinc functions - will the phases of
individoal wave crests and the phases of Fourier harmonics
have a similar physical meaning (Oshorne, 1993).
Gorshkov et al. (1977), D¥'yachenko et al. (1989) mul other
authors studying stochastic solutions of nonlincar cquations
with weak dispersion wsed the terms "solitom gas” or
"soliton turbulence.” These lerms appear (0 be more
relevant to our case than Boyd's "soliton train."

When wave dispersion is greater than wave nonlincarity,
solitons do not appear and the phases of individual Fourier
components are almost independent of each other, This:
regime is called weak wave turbulence (Zakharov ct al,,
1992).

Osborne (1983, 1985) studicd stochastic solutions (due
to random initial conditions) for the KdV ¢quation based on
inverse scatlering theory. In particular, he showed that a s
of (nonlinearly interacting between themselves and with the
background of transient disturbances) solitons with
uniformly distributed soliton phascs is characterized by
wavenumber spectrum k-2 - in agreement with our
observations. Furthermore, individual solitons do not have
. to be widely separated in space to producc the k-2 spectrum.
The hyperbolic functions in (B2} arc replaced with
hyperelliptic functions. The fact that the latier reduce (0
cosine functions in the limit of vanishing noalincarity led
Osborne to view the soliton gas as a nonlingar
generalization of a Fourier serics.

For even-numbered meridional modes, the appropriate
equation for zonal motion is a "Modificd Kdv" (Boyd,
1980) whose nonlinear term is A2Ax rather than AAy.
This equation describes a wave motion whose degree of
nonlinearity is lower than that given by the standard KdV
equation. As a result, MKdV yiclds ncither solitons nor
modons, The latter may exist only for odd-numbered
latitudinal modes.
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