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Abstract. Non-Gaussian multivariate probability distribu-

tions, derived from climate and geofluid statistics, allow for

nonlinear correlations between linearly uncorrelated compo-

nents, due to joint Shannon negentropies. Triadic statistical

dependence under pair-wise (total or partial) independence

is thus possible. Synergy or interaction information among

triads is estimated. We formulate an optimization method

of triads in the space of orthogonal rotations of normalized

principal components, relying on the maximization of third-

order cross-cumulants. Its application to a minimal one-

dimensional, periodic, advective model leads to enhanced tri-

ads that occur between oscillating components of circular or

locally confined wave trains satisfying the triadic wave reso-

nance condition.

1 Introduction

Climate and geofluid dynamics often display highly com-

plex and nonlinear interactions between system variables,

expressed on a physical or spectral basis. The existence of

interactions means that continuous or discrete state vector

components statistically constrain the values and decrease

the freedom of other components by some physical process

with exchanges of extensive variables between system parti-

tions (e.g., mass, energy, momentum), or by impulse propa-

gation (e.g., waves, solitons) or by other more abstract pro-

cesses. Statistical constraints are synonymous with linear

and nonlinear correlations and Bayesian-conditional proba-

bilities among variables, which can occur either at short or

at long distances, i.e., teleconnections (Wallace and Gutzler,

1981; Van den Dool and Saha, 2000) where short/long is de-

fined according to a given metric defined on the state vector.

Examples of that in the spectral space are the kinetic energy

turbulent cascade (Batchelor, 1953) and the wave resonant

interactions (Hammack, 1993) or, in the physical space, the

nonlinear El Niño teleconnections (Monahan, 2001; Hsieh

et al., 2006). Information theory (Shannon, 1948; Cover and

Thomas, 1991) proposes a consistent quantitative statistical

measure (in bits or nats) of those constraints by assessing

the mutual information (MI) and the MI multivariate version,

the multi-information (MII) or total correlation (Schneidman

et al., 2003) that is shared among variables. The information

flow is transferred across a certain channel, which is inter-

preted as an interaction process (Liang and Kleeman, 2007).

Under that information theory framework, the absence of in-

teraction means the statistical independence among variables

and a vanishing MII. For dynamical systems, time-extending

interactions are measured by the concept of Granger causal-

ity (Granger, 1969) by computing MIIs in the delayed coordi-

nate phase space. Beyond the referred papers, there are many

applications of information theory in nonlinear geophysics,

such as in predictability (DelSole, 2004; Abramov et al.,

2005), in stochastic theory of multiscale systems (Majda

et al., 2005), in ensemble forecasting (Roulston and Smith,

2002) and in data assimilation (Xu, 2007; Zupanski et al.,

2007).

Let us consider the system state vector as an N -

dimensional random vector (RVec) X ≡ (X1, . . .,XN )
′ of N

continuous- (or discrete-) valued scalar variables (in italic),

where prime denotes transpose. The components can also be

interpreted as nodes of a complex network (Donges et al.,

2009) where multiple interactions lie. It is often useful to

substitute X by vectors of lower dimension that (a) explain
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much of total variance or total Shannon entropy and (b) have

no trivial redundancies between components (e.g., by be-

ing linearly uncorrelated), thus making the source separation

of the signal. That is possible for continuous-valued RVecs

by use of principal component analysis (PCA) (Hannachi

et al., 2007), independent subspace analysis (ICA) (Hyväri-

nen and Oja, 2000), independent component analysis (ICA)

(Theis, 2005, 2006; Theis and Kawanabe, 2006; Pires, 2015)

and other blind source separation (BSS) methods. However,

many of those techniques perform sub-optimally because

the issuing variables or factors (e.g., the PCs from a PCA)

still have some statistical dependence (non-null MII). This

occurs for the vector of PCs derived from a RVec with

a non-Gaussian joint probability density function (PDF). Al-

though PCs are linearly uncorrelated, they can exhibit non-

linear correlations (Pearson correlations between functions

not written as linear affine combinations of components).

Non-Gaussianity (NGty) is evident from climatic observa-

tions and model runs through the presence of asymmetries,

multimodalities, clusters and kurtoses of both marginal and

multiple-projected PDFs (Hannachi and O’Neill, 2001; Sura

et al., 2005; Franzke et al., 2007; Pires and Perdigão, 2007).

Non-Gaussian (NG) sources include the nonlinear drifting as

well as the random non-Gaussian and non-stationary forcings

of the dynamical equations and the deterministic chaos.

The paper’s motivation is the fact that the non-Gaussian

world (of NG PDFs) allows for much more complex, includ-

ing multiple (triadic, quartic etc.), interactions that are not

explained by linear correlations or second-order statistical

moments alone, since uncorrelatedness and joint Gaussian-

ity imply global independence.

In the paper, we will focus on sets of three random vari-

ables (triads). In fact, three uncorrelated non-Gaussian vari-

ables (Y1,Y2,Y3) (a non-Gaussian triad) may produce non-

null MII values due to nonlinear correlations between func-

tions mixing the three variables. An even more constrained

situation is possible, supposing three variables that, while

being pair-wise independent (zero dyadic MIs), are not in-

dependent as a trivariate whole. In this case, the variables

form a perfect triad, due to their interaction synergy leading

to an emergent cooperative phenomenon (e.g., a triangle of

lovers who meet together only in pairs and in an equitable

way, ensuring no preference of any couple). That synergy

is measured by the interaction information (IT), which is de-

fined for a triad as It(Y1,Y2,Y3)≡ I (Y1,Y2,Y3)−I (Y1,Y2)−

I (Y1,Y3)− I (Y2,Y3), in which I (. . .) is MII (McGill, 1954;

Tsujishita, 1995). IT is the MII remaining term that one ob-

tains after discarding all the information coming from proper

subsets of variables (here, the dyads).

IT can even be negative in the case of statistical redun-

dancy (e.g., when interactions come into play, e.g., as the

aforementioned love triangle moves from pair-wise meetings

to a threesome). The IT concept is generalized to any num-

ber of variables (Jakulin and Bratko, 2004) and applied to

many domains (e.g., economy, sociology, criminology, man-

agement, medicine, neurology, sampling design), as one tries

to find, from an available pool of candidates, playing fac-

tors that maximize a given criterion of useful interactivity

(e.g., efficiency) (Timme et al., 2013) or that are responsi-

ble for an identified situation (e.g., genes explaining a dis-

ease). Both MII and IT can be split into the Gaussian and

non-Gaussian terms (Pires and Perdigão, 2012, 2013) com-

ing, respectively, from the best Gaussian joint PDF fit and

from joint non-Gaussianity (NGty). The NG terms dominate

when used variables are uncorrelated.

Now, we present conditions under which IT is maximized.

For that, let us consider the partition of each triad vari-

able (Y1,Y2,Y3) intoNc equiprobable categories or symbols.

Then, IT is maximized when the bulk of the total probability

occurs in N2
c out of the N3

c disjoint events, which are de-

scribed by a Latin-square (LS) look-up table (e.g., a Sudoku

game for Nc = 9). An example to be put into evidence in

practice holds when Nc = 2 and categories (Y1,c,Y2,c,Y3,c)

satisfy a Boolean exclusive disjunction or a logic equiva-

lence, hereby denoted, respectively, by Y3,c = Y1,c⊕Y2,c and

Y3,c = Y1,c↔ Y2,c.

The conditions underneath high IT values are difficult by

construction, since dyadic MIs have to be minimized or even

vanished, which can be quite rare or difficult to find in na-

ture. That is the case with high-dimensional systems (many

degrees of freedom), where multiple quasi-independent in-

teractions (e.g., the brain’s network of neurons) tend to pro-

duce Gaussian PDFs by invoking the central limit theorem or

when a variable’s time averages are taken for describing the

system’s low-frequency variability (LFV). Therefore, NGty,

nonlinear correlations and multiple interactions are somehow

hidden in the high-dimensional space.

In order to get highly synergetic triads, we apply a method

relying on the projection pursuit (PP) (Friedman and Tukey,

1975) technique, aiming to maximize NGty or the negen-

tropy (Shannon entropy deficit with respect to the best Gaus-

sian joint PDF fit). Therefore, first the variables are changed

into a vector of uncorrelated variables of unit isotropic vari-

ances (e.g., the normalized PCs), thus preserving uncorrelat-

edness under orthogonal rotations. Then, the IT maximum

is sought among three-dimensional (3-D) projections of or-

thogonally rotated standardized PCs taken from a subset in

accordance with a given criterion (e.g., those PCs that max-

imize IT or the PCs of leading variance). However, IT is

a very difficult functional, depending on the full X probabil-

ity density function (PDF) whose estimation is quite difficult

due to the “curse of dimensionality” (CC) (Bellman, 1957).

Therefore, in order to overtake the CC effect (Bocquet et al.,

2010), we maximize, by gradient-descent methods (Gilbert

and Lemaréchal, 1989), an IT proxy functional written in

terms of the rotation matrix or equivalently in terms of the set

of generalized Euler angles spanning the space of all orthog-

onal rotations (Raffenetti and Ruedenberg, 1969; Hoffman

et al., 1972). The functional to be used and maximized con-

sists of a truncated version of the IT Edgeworth expansion,
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relying on cross-cumulants of order higher than 3 (Comon,

1994). The functional vanishes under joint Gaussian condi-

tions. For the sake of geometric interpretation, it is written

as the square of a three-order joint cumulant E(Y1Y2Y3) (E

stands for “expectation”), between the unit-variance, uncor-

related, centered components of the triad. Moreover, it is pro-

portional to a triadic correlation, denoted as cor3(Y1,Y2,Y3),

consistently satisfying the Schwarz inequality. That cumu-

lant is written as a third-order polynomial form of rotation

matrix coefficients and as a linear form of three-order joint

cumulants of the PCs.

For the application of the IT concept and its optimiza-

tion in the rotation space, we have estimated the triadic

IT applied to PCs of the output of the 40-variable Lorenz

model (1995), hereafter called Lorenz-95. The 40 variables

are in fact longitudinally equidistant nodes in a latitude cir-

cle, along which a one-dimensional flow is set to take place.

This is thus a minimal one-dimensional (1-D) model of fluid

motion with nonlinear advection, linear dissipation and con-

stant forcing, integrated along a latitude circle with circular

periodic conditions. Circular symmetry of statistics leads to

twice-degenerated sinusoidal empirical orthogonal functions

(EOFs), each one with an associated wave number. There-

fore, PCs are discrete Fourier transforms (DFTs). We show

that non-null values of the momentE(Y1Y2Y3), between nor-

malized PCs, and of the estimated IT, It(Y1,Y2,Y3), are ob-

tained when the integer zonal wave numbers k1, k2, and k3

satisfy the wave resonance condition (WRC) k1±k2±k3 = 0

(Bartello, 1995; Hammack, 1993). It consists of the build-

up of a third wave from the quasi-linear interaction of two

weak amplitude waves satisfying the dispersion relationship.

Optimized triads following the aforementioned method are

also computed. They correspond to locally confined wave

trains satisfying the WRC for the number of local oscilla-

tions. Therefore, the triad optimization can be characterized

as a generalized WR diagnostic under the studied model’s

framework.

After this introduction, the paper presents the concepts of

multi-information and interaction information in Sect. 2, fol-

lowed by the optimization implementation of triads (Sect. 3).

The application to the Lorenz-95 model appears in Sect. 4,

ending with the conclusion (Sect. 5). Some proofs and MII

estimators are included in the Appendices A and B.

2 Multi-information and interaction information

2.1 General context

Without loss of generality, let X ≡ (X1, . . .,XN )
′ be a zero

average N -dimensional physical RVec, composed of compo-

nents Xi , i = 1, . . .,N in italic, and CX,X and C1,X,X, re-

spectively, the covariance and correlation matrices ofX. The

PCA of X comes from the factorization CX,X =W3W′,

where W is the orthogonal matrix of normalized EOFs in

columns, satisfying W−1
=W′, and 3≡ Diag(λ1, . . .,λN )

is the diagonal matrix sorted by decreasing PC variances, i.e.,

λ1 ≥ . . .≥ λN . The vector of PCs and the standardized (unit-

variance) PCs are, respectively, given by XPC ≡WTX and

Xu ≡3
−1/2XPC. The PCs are uncorrelated, though they can

be statistically dependent; i.e., they interact if they have non-

vanishing nonlinear correlations.

The goal of the paper is to find small subsets of D�N

rotated uncorrelated components such that (a) they explain

a relevant fraction of the total variance, (b) they exhibit high

nonlinear multivariate correlations with a simple geometric

and physical interpretation in terms of the dynamics govern-

ing X, and that (c) the correlations emerge from synergies of

theD components, hence not being explained by proper sub-

sets. Without loss of generality, we restrict rotations to a set

of normalized PCs chosen according to a statistical or phys-

ical criterion (e.g., a set of variance-explained leading PCs),

by writing Xu as a concatenation or a union set of compo-

nents or, still, a projection (depending on the context) written

in the form Xu =Xu, signal||Xu, noise, where Xu, signal is the

part to be rotated (the signal) of dimension Nrot ≤N , corre-

sponding to a certain set S of PC indices, and Xu, noise is the

remaining projection (the generalized noise), in particular the

null set. We can consistently write Xu, signal = ∪i∈S{Xu, i},

where the union symbol has the meaning of concatenation.

Therefore, the rotated vector is Y = Y rot||Xu, noise with

Y rot ≡ RXu, signal, where R is aNrot-order orthogonal matrix;

i.e., R′ = R−1. The components of Y rot ≡ (Y1, . . .,YNrot)
′

are uncorrelated, given by inner products Yi = v
′

iXu, signal,

where vi ≡ (Ri1,Ri2, . . .,RiNrot)
′; i = 1, . . .,Nrot are ortho-

normalized vectors satisfying v′ivj = δij , i,j = 1, . . .,Nrot

where δij is the Kronecker delta. Finally, let us write Y rot ≡

Y proj||Y comp, where Y proj ≡ PDY rot = (Y1, . . .,YD)
′ is the

D-dimensional projection (D-tuple) onto the leadingD com-

ponents and Y comp ≡ (YD+1, . . .,YNrot)
′ is the correspondent

orthogonal projection.

The components Yk , k = 1, . . .,Nrot are a linear combina-

tion of loadings multiplying the physical component pertur-

bations in the form

Yk =

N∑
i=1

WYi ,kXi; k = 1, . . .,Nrot; (1a)

WYi ,k =

∑
j∈S

1

λ
1/2
j

Rk,jWi,j ; k = 1, . . .,Nrot. (1b)

The loading vectors (WY1,k, . . .,WYN ,k)
′ are in general not

orthogonal in the physical space unless the rotation is com-

posed of partial rotations over different subsets of PCs of

degenerated (equal) variance in each subset. We will focus

in particular on triads (D = 3) of components (Y1,Y2,Y3)

of maximum interactivity. They are optimized among the re-

strictions of the state vector to a certain signal projection and

among the set of orthogonal rotations R.
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2.2 Basic information-theory definitions

The assessment of statistical interactivity due to linear and

nonlinear correlations relies on concepts of information

theory (Shannon, 1948) and measures of non-Gaussianity.

Given its relevance for the paper, we briefly present some

definitions and notations, valid for any N -dimensional RVec

A≡ (A1, . . .,AN )
′, in particular for X or Y defined above.

– Definition 1: the “Gaussianized” vector

A′g ≡ (A1g, . . .,ANg)
′ is the N -dimensional RVec

composed of marginal Gaussian anamorphoses

(Wackernagel, 1995) of each A component,

Ak→ Akg =G(Ak)∼N(0,1), k = 1, . . .,N , which

are changed into standard Gaussian distributed variables

of zero mean and unit variance.

– Definition 2: the Shannon differential entropy (SDE)

(Shannon, 1948) of A is H(A)≡−E(logρA)=

−
∫
ρA logρAdA, where ρA is the PDF of A. The

entropy H(A) under statistical independence of the

components is Hi(A)≡
∑N
k=1H(Ak), i.e., the sum of

marginal SDEs. The SDE of the multivariate Gaus-

sian PDF with the same average and covariance ma-

trix asA is written asHg(A)≡Hgi(A)−Fg(A), where

Hgi(A)≡Nhg+ 1/2
∑N
k=1 log[var(Ak)] is Hg(A) for

independent components, hg = 1/2log(2πe) is the

Shannon entropy of the standard Gaussian with

PDF ϕ(X)≡ (2π)−1/2 exp(−1/2X2) and Fg(A)≡

−1/2log(detC1,A,A)≥ 0, dependent on the correlation

matrix C1,A,A, with Fg(A) being zero for a scalar or for

uncorrelated components.

– Definition 3: the negentropy of A is a non-negative

quantity J (A)≡Hg(A)−H(A)≥ 0, being the deficit

of SDE with respect to the Gaussian PDF with the same

average and covariance matrix. The negentropy for in-

dependent components is Ji(A)≡Hgi(A)−Hi(A)≥ 0,

being the sum of marginal negentropies. J is invariant

for any invertible linear affine transformation of A. For

Ag we get Ji(Ag)= 0 despite having J (Ag)≥ 0.

– Definition 4: the multi-information (MII) (Schneidman

et al., 2003) or total correlation of A is a non-negative

quantity given by

Ii(A)≡Hi(A)−H(A) (2a)

≡ I (A1,A2, . . .,AN ) (2b)

≡ E{log[ρA/(ρA1
ρA2

. . .ρAN )]} ≥ 0, (2c)

measuring the full statistical dependence among

components of A. For N = 2, we recover

the mutual information (MI) I (A1,A2)=∫
ρA1,A2

log[ρA1,A2
/(ρA1

ρA2
)]dA1dA2. The sub-

script i in Ii is omitted when all components are

explicitly written as MII arguments.

MII is invariant for scalar one-to-one changes in compo-

nents, in particular for Ag, from which we obtain Ii(A)=

Ii(Ag). This allows for decomposing of the MII into two

consistent positive terms: Ii(A)= Iig(A)+ Iing(A) (Pires

and Perdigão, 2007, 2012, 2013; Hlinka et al., 2014), re-

spectively, the Gaussian and the non-Gaussian MIIs, where

Iig(A)= Iig(Ag)≡ Fg(Ag)≥ 0 is uniquely dependent on

“Gaussian” correlations or correlations between “Gaussian-

ized” components, and Iing(A)= Iing(Ag)= J (Ag)≥ 0 is

the part of MII due to the joint negentropy of the PDF

with Gaussian marginals. Each term Iig or Iing is invariant

for monotonic (though not for non-monotonic in general)

changes in marginals. Thanks to the minimum mutual infor-

mation principle (Globerson et al., 2009), Iig is the minimum

MII under imposed Gaussian marginals and a correlation ma-

trix C1,Ag,Ag between Gaussianized components.

2.3 Multi-information of a projected and rotated vector

In what follows, we present some results about the multi-

information and non-Gaussianity crossing components of the

sought projection Y proj, introduced before, and how it de-

pends on the rotated vector Y rot.

Theorem 1: the MII of Y proj expands as

Ii(Y proj)= Ji(Xu, signal)+ Ii(Xu, signal)−
[
Ji(Y proj)

+Ji(Y comp)+ Ii(Y comp)+ I (Y proj,Y comp)
]
. (3)

The proof comes in Appendix A. Therefore, from

Eq. (3), the MII of Y proj varies in the opposite

sense of (a) the marginal negentropies of rotated com-

ponents (projected ones and their orthogonal comple-

ments), (b) the MII of the non-projected variables com-

prising Y comp and (c) the mutual information between

the projected and non-projected parts: I (Y proj,Y comp)≡∫
ρY rot log[ρY rot/(ρY proj

ρY comp)]dY projdY comp. Since the MII

is invariant for one-to-one changes in the intervening vari-

ables, in particular rotations, that is understood as the MI be-

tween spanned subspaces span(Y proj) and span(Y comp). In

particular, if Y proj = Y rot, i.e., is a full projection (D =N ),

the terms within the square brackets of Eq. (3) reduce to

Ji(Y rot), under which the MII of Y proj is minimized when the

sum of marginal negentropies is maximum. That is the pur-

pose of the independent component analysis (ICA) (Hyväri-

nen and Oja, 2000; Hastie et al., 2001).

The goal here is simply the opposite of ICA’s, by maximiz-

ing Ii(Y proj) or, more precisely, the part of it dealing with

synergies among components. This is discussed in the next

section.

The following Theorem 2 shows the dominance of MII

Ii(Y proj) by its non-Gaussian contribution. Since compo-

nents of Y rot are uncorrelated, one expects their Gaussian ab-

solute correlations cgi,j ≡ |cor(Yig,Yjg)| =O(δ)� 1, j 6=

i ∈ {1, . . .,D} to be a small residual coming from the static

Gaussian anamorphoses. Therefore, under those conditions

one has

Nonlin. Processes Geophys., 22, 87–108, 2015 www.nonlin-processes-geophys.net/22/87/2015/



C. A. L. Pires and R. A. P. Perdigão: Non-Gaussian interaction information 91

Theorem 2: Ii(Y proj) is expanded as

Ii(Y proj)= Iig(Y proj)+ Iing(Y proj); (4a)

Iig(Y proj)=O(δ
2)� 1; (4b)

Iing(Y proj)= J (Y proj, g). (4c)

The scaling of Iig(Y proj) comes from det(Y proj, g)= 1−

O(δ2). Equation (4a)–(c) shows that the non-Gaussian MII

is dominant in general when components are uncorrelated,

expressed as the joint negentropy of Y proj, g, also coincid-

ing in this case with its compactness (Monahan and Del-

Sole, 2009). That measures the level “featureness” of a data

concentration around a lower-dimensional manifold, differ-

ent from a unit-sphere D-dimensional ball, corresponding to

an isotropic Gaussian at which J (Y proj, g)= 0.

2.4 Interaction information in general

The components of Y proj interact in a certain sense

(e.g., physically); therefore, they are statistically linked to

each other, with the strength of their inter-relationships or

the closeness to certain geometric or deterministic cross-

constraints being measured by information or by the MII.

Those interactions can emerge from proper subsets of com-

ponents like local interactions within a complex network, or

may consist in global or synergetic emerging properties en-

tailed by all members (components) as a whole, like a col-

lective cooperative phenomenon. That decomposition is ac-

counted for by the concept of interaction information (IT)

(McGill, 1954; Tsujishita, 1995; Jakulin and Bratko, 2004),

which we present here for the generic N -dimensional RVec

A introduced in Sect. 2.2.

The IT ofA, hereby denoted by It(A) (where the subscript

t distinguishes it from Ii), is the part of Ii(A) not accounted

for by any proper subset of components of A, i.e., by any

subset B ⊂A. In particular, for A= (A1,A2)
′, IT coincides

with the MI; i.e., It(A1,A2)= I (A1,A2)≥ 0. The IT is built

according to the recurrence property

It(A)= It(B|C)−It(B) ,∀B,C :A= B∪{C}, C 6∈ B, (5)

where A is B increased by a scalar component C and

It(B|C) is the conditional IT using the conditional PDF ρB|C
in its definition. Jakulin and Bratko (2004) show that It is

given by adequate linear combinations of Shannon entropies

and MIIs of the A subsets as

It(A)=−(−1)N
N∑
k=1

(−1)k
∑
B⊆A
|B|=k

H(B) (6a)

= (−1)N
N∑
k=2

(−1)k
∑
B⊆A
|B|=k

Ii(B). (6b)

In the sums of Eq. (6), subsets B of A are arranged ac-

cording to their cardinality |B|. Positive values of IT for

dim(A)= |A| ≥ 3 mean synergy across components, while

negative IT values indicate redundancy (Timme et al., 2013).

The Gaussian and non-Gaussian terms from the decomposi-

tion of IT, denoted, respectively, as Itg and Itng, come from its

MII decomposition in Eq. (6), using Definition 4. Moreover,

the MII is the full sum of ITs

Ii(A)=
∑
B⊆A

It(B), (7)

which shows that the sum of synergies and redundancies

is globally positively constrained. An important corollary

comes from Eq. (6):

Corollary 1: if A is composed of uncorrelated components,

from which H =Hgi−J , then the IT is a function of negen-

tropies as

It(A)= (−1)N
N∑
k=1

(−1)k
∑
B⊆A
|B|=k

J (B). (8)

Eqs. (6)–(8) hold in particular forA= Y proj, expressing how

the synergies depend on MIIs and negentropies of subsets.

2.5 Interaction information between triads and its

estimation

We now focus on the IT of triads, i.e., of A= (A1,A2,A3)
′.

Considering Eqs. (5) and (6), it is given by

It(A1,A2,A3)≡ I3(A1,A2,A3) (9a)

≡ Ii(A1,A2,A3)− I2(A1,A2,A3) (9b)

= I (Ai,Aj |Ak)− I (Ai,Aj ) (9c)

= I [(Ai,Aj ),Ak] − I (Ai,Ak)

− I (Aj ,Ak), (9d)

where I2(A1,A2,A3)≡ I (A1,A2)+ I (A1,A3)+ I (A2,A3)

is the notation for the sum of all dyadic MIs and (i,j,k)

is a generic permutation of (1,2,3). In Eq. (9), the con-

ditional MI depends on ρAi ,Aj |Ak/(ρAi |AkρAj |Ak ), whereas

I (Ai,Aj |Ak) depends on ρAi ,Aj ,Ak/(ρAi ,Aj ρAk ). The value

of the triadic IT I3(A1,A2,A3) coincides with MII if vari-

ables are pair-wise independent; i.e., I2(A)= 0 (perfect

triad).

Small values of I2(A) are favored under uncorrelatedness

(the case of A= Y 3 ≡ (Y1,Y2,Y3)), where I2(Y ) is domi-

nated by the non-Gaussian dyadic MIs. Synergetic triads oc-

cur when components are nonlinearly related while keeping

weak or vanishing pair-wise dependence.

The IT I3 also develops in terms of the Kirk-

wood superposition approximation KA1,A2,A3
≡

(ρA1,A2
ρA1,A3

ρA2,A3
)/(ρA1

ρA2
ρA3

) (Pearl, 1988) in

the form I3(A1,A2,A3)= E
[
ln
(
ρA1,A2,A3

/KA1,A2,A3

)]
.

When the L1 norm of KA1,A2,A3
equals 1, it is reduced to

a three-dimensional PDF that is uniquely based on bivariate
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Figure 1. Schemes of triad types and appropriate interactivity mea-

sures: (a) perfect, I3(Ai ,Aj ,Ak); (b) asymmetric, I (Aj ,Ak |Ai);

(c) asymmetric, I [(Aj ,Ak),Ai ]; and (d) redundant, I (Aj ,Ak,Ai).

The triangle edges represent dyadic dependencies and the central

star the IT.

and univariate PDFs. Under those conditions, the triadic

IT is a Kullback–Leibler divergence (Cover and Thomas,

1991) between two PDFs, which is necessarily non-negative;

i.e., I3 ≥ 0. It holds if at least one pair of variables is

independent (e.g., if A1 and A2 are independent, then

KA1,A2,A3
= ρA3

ρA1|A3
ρA2|A3

is a PDF), corresponding to

less restrictive non-perfect triads, hereafter called asymmet-

ric triads. The asymmetry of the dependence relationships

introduces some directional causality susceptible to phys-

ical interpretation. It yields successively less constrained

measures of interactivity:

I3 ≤ I3−as2 ≡ I3+maxI2set ≤ I3−as1 (10a)

≡ Ii −minI2set ≤ Ii, (10b)

I2set = {I (Aj ,Ak) : j,k ∈ {1,2,3}, j 6= k}, (10c)

where I3−as2 = I (Aj ′ ,Ak′ |Ai′) and I3−as1 = I [(Aj ,Ak),Ai]

for some permutations (i′,j ′,k′) and (i,j,k) of (1,2,3). The

equalities hold when two or one (out of the three) dyadic

MIs are null, respectively. The four possibilities of triad in-

teractivity are sketched by non-oriented graphs displayed in

Fig. 1a–d.

The MIIs and entropies are subjected to several inequali-

ties (Makarychev et al., 2002). That leads to a useful lower

bound of It. For that, let us writeAk = f (Ai,Aj )+w, where

f is a nonlinear one-to-one function of Ai for each Aj that is

supposedly correlated with Ak and w is a noise. By playing

with conditional MIs, we can write

It ≤ I [(Ai,Aj ),Ak] (11a)

≤ I (f,Ak)+ I (w,Aj |f ). (11b)

If the noise w is independent of both Ai and Aj , then the

second term of the rhs of Eq. (11b) vanishes and I (f,Ak)

can be approximated by its Gaussian part; i.e.,

I (f,Ak)∼−
1

2
log

{
1− corg[f (Ai,Aj ),Ak]

2
}
. (12)

Figure 2. Iso-surface 0.01 of the PDF (13) of a perfect triad with

1-D and 2-D Gaussian projections.

Perfect triads can be obtained by nonlinear mixing of glob-

ally independent variables. For instance, taking indepen-

dent standard Gaussian RVs A1,A2,W ∼N(0,1) and A3 =

|W |sgn(A1A2)∼N(0,1) leads to a perfect triad with bivari-

ate Gaussian isotropic PDFs and the joint non-Gaussian PDF

ρA1,A2,A3
(A1,A2,A3)={

0 if A1A2A3 ≤ 0

2ϕ(A1)ϕ(A2)ϕ(A3) if A1A2A3 > 0
, (13)

with I3(A1,A2,A3)= I (A1,A2,A3)= log2. The signals

of the RVs satisfy a Boolean-like relationship, sgn(Ai)=

sgn(Aj )sgn(Ak), and the correlations between any two and

the third variable are cor(AjAk,Ai)= 8/(2π)3/2 ∼ 0.51,

where i,j,k is any permutation of (1,2,3). That triadic sym-

bolic link leads to the twisting character of the PDF iso-

surface ρA1,A2,A3
= 0.01 plotted in Fig. 2.

In a perfect triad like (A1,A2,A3) satisfying Eq. (13), the

unmixing operator recovering original independent variables

[A1,A2, |W | = A3sgn(A1A2)] is nonlinear, which could

only be possible by using nonlinear ICA (Almeida, 2003,

2005). This means that linear ICA, using rotated variables, is

unable to unfold perfect triads into independent scalars, be-

cause the 2-D manifold where the PDFs concentrate has an

intrinsic curvature that is preserved by the isometric rotation

transformation.

For uncorrelated variables, i.e., (A1,A2,A3)=

(Y1,Y2,Y3), both the IT and MII come essentially from the

non-Gaussian term, which is justified by

Theorem 3: assuming that the absolute Gaussian correla-

tions of (Y1,Y2,Y3) are scaled as |cor(Yig,Yjg)| ≡ cgi,j =

Nonlin. Processes Geophys., 22, 87–108, 2015 www.nonlin-processes-geophys.net/22/87/2015/
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O(δ)� 1, we get

I3(Y1,Y2,Y3)= I3g(Y1,Y2,Y3)+ I3ng(Y1,Y2,Y3) (14a)

I3g(Y1,Y2,Y3)=−
1

2
ln1− c2

g1,2− c
2
g1,3− c

2
g2,3+ 2cg1,2cg1,3cg2,3(

1− c2
g1,2

)(
1− c2

g1,3

)(
1− c2

g2,3

)
 (14b)

=O(δ3)� 1. (14c)

As a corollary, it follows that jointly Gaussian perfect triads

are impossible, since uncorrelatedness implies global inde-

pendence. Consequently, synergetic perfect triads are neces-

sarily jointly non-Gaussian.

Using Eq. (8), the IT between uncorrelated variables is

written in terms of joint and marginal negentropies:

I3(Y1,Y2,Y3)= J (Y1,Y2,Y3)− [J (Y1,Y2)

+ J (Y1,Y3)+ J (Y2,Y3)] + J (Y1)+ J (Y2)+ J (Y3), (15)

which is totally due to non-Gaussianity of variables. For un-

correlated and marginally non-Gaussian variables, Theorem

3 applies and I3 ≈ I3ng. In practice, in Sect. 4, the triadic and

dyadic MIIs necessary to compute IT will be numerically es-

timated (see Walters-Williams and Li, 2009, for a panoply

of MII estimators). For that, we first estimate the joint 2-D

or 3-D PDFs by a kernel-based estimator and then the MIIs

and IT by an integral Gauss quadrature formula with previ-

ous Gaussian anamorphoses of marginals (see details in Ap-

pendix B along with the MI estimator’s bias depending on

sample size).

For weak deviations from joint Gaussianity, the negen-

tropies in Eq. (15) can be expanded in terms of self- and

cross-cumulants (Comon, 1994), using the Edgeworth ex-

pansion of the joint PDF (Van Hulle, 2005). In particular, the

second-, third- and fourth-order cumulants between centered

variables (used here) are, respectively,

κ ij ≡ E(YiYj ), (16a)

κ ijk ≡ E(YiYjYk), (16b)

κ ijkl ≡ E(YiYjYkYl)−E(YiYj )E(YkYl)

−E(YiYk)E(YjYl)−E(YiYl)E(YjYk), (16c)

being invariant for any permutation of the indices (i,j,k, l) ∈

{1,2,3}. After some tedious algebra, we get a positive fourth-

order approximation of I3, depending on squares of third-

and fourth-order cross-cumulants as

I3(Y1,Y2,Y3)= (κ
123)2

{
1

2
+

1

12
[(κ111)2+ (κ222)2+ (κ333)2]

}
+

1

12

[
(κ1123)2+ (κ2213)2+ (κ3312)2

]
+

1

36
(17)

{(κ111)2[(κ223)2+ (κ332)2] + (κ222)2[(κ113)2+ (κ331)2]

+ (κ333)2[(κ112)2+ (κ221)2]}

+
1

24
[(κ112κ233)2+ (κ113κ322)2+ (κ221κ133)2

+ (κ223κ311)2+ (κ331κ122)2+ (κ332κ211)2] +O
(
N
−3/2

dof-Ed

)
,

where Y1,Y2, and Y3 are supposed to behave as a sum of

Ndof-Ed iid variables, which grows as long as variables are

closer to Gaussianity, where the central limit theorem is

invoked. The first two big terms of Eq. (17) depends on

trivariate cumulants, while the third and fourth big terms in-

volve bivariate cumulants, thus showing that triadic interac-

tivity can be due to combinations of nonlinear dyadic cor-

relations. Equation (17) depends on the mixing cumulant

κ123
= E(Y1Y2Y3). Therefore, thanks to the linear pair-wise

uncorrelation and variable normalization, that is proportional

to cor(Y3,Y1Y2), cor(Y2,Y1Y3) and cor(Y1,Y2Y3). In order

to define a quantity that is independent of the particular or-

der of those products, we introduce here a consistent mea-

sure of trivariate correlation between centered, normalized

and pair-wise uncorrelated variables Y1,Y2, and Y3, satisfy-

ing the Schwarz inequality. The measure is given by the cubic

root of the product of those three correlations as

cor3(Y1,Y2,Y3)≡
E(Y1Y2Y3)

[var(Y1Y2)var(Y1Y3)var(Y2Y3)]
1/6

∈ [−1,1] (18)

and will be tested in practice.

Returning to Eq. (12), we will also test the approximation

I3(Y1,Y2,Y3)∼−
1

2
log

[
1− cor3(Y1,Y2,Y3)

2
]
. (19)

The goodness of that is measured by the difference between

|cor3| and the equivalent correlation triadic correlation, ob-

tained by inverting I3 from Eq. (19):

cor3eq(Y1,Y2,Y3)= [1− exp(−2I3(Y1,Y2,Y3)]
1/2. (20)

2.6 Discrete triadic interactions

Maximum triadic interactivity comes essentially from certain

categorical (discrete) deterministic relationships, without the

need to consider continuous PDFs. Those relationships can

be further enhanced in a coarse-grained description of the

joint PDF. For that, we can consider a partition of the support

sets of any of the marginal variables into Nc ≥ 2 equiproba-

ble subsets, indexed byNc different symbols (e.g., digits, let-

ters). Subsets are not necessarily connected (e.g., unions of
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Table 1. Lookup tables of three Boolean variables maximizing the

interaction information. The left and right (2× 2) logic tables cor-

respond, respectively, to the exclusive disjunction and equivalency

Boolean relationships.

1 1 2 2 1

2 2 1 1 2

Y1c,Y2c 1 2 1 2

disconnected intervals). The corresponding coarse-graining

transformation is

Yi ∈R→ Yi,c = Fi,c(Yi) ∈ BNc = {s1, . . ., sNc},

i = 1,2,3 (21)

where sj , j = 1, . . .,Nc are symbols (e.g., numbers or let-

ters). Therefore, the full discrete PDF is characterized

by (Nc)
3 probabilities Pr(Y1,c = i,Y2,c = j,Y3,c = k), 1≤

i,j,k ≤Nc, under 3(Nc− 1) independent probability con-

straints of type Pr(Y1,c = i)= Pr(Y2,c = j)= Pr(Y3,c = k)=

1/Nc, ∀i,j,k and a global normalization constraint. The tri-

adic interaction information in the discrete form is

I3c(Y1,Y2,Y3)≡ I3(Y1,c,Y2,c,Y3,c) (22a)

= I (Y1,c,Y2,c,Y3,c)− I2(Y1,c,Y2,c,Y3,c), (22b)

where I2(Y1,c,Y2,c,Y3,c)≡ I (Y1,c,Y2,c)+ I (Y1,c,Y3,c)+

I (Y2,c,Y3,c). Thanks to the data processing inequality (Cover

and Thomas, 1991), the MI always decreases in the coarse-

graining process; i.e., I (Y1,c,Y2,c,Y3,c)≤ I (Y1,Y2,Y3)

and I2(Y1,c,Y2,c,Y3,c)≤ I2(Y1,Y2,Y3). However, the same

inequality is not necessary for I3 of non-perfect triads.

The conditions of a perfect triad, i.e., I3(Y1,c,Y2,c,Y3,c)=

I (Y1,c,Y2,c,Y3,c), require the constraining condition of pair-

wise independence, formulated through the 3N2
c conditions:

Pr(Y1,c,Y2,c)= Pr(Y1,c,Y3,c)= Pr(Y2,c,Y3,c)= 1/N2
c ,

∀Y1,c,Y2,c,Y3,c, from which only 3(Nc− 1)2 are indepen-

dent, thus leading to N3
c − 3Nc(Nc− 1)− 1 independent

probabilities.

Let us analyze it for the simplest case of perfect triads in

whichNc = 2 and B2 = {1,2}. After some algebra, we get all

the 8= 23 joint probabilities, uniquely dependent on a sin-

gle free positive parameter p ∈ [0,1/4]. Any of the 8 joint

probabilities are p or (1/4−p), respectively, when (one or

three) or (zero or two) out of the three variables are set to 2 ∈

B2 = {1,2}. The corresponding IT is I3(Y1,c,Y2,c,Y3,c)=

3ln(2)+ 4
[
p log(p)+ (1/4−p) log(1/4−p)

]
. IT is mini-

mized at I3 = 0 when all the 8 probabilities are equal to p =

1/8 (independent variables) and maximized at I3 = log(2)

for p = 0 or p = 1/4, from which only 4=N2
c events have

non-vanishing probabilities. There, any third variable, for in-

stance Y3,c, is totally determined as a function of the remain-

ing pair (Y1,c,Y2,c). The lookup tables of Y3,c for p = 0 and

p = 1/4 are given in Table 1, in which all the Nc = 2 sym-

bols are used (without repetition) in any row and any col-

umn as a consequence of the requirements of independence

of row indices (Yi,c), column indices (Yj,c) and table-cell val-

ues (Yk,c) with i,j,k different.

These non-repetition conditions are precisely those of the

Latin square (Dénes and Keedwell, 1974) of Nc symbols

(e.g., a Sudoku game in which Nc = 9). The more synergetic

perfect triads, i.e., those maximizing IT, are the Latin-square

categorical relationships between Nc iid symbols with the

IT: I3(Y1,c,Y2,c,Y3,c)= logNc (Bailey, 1996). This is a quite

useful property, for example in the efficiency of sampling

and experiment design (e.g., the design of schedules of sports

leagues derives from a Latin square).

Still considering the above cases of Latin squares of Nc =

2 symbols and by making the correspondence of B2 elements

as 1→ True→; 2→ False, the above tables are isomorphic

to the Boolean logic tables, respectively, of the exclusive dis-

junction Y3,c ≡ Y1,c⊕Y2,c = True, iff Y1,c 6= Y2,c and of the

logic equivalence Y3,c ≡ Y1,c↔ Y2,c = True, iff Y1,c = Y2,c

(see Table 1).

The emerging property common to both tables is that, for

ergodic processes and during 3/4 of the time (0.75 of proba-

bility), only one out of the three variables (Y1,c,Y2,c,Y3,c) is

equal to a given symbol S (e.g., above or below the median),

while during 1/4 of the time (0.25 of probability), the three

together exhibit that symbol S.

An interesting result is that squares of trivariate cumu-

lants (e.g., (κ123)2, (κ1123)2) appearing in Eq. (17) grow

as long as the joint trivariate PDF is close to certain LS

forms. For example, let us consider the two-symbol LS

described by the Boolean equivalence Y3c = (Y1c ↔ Y2c)

or Y3c = Y1cY2c where Yic ∈ {−1,1}, i = 1,2,3 are equally

probable classes, µi is the median of Yi , i = 1,2,3, and ηi is

the median of Y 2
i . That LS holds for two different category

attributions. One renders κ123
−µ1µ2µ3 = E[(Y1−µ1)(Y2−

µ2)(Y3−µ3)] maximum for Yic = sgn(Yi −µi), i = 1,2,3;

the other maximizes κ1123
−µ2κ

113
−µ3κ

112
+µ2µ3(1−

η1)= E[(Y
2
1−η1)(Y2−µ2)(Y3−µ3)] for Y1c = sgn(Y 2

1−η1),

Yic = sgn(Yi −µi), i = 2,3.

A suggestive example of a perfect triad is a “love trian-

gle” whose intervening parties meet together only in pairs

such that each one meets someone else half of the time

and one is alone the other half of the time. Asymmetric

triads are also easily imagined from the above example,

playing with the different levels of allowed collusions be-

tween members. Let us associate the variable values +, (−)

with (Y1,c,Y2,c,Y3,c) components when one meets some-

one (is alone). These constraints lead to (Y1,c,Y2,c,Y3,c) be-

ing pair-wise independent, filling the conditions of a per-

fect triad with I3(Y1,c,Y2,c,Y3,c)= log(2). Once an external

control drives or they decide to form a whole group (three-

some), there will be redundancy, and I3(Y1,c,Y2,c,Y3,c)=

−2I (Y1,c,Y2,c,Y3,c) becomes negative.
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The aforementioned situation is somehow similar to an-

other triadic interaction, though not perfect, stating that only

two out of the three categorical variables are set to equal

values, say occurring in phase. Considering in this case

that all the six possible values of (Y1,c,Y2,c,Y3,c), (+,+,−),

(+,−,+), (−,+,+), (−,−,+), (−,+,−), and (+,−,−), have

equal probabilities 1/6, we see that variables are no longer

pair-wise independent, giving a value I2(Y1,c,Y2,c,Y3,c)=

log( 32
27
) and a positive IT I3(Y1,c,Y2,c,Y3,c)= log( 108

96
).

3 Optimization of the interaction information

3.1 Proxies of the interaction information and its

maximization

The aim of this section is to find relevant triads in the form

Y proj = (Y1,Y2,Y3)
′
= P 3RXu, signal, in the space of orthog-

onally rotated components of the Nrot-dimensional space of

spherized PCs of the signal part of the original physical field.

The IT I3(Y1,Y2,Y3) is therefore a functional depending both

on the rotation matrix R and on the joint PDF of Xu, signal,

which can be quite difficult to estimate from finite samples

due to the dimension Nrot of Xu, signal due to the curse of

dimensionality (Bellman, 1957). Therefore, we will follow

a projection pursuit (PP) (Friedman and Tukey, 1975; Huber,

1985) strategy, by considering a projection index, i.e., a func-

tional of the Y proj components simulating I3(Y1,Y2,Y3), or

equivalently, a function FopIT(R), explicitly written in terms

of variables characterizing orthogonal rotations, the gener-

alized Euler angles (Raffenetti and Ruedenberg, 1969; Hoff-

man et al., 1972). This technique is also used in dyadic source

separation of climatic data (Pires, 2015). One possibility for

FopIT(R) is to consider a truncated form of the Edgeworth

expansion of IT of Eq. (17).

However, for the sake of geometric simplicity, we con-

sider that proxy to be proportional to the square of some non-

linear correlation between zero average functions: F1(Y proj)

and F2(Y proj), where the dependencies of F1(Y proj) and

F2(Y proj) include the three variables. In synthesis, FopIT(R)

is positive, satisfying

FopIT(R)= E[FY (Y proj)]
2 (23a)

= kcor(F1,F2)
2 k > 0, (23b)

FY (Y proj)≡ F1(Y proj)F2(Y proj), (23c)

where E(F1)= E(F2)= 0 and FopIT(R)= 0,∀R when the

joint PDF of Xu, signal is Gaussian. Under non-Gaussian con-

ditions, the goal is thus to find max
R
FopIT(R), i.e., the max-

imum over the space of rotations, leading to the dominant

synergetic triad in the subspace span(Xu, signal). In that space,

if |cor(F1,F2)| is high enough, then data are concentrated

along some principal manifold (Hastie and Stuetzle, 1989) of

dimension two, i.e., along a surface with a geometric shape

described by the regression equation

F2 σ(F2)
−1
= cor(F1,F2)F1 σ(F1)

−1
+w, (24)

where w is some independent noise and σ means standard

variation.

We will consider the proxy relying on third-order cumu-

lants by taking FY (Y1,Y2,Y3)= Y1Y2Y3 in Eq. (23a); i.e.,

FopIT(R)= E[FY (Y1,Y2,Y3)]
2 (25a)

= E(Y1Y2Y3)
2. (25b)

3.2 Maximization of the interaction information over

the space of rotations

In order to get max
R
FopIT(R), R needs to be written in terms

of a control vector spanning all possible rotations of a Nrot-

dimensional metric space. This is done by using the vec-

tor of generalized Euler angles with a dimension Nang =

1/2Nrot(Nrot− 1) (e.g., Nang = 3 for Nrot = 3):

θ(R)= (θ1, . . .,θk, . . .,θNang)
T. (26)

Each θk ∈ [0,2π [ rad is the rotation angle on

the plane spanned by orthogonal components

(Xu,i(k),Xu,j (k)), i(k) 6= j (k), where k is a count-

ing index determining univocally the pair [i(k),j (k)].

In particular for the indexation [i(k),j (k)] =

(1,2), . . ., (1,Nrot), (2,3), . . ., (2,Nrot), . . ., (Nrot− 1,Nrot),

k = 1,2, . . .,Nang and taking the function M1(k)≡

1/2[(2Nrot− 1)+
√
(2Nrot− 1)2− 8k], we get the

indices i(k)= dM1(k)e, given by the ceiling func-

tion (minimum integer majorant) of M1(k) and

j (k)= k− 1/2{[i(k)− 1][2Nrot− i(k)] − 2i(k)}. The

elementary rotation Nrot×Nrot matrix Rk(θk) corresponding

to angle θk has vanishing entries, except for

R[i(k),i(k)],(k) = R[j (k),j (k)],(k) = cos(θk) (27a)

R[i(k),j (k)],(k) =−R[j (k),i(k)],(k) = sin(θk) (27b)

R(l,l),(k) = 1, l 6= i(k), l 6= j (k), (27c)

where R[i(k),j (k)],(k) is the entry in the i(k)th row and j (k)th

column of Rk . Finally, the generic rotation matrix is obtained

by the product of all elementary rotation matrices (Raffenetti

and Ruedenberg, 1969) as R= R1R2. . .RNang . The proxy

functions are thus functions of R(θ).

Then, we find local maxima of FopIT[R(θ)] using the

quasi-Newton descent-gradient technique on −FopIT(R(θ))

implemented by the M1QN3 Fortran subroutine (Gilbert and

Lemaréchal, 1989). The gradient is coded with respect to an-

gle components. The rotation optimization in terms of Eu-

ler angles (Hoffman et al., 1972) is alternative to that rely-

ing on direct components of Y proj constrained by orthogo-

nality relationships through Lagrange multipliers (Jennrich,

2001; Trendafilov, 2006). The function FopIT is not neces-

sarily globally convex, hence owing multiple local maxima
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like the contrast function (Comon, 1994) maximized in ICA.

Therefore, a reasonable number Ntrial of randomly chosen

first guess angle vectors are chosen for the maximization. In

order to assure that the absolute maximum is reached, the

number Ntrial must increase with Nrot, since the number of

local maxima also increases.

The derivative of FopIT[R(θ)] with respect to θk is ob-

tained by the derivative chain rule applied to θk→ Y proj→

FY → FopIT as

∂FopIT

∂θk
= 2E(FY )

3∑
i=1

E

[
∂FY

∂Yi

∂Yi

∂θk

]
(28a)

= 2E(FY )

3∑
i=1

Nrot∑
p=1

Nrot∑
q=1

Nrot∑
l=1

Ri′,pRi′′,qSi,l(k)

E[Xu,pXu,qXu,l] (28b)

∂Yi

∂θk
=

Nrot∑
l=1

Si,l(k)Xu,l, (28c)

where (i, i′, i′′) in Eq. (28b) is a permutation of (1,2,3)

and Si,l,(k) (line i, column l) are entries of the matrix

Sk ≡ (P 3R1. . .
dRk
dθk
. . .RNang), where the non-vanishing com-

ponents of
dRk
dθk

are(
dRk

dθk

)
i(k),i(k)

=

(
dRk

dθk

)
j (k),j (k)

(29a)

=−sin(θk), (29b)(
dRk

dθk

)
i(k),j (k)

=−

(
dRk

dθk

)
j (k),i(k)

(29c)

= cos(θk). (29d)

The gradient depends on pre-computed third-order moments

of un-rotated variables, hence saving time in the maximiza-

tion. The algorithm can be generalized to an arbitrary control

function.

4 Triadic interactions in the 40-variable Lorenz model

4.1 Model physics

The previous information-theoretic analysis for the statistical

diagnosing of triadic interactions will be applied to a mini-

mal one-dimensional (1-D) fluid motion model, retaining the

nonlinear advective part of Navier–Stokes equations (NSEs)

and being subjected to constant external forcing and linear

dissipation. Under that framework, we will directly relate tri-

adic correlations to the physical-meaning conditions of tri-

adic wave resonance (Bartello, 1995), thus giving the po-

tential relevance of those diagnostics when applied to more

complex models or to observational data sets.

For that purpose, we use the 40-variable Lorenz-95 model

(Lorenz, 1995) that is written in terms ofN = 40 discretized,

equally spaced valuesXi(t), i = 1, . . .,N of the fluid velocity

field u(x, t) around a latitude circle with circular periodic

conditions, where x ∈ [0,2π [ is longitude and t is time. The

model equations are

dXi

dt
=Xi−1(Xi+1−Xi−2)−Xi +F ; i = 1, . . .,N,

X0 ≡XN , X−1 ≡XN−1, (30)

where F is the constant forcing. Coefficients of Eq. (30)

(e.g., one unit for the dissipative term) are adjusted in such

a way that one time unit roughly represents 5 days of large-

scale atmospheric circulation (Lorenz, 1995). Here, we take

F = 8, also used in predictability (Lorenz and Emanuel,

1998) and data assimilation studies (Evenson and Fario,

1997; Van Leeuwen, 2010), leading to a chaotic attractor

with an average perturbation-doubling period of 0.42 time

units (2.1 days). The Lorenz-95 model has a single fixed un-

stable state Xi = F,∀i with correspondent perturbations of

different wavelengths exchanging energy between them and

propagating eastward (towards higher indices). Eq. (30) is

invariant under transformations i→ i+ l due to the circu-

lar symmetry; hence, the statistics over the attractor’s PDF

reflect it by the invariance of the marginal PDFs ρXi with

respect to i. Similarly, the 2-D and 3-D projected PDFs

ρXi ,Xl and ρXi ,Xl ,Xn , with i ≤ l ≤ n, are arbitrary functions

of types f1(l− i) and f2(l− i,n− l), respectively. Moreover,

the quadratic terms are conservative, leading to the kinetic

energy equation

d

dt

(
1

2

N∑
i=1

X2
i

)
= F

N∑
i=1

Xi −

N∑
i=1

X2
i . (31)

Taking infinite time averages of Eqs. (30) and (31), i.e., aver-

ages over the attractor’s ergodic PDF, and denoting the aver-

age ofXi by µX, its variance by σ 2
X, and its shift correlations

by cX,l ≡ cor(Xi,Xi+l), we get, thanks to the circular sym-

metry:

0≤ µX = F − σ
2
X(cX,1− cX,2) (32a)

= (cX,1− cX,2)
−1
≤ F, (32b)

0≤ σ 2
X = µX(F −µX)≤

1

4
F 2. (32c)

All the theory of Sects. 2 and 3 applies, with the state vec-

tor X ≡ (X0, . . .,XN−1)
′ substituted by the perturbed vector

X−X =X− 1µX where 1 is a vector of “ones”.

4.2 Model Fourier transform

Some conclusions are drawn by using a Fourier analysis

of Eq. (30). The solutions of the model are N -shift peri-

odic; hence, a discrete Fourier transform (DFT) (http://en.

wikipedia.org/wiki/Discrete_Fourier_transform) applies by
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expanding Xi in terms of discrete complex exponentials:

Xi(t)=
1

N

N/2∑
k=−N/2+1

TX,k(t)9k,i; (33a)

TX,k(t)=

N−1∑
i=0

Xi(t)9
∗

k,i; (33b)

9k,i = exp

(
i
2π

N
ik

)
(33c)

where i=
√
−1, the star denotes the complex conjugate,

k is the integer wave number, 9k,i are orthogonal si-

nusoidal functions, collected in the matrix 9 of col-

umn vectors, satisfying the normalization
∑N−1
i=0 9k′,i9

∗

k,i =

Nδk,k′ , and TX,k(t) is the time-dependent kth DFT verifying

the invariance TX,k = (TX,−k)
∗
= TX,k±N . Representing the

state and DFT vectors by X ≡ (X0, . . .,XN−1)
′ and T X ≡

(T−N/2+1, . . .,TN/2)
′, respectively, we collect Eq. (33a, b) in

the condensed representation X = 1/N9T X, where T X =

9∗X with the orthogonality condition condensed as 99∗ =

9∗9 =NIN , where IN is the N -dimensional identity ma-

trix and the star means the adjoint ≡ transpose of a complex

conjugate.

Now, we will present fundamental results relying on

single- and cross-DFT statistics, coming from the circular in-

variance of the state vector statistics. The instantaneous DFT

of the l shift of Xi is TXi+l ,k(t)= TXi ,k(t)exp
(

i 2π
N
lk
)
,∀l ∈

Z. However, its time average (hereafter denoted by an

overbar) is independent of l, leading to TXi+l ,k = TXi ,k =

TXi ,k exp
(

i 2π
N
lk
)

; hence, the wavy-DFT averages vanish;

i.e., TXi ,k , k 6= 0. The sole non-null DFT is that correspond-

ing to the average: TXi ,0 =NµX.

Similarly, taking the product of two DFTs, the mo-

ment TXi+l ,kTXi+l ,k′ shall be independent of l due to cir-

cular symmetry, leading to TXi+l ,kTXi+l ,k′ = TXi ,kTXi ,k′ =

TXi ,kTXi ,k′ exp
[
i 2π
N
l(k+ k′)

]
; hence TXi ,kTXi ,k′ = 0, k′ 6=

−k; i.e., all pairs of DFTs are uncorrelated, except those

in which one is the complex conjugate of the other, giv-

ing the average Fourier power: TXi ,kTXi ,−k = |TXi ,k|
2 ≡

PX,k ≥ 0. By application of the Parseval theorem, one ob-

tains the total variance of X as Nσ 2
X = 1/Nvar(TX,0)+

2/N
∑N/2−1

k=1 PX,k + 1/NPX,N/2.

The uncorrelatedness of the DFTs has a relevant con-

sequence regarding the principal components (PCs) of

the state vector X(t). The standardized PCs, merged

in the vector Xu(t), are uncorrelated with each other

and have unit variance. The standardized DFTs are

collected in the N -dimensional zero-average vector

T X,u ≡ P
−1/2
X (T X −T X) whose covariance matrix is

PX ≡ diag(PN/2−1, . . .,P1,var(T0),P1, . . .,PN/2). The

standardized DFTs are uncorrelated and have unit variance

too, leading to the covariance matrix between complex

variables: T X,uT
∗

X,u = IN . Therefore, since both Xu(t)

and T X,u are statistically spherized, Xu(t) can be ex-

pressed in terms of an orthogonal rotation of T X,u, i.e.,

Xu(t)= RT X,u = RP
−1/2
X 9∗(X−X), where R is an N -

dimensional complex unitary matrix, i.e., RR∗ = R∗R= IN .

Now, using the notation of Sect. 2.1, the vector of PCs is

XPC =3
1/2Xu (34a)

=W′(X−X) (34b)

=31/2RP
−1/2
X 9∗(X−X), (34c)

where, as before, W is the matrix of column EOF vectors and

3 is the diagonal matrix of PC variances. Eq. (34) holds for

any time, i.e., for any value of X−X; hence, the matrices

multiplying that in Eq. (34b) and (c) must be equal, i.e.,

W′ =31/2RP
−1/2
X 9∗. (35)

Since the EOFs are spatially orthogonal, one has W′W= IN
leading to IN =N3

1/2RP−1
X R∗31/2, which is only possible

if the rotation matrix R is composed of a sum of N ′ uni-

tary matrices, R= R1+ . . .+RN ′ , with each one Rk rotating

a different set of d(k),k = 1, . . .,N ′ degenerated DFTs, i.e.,

with the same variance p(k), taken from PX, producing the

same number d(k) of degenerated, equally variant PCs with

the same variance λ(k)= (1/N)p(k).

Let us arrange 9 =91+ . . .+9N ′ as a sum of matri-

ces, each one corresponding to the concatenation of the d(k)

rotated exponential complex vectors. Since RkR
∗

k′
= INδk,k′

and 9∗k9k′ =NINδk,k′ , one can arrange the EOF matrix as

W=W1+ . . .+WN ′ with

W′k =
λ(k)1/2

p(k)1/2
Rk9

∗

k (36a)

=
1
√
N

Rk9
∗

k . (36b)

If the Fourier spectrum is non-degenerated, the EOFs

corresponding to a certain wave number k = 1, . . ., N
2
− 1

have degeneracy 2, with EOFs being sinusoidal func-

tions in quadrature with values in the ith point:

Wi,k =
√

2/N
[
cos(i 2π

N
ik+φk),sin(i 2π

N
ik+φk)

]
, where

φk is a given phase. The PCs come simply as the cosine

and sine transforms. For degenerated spectra, EOFs mix

different wave numbers.

The product of three DFTs must also be con-

strained by the circular symmetry; i.e., the moment

TXi+l ,kTXi+l ,k′TXi+l ,k′′ shall be independent of l, lead-

ing to TXi+l ,kTXi+l ,k′TXi+l ,k′′ = TXi ,kTXi ,k′TXi ,k′′ =

TXi ,kTXi ,k′TXi ,k′′ exp
[
i 2π
N
l(k+ k′+ k′′)

]
, from which

TXi ,kTXi ,k′TXi ,k′′ = 0 iff k+ k′+ k′′ 6= 0. It means that

for k,k′,k′′ 6= 0, the triadic correlations given by Eq. (18)

and consequently the interaction information between the

standardized DFTs TXi ,k,TXi ,k′ ,TXi ,k′′ can only be non-null
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Figure 3. EOFs of the Lorenz-95 model corresponding to wave numbers 1–8.

if the wave-number sum is k+ k′+ k′′ = 0, which is equiva-

lent to the resonance condition for wave numbers (Bartello,

1995). The PCs corresponding to wave numbers under triadic

resonance must also exhibit non-null triadic correlations.

Similar relationships can be obtained for quartic interactions:

TXi ,kTXi ,k′TXi ,k′′TXi ,k′′′ = 0 iff k+ k′+ k′′+ k′′′ 6= 0, to be

identified by the quartic interaction information appearing in

the expansion of Eqs. (7) and (8).

There is a vast literature on resonance wave theory

(RIT) in different contexts (Ziman, 1960; Ball, 1964; Ham-

mack, 1993). Let us briefly describe triadic wave reso-

nance. By linearizing the evolution Eq. (30) around the fixed

point Xi = F and admitting propagating wave perturbations

C exp
[
i 2π
N
(kXi −ωt)

]
of small amplitude C, one obtains

a dispersion relationship ω = ω(k). Then, by superposing

two waves with the (wave number, frequency) pairs (k1,ω1)

and (k2,ω2), their weakly nonlinear interaction leads to the

growing of waves (k3,ω3) satisfying the resonance condi-

tions k1±k2±k3 = 0 andω1±ω2±ω3 = 0. Here, non-null tri-

adic correlation and synergetic interaction have the meaning

of a triadic resonance, where one wave comes as the physical

result of the other two. However, the triads are not perfect,

because the DFTs are uncorrelated but not independent, due

to quartic moments TXi ,kTXi ,−kTXi ,k′TXi ,−k′ 6= 0.

The Fourier power can be fully explained by triadic wave

interactions. In fact, let us consider the evolution equation of

the kth DFT by taking the DFT of Eq. (30)

dTX,k

dt
=−TX,k +FNδk,0+

1

N

N/2∑
l=−N/2+1

(TX,lTX,k−l)(η
2l−k
− η2k−l); (37a)

η ≡ exp

(
i
2π

N

)
. (37b)

Then, multiplying Eq. (37a) by 2TXi ,−k and taking the real

part, one gets

d|TX,k|
2

dt
= 2Re

(
TX,−k

dTX,k

dt

)
(38a)

=−2|TX,k|
2
+ 2FNδk,0TX,0+

2

N

N/2∑
l=−N/2+1

Re
[(
TX,lTX,k−lTX,−k

)(
η2l−k

− η2k−l
)]
. (38b)

where Re stands for the real part of the DFT complex num-

ber. Finally, the time average of Eq. (38) leads to the power

of DFTs

Pk = δk,0N
2(σ 2

X +µ
2
X)+

2

N

N/2∑
l=−N/2+1

Re
[(
TX,lTX,k−lTX,−k

)
(
η2l−k

− η2k−l
)]
, (39)

where the energy of waves (k 6= 0) is totally due to triadic

interactions.
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Figure 4. EOFs of the Lorenz-95 model corresponding to wave numbers 9–20.

4.3 Principal component analysis

The aforementioned theoretical results will be tested in prac-

tice, especially in what concerns the values of triadic corre-

lation and interaction information. First, we have integrated

Eq. (30) for a long period of 7200 time units (∼ 98 years),

after an attractor relaxation of 100 time units, using the

fourth-order Runge–Kutta method and a time step1t = 0.01

(∼ 1.2 h). The sampling average and variance are µX = 2.34

and σ 2
X = 3.632

= 13.18, respectively, while the one- and

two-shift correlations are cX,1 = 0.063 and cX,2 =−0.361,

with Eq. (32a, b) verifying quite accurately.

In order to compress data and reduce data redundancy,

we have used running averages (X̃) of length 0.2 time units

(1 day), leading to a sample of 36 000 (daily) realizations. For

that period, the lag correlation (between running averages) is

reduced to cor[Xi(t),Xi(t + 0.2)] = 0.6, producing a quite

weak variance reduction since σ 2

X̃
= 12.14, which is quite

close to σ 2
X; hence, Eq. (32a, b) still verifies with ∼ 10 %

relative error.

The equation governing running averages is identical to

Eq. (30) by adding running time covariances (equivalent

Reynolds stresses) much smaller than the average terms,

since the decorrelation time (∼ 2 time units) is much larger

than the running time length. Therefore, the conclusions of

Sect. 4.2 are plausible.

A PCA over this set is produced with the corresponding

EOFs Wk(x) and explained variances λk, k = 1, . . .,N . As

demonstrated for non-degenerated Fourier spectra, the theo-

retical EOFs must be sinusoidal functions of wave numbers

k = 0, . . .,N/2= 20.

The graphs of the data-derived EOFs are presented in

Fig. 3 (wave numbers 1–8) and Fig. 4 (wave numbers 9–20).

They are quite close to sinusoidal functions and appear in

pairs corresponding to wave numbers k = 1, . . .,N/2= 20,

which are identified by visual inspection by counting the

number of oscillations around the latitude circle. There is

some wave mixing in EOF graphs due to the variance spec-

trum quasi-degeneracy, finite sampling and running averag-

ing producing some spectrum convolution.

The PC variances λk for each pair of degenerated EOFs

are shown in Fig. 5 for increasing values of wave number k.

The dominant mode is k = 8, quite near to the central wave

number 10. Then, the variances decrease both for increasing

k > 8 up to k = 20 and for decreasing k < 8 down to k = 1.

From Fig. 5, we see that pairs of smaller variances tend to be

degenerated; i.e., those associated with k and 21–k are quite

similar. In fact, from Fig. 4, EOFs with high wave number

k tend to be modulated by a smaller wave number, close to

21–k (e.g., k = 19 and k = 20). Differences between degen-

erated variances are quite small and are due to finite sampling

effects.

The autocorrelation function (ACF) of PCs XPC,i , i =

1, . . .,N is oscillating with a typical period and tends to van-

ish for growing time lags. In Fig. 5, we present the decor-

relation time (in time units), given by the lag beyond which

the absolute value of autocorrelation is less than 0.05. It is

higher for the most variant PCs and generally decreases with

the PC variances, which also occurs with ACF periods. Since

the largest decorrelation time is ∼ 7.5 units, the number of

temporal degrees of freedom is Ndof ∼ 7200/7.5= 960.
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Figure 5. PC variances and decorrelation times as a function of

corresponding wave numbers.

Figure 6. Scatterplots of the dominant wave number PRS(p,q,r)

and the wave resonance number δRS(p,q,r) as a function of the

triadic correlation CRS(p,q,r) for each triad of PCs.

4.4 Triadic correlation and wave resonance

In order to assess the possibility of triadic resonance, we

compute the triadic correlations from Eq. (18) between PCs

associated with a triad of wavelengths p,q,r . However, the

wave phase must be the appropriate one for resonance; hence,

we take the maximum from the six possible triadic correla-

tions by considering the pairs of degenerated PCs associated

with each wave number. Let us denote by wi the wave num-

ber associated with the ith PC (quite clear in our case), where

i grows for decreasing variance and, by Xu,i , the standard-

ized ith PC. That maximum is defined for a triad (p,q,r) of

Figure 7. Triadic correlation (open circles) and equivalent triadic

correlation (solid line) for each triad of PCs.

wave numbers as

CRS(p,q,r)≡ max
wi=p,wj=q,wk=r

|cor3(Xu,i,Xu,j ,Xu,k)| (40)

Moreover, in order to study the dependence of correlations

on wave numbers, we present the wave number of the PC of

maximum variance in the triad

PRS(p,q,r)= arg maxwi=p,wj=q,wk=r(λi,λj ,λk) (41)

and the wave resonance number

δRS(p,q,r)≡min(|p+q−r|, |p+r−q|, |r+q−p|). (42)

The wave resonance condition holds for δRS(p,q,r)= 0.

The scatterplot of PRS(p,q,r) and δRS(p,q,r) against

CRS(p,q,r) for all combinations p,q,r is shown in Fig. 6.

The 95 % confidence threshold of significant correlation is

1.96/
√
Ndof = 0.063. From values of PRS, we conclude that,

in the triads of largest CRS values, intervene the most variant

PCs, i.e., with wave numbers PRS ∈ {7,8,9,10} and a veri-

fying resonance condition δRS = 0, consistent with results of

Sect. 4.2. A few statistically significant values of CRS occur

for δRS 6= 0, which could be due to wave resonance coming

from non-dominant wave numbers contaminating the EOFs.

The estimated triadic IT (see the estimator in Appendix B)

and the triadic absolute correlation |cor3| in the valida-

tion period (second half the total period) of 18 000 samples

(Ndof ∼ 480) are shown in Fig. 7. The thresholds of 95 %-

significant correlations and ITs are ∼ 0.09 and ∼ 0.008, re-

spectively (see Figs. B1 and B2). The three largest values

of CRS(p,q,r) are 0.23 for p = q = 10, r = 20, 0.22 for

p = q = 9, r = 18 and 0.21 for p = 8, q = 9, r = 17, all sat-

isfying the WRC. Note that when p = q, one uses PCs in

quadrature for the same wave number.

For |cor3|> 0.12, IT is generally a growing function of

|cor3| with a quite good matching |cor3| ∼ cor3eq given by
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Figure 8. Absolute triadic correlation (cor3), equivalent triadic cor-

relation (cor3eq), interaction information (I3), multi-information

(Ii ), upper bounds of I3 due to triadic asymmetry (I3-as1, I3-as2)

(Eq. 10a–b) and categorical interaction information (I3c) (Eq. 22a–

b) for the optimized triad obtained for each of the nine chosen sets

of PCs.

Eq. (20), showing that the interaction information comes

from the MI between one PC and the product of the remain-

ing two.

4.5 Optimized triads

In this section, we apply the algorithm of Sect. 3.2 in

order to find orthogonal rotations of standardized PCs

(within a given set S introduced in Sect. 2.1) that maxi-

mize |cor3| and IT. As expected, much larger values can

be obtained than when using non-rotated PCs. For that,

we consider a sequence of nine encapsulated sets S1 ⊂

S2 ⊂ . . .⊂ S9 of rotated PCs, each one corresponding to

a set Swn−i , i = 1, . . .,9 of wave numbers chosen from

the triads (p,q,r) providing the higher CRS values. Let

us denote DSwn−i ≡ Swn−i/Swn−(i−1), i = 2, . . .,9. Then,

after analyzing triadic correlations among PCs, we ob-

tain Swn−1 = {10,20},DSwn−2 = {9,18},DSwn−3 = {8,17},

DSwn−4 = {7}, DSwn−5 = {11}, DSwn−6 = {16}, DSwn−7 =

{12}, DSwn−8 = {19}, and DSwn−9 = {15}. The first and

last sets have 4 and 24 PCs, with the spaces of rotations

spanned by 6 and 276 Euler angles, respectively. In order

to get the maximum value of the control function FopIT(R)

(Eq. 25), proportional to |cor3|
2, we use a set of Ntrial = 40

first guesses of the Euler angles. The number of local max-

ima of FopIT increases in general with the size of space of

spanning PCs: Swn−i . Figure 8 shows the maximum value

of |cor3|, optimized over rotations and for each set Swn−i .

That is computed in the validation period by using the opti-

mized rotation matrix R (see Sect. 2.1) calibrated in the train-

ing period (the first half of the total period). Let us denote

that maximum as |cor3|max val,i . The rotation coefficients are

computed in the calibration and then applied in the valida-

tion period. As expected, |cor3|max val,i grows with the rota-

tion space dimension, reaching the value ∼ 0.44. The values

are also very close to those computed in the training (not

shown), showing that rotation coefficients are robust and not

subjected to overfitting regarding the number of calibrated

Euler angles.

Let (Y1,Y2,Y3) be the optimally rotated normalized PCs

for each set. Figure 8 also shows the IT values I3(Y1,Y2,Y3),

which are largely due to the non-Gaussian part, since the

Gaussian part is ∼ 10−5. IT grows with the rotation space

dimension where I3 ∼−1/2log[1− (cor3)
2
], since the ap-

proximation |cor3| ∼ cor3eq verifies quite well (as in Fig. 7

for high correlations).

As previously discussed, the triads are not perfect, due to

the lack of statistical dyadic independence between PCs and

of their rotations. Therefore, in order to evaluate how tri-

ads (Y1,Y2,Y3) of rotated normalized PCs approximate to

asymmetric triads, we estimate the values I3−as2 and I3−as1

(Eq. 10a and b) in the validation period (see Fig. 8), by

measuring the maximal values of the types I (Yi,Yj |Yk) and

I [(Yi,Yj ),Yk], with i,j,k being a permutation of 1,2,3. The

non-Gaussian dyadic MIs come from high-order cumulants

that cannot be vanished by rotations alone. The total MI Ii is

also evaluated, also growing with a concomitant triadic cor-

relation.

As explained in Sect. 2.6, a high value of |cor3(Y1,Y2,Y3)|

means a high value of the absolute correlation between the

sign of any product, sgn(YiYj ), and the sign of the remaining

variable, sgn(Yk). This means that the binary random vari-

ables Y1c = sgn(Y1),Y2c = sgn(Y2), and Y3c = sgn(Y3) tend

also to exhibit high interaction information, with the bulk of

probabilities disposed in the entries of a two-category Latin

square.

In order to show that, we estimate the discrete ver-

sion of the interaction information, I3c ≡ I3(Y1,c,Y2,c,Y3,c)

(Eq. 22), in the validation period for the different sets (see

Fig. 8). All the estimated information measures grow consis-

tently with the size of the optimization space.

Now, we study the physical meaning of the optimized

triads. Therefore, for a generic PC-set S (within the se-

lected ones Sk , k = 1,2,3,5,7,9), we plot in Fig. 9 the

loadings given by Eq. (1): WYi ,k =
∑
j∈Sλ

−1/2
j Rk,jWi,j ;

k = 1,2,3; i = 1, . . .,N giving the triad components Yk =∑N
i=1WYi ,k(Xi−µX)whereWi,j is the j th value multiplying

the perturbed value of the original field at the ith longitude.

For the sets S1 and S2, the loadings cover the whole lat-

itude circle, whereas for S3, S5, S7, and S9, they are quite

restricted to local segments. In all cases, the loading fields

oscillate approximately in sinusoidal form within a revelant

interval (circular or local) with the number of oscillations pk ,

k = 1,2,3 satisfying the resonance condition. For example,

for sets S5, S7, and S9, we obtain triadic resonant local wave
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Figure 9. Loading fields of the optimized triads for sets 1, 2, 3, 5, 7, and 9 of rotated normalized PCs.

Figure 10. Time series of the triad components during an interval

of 20 time units for the triad optimized with set 9 of PCs.

trains where p2 = p3 = 3 and p1 = 6, thus satisfying the res-

onance condition 3+ 3= 6. The rotations act in such a way

as to practically vanish loadings outside of the wave-train lo-

cation. Other local maxima of the control function FopIT(R),

different from the absolute one, verify for other wave trains

at different locations (not shown).

In order to verify how signals of triad components behave,

we plot in Fig. 10 the time series of the standardized variables

Y1(t),Y2(t), and Y3(t) corresponding to the optimized triad

for set S9 issued from an interval of 20 time units. The time

Figure 11. Normalized histogram (in logarithmic scale) of the prod-

uct of optimized triad components for the triad optimized with set 9

of PCs.

series Y2(t),Y3(t), corresponding to the three-wave dominat-

ing loadings (Fig. 9), present oscillating lag correlations with

a typical period of ∼ 4 time units. The time series Y1(t) has

no statistically significant lag correlations with either Y2(t)

or Y3(t), and it has a decorrelation lag of∼ 5 time units. Any

of the three variables is quite close to Gaussianity, since all

the absolute skewnesses are lower than 0.04. The kurtosis ex-

cesses (E[( )4] − 3) are, respectively, −0.6, −0.4, and −0.3

for Y1, Y2, and Y3.
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Despite the pair-wise uncorrelatedness, the three variables

as a whole are clearly not independent. In order to highlight

that, we show in Fig. 11 the normalized histogram (in log-

arithmic scale) of the product of mutually uncorrelated vari-

ables: Y1Y2Y3. The PDF of that product is highly asymmetric

and leptokurtic (higher kurtosis than for a Gaussian), pre-

senting negative values of the average and skewness, respec-

tively,−0.44 and−2.66, and a kurtosis excess of 10.16. That

skewness means the occurrence of quite enhanced conditions

of local resonance. The triadic correlation has a consistent

value of cor3[Y1(t),Y2(t),Y3(t)] ∼ −0.44.

That negative triadic correlation is compatible with the fact

that the signs of (Y1,Y2,Y3) lie most of the time in one of

the four octets, (+,+,−), (+,−,+), (−,+,+), and (−,−,−),

each one occurring with probabilities ∼ 17 % over a total of

68 %. Those states alternate randomly throughout the time

series, as is clear in Fig. 10. In about ∼ 51 % of the time,

one of the three variable lies in the negative phase, while the

two others are positively phased. When one of the octets oc-

curs, the Boolean exclusive disjunction sgn(Y1)⊕ sgn(Y2)=

sgn(Y3) holds, corresponding to a Latin square ofNc = 2 cat-

egories as described in Sect. 2.6. The other four octets are

more infrequent, occurring with ∼ 8 % of probability each.

The most probable octets lie near local maxima of the joint

PDF ρY1,Y2,Y3
of the optimized triad, as deduced from the

PDF iso-surface shown in Fig. 12. The twisted PDF iso-

surface presents similarities to those of a typical perfect non-

Gaussian triad as in Fig. 2. Finally, Theorem 1 given by

Eq. (3), about the invariance of total negentropy over the ro-

tation space, states in this case that, while the optimized triad

in wave resonance (corresponding to Y proj)maximizes NGty,

the remaining PC components not included in the triad tend

to be closer to Gaussians.

5 Discussion and conclusions

Multivariate non-Gaussian PDFs of climate and geofluid data

allow for the possibility of nonlinear correlations between

two, three or even more mutually linearly uncorrelated vari-

ables. Those non-trivial correlations, or interactions in lato

sensu, make variables statistically dependent, leading to posi-

tive mutual information and multi-information values, shared

by two, three or more variables. The triadic MII, among three

variables, can be totally explained by pairs (redundant triad)

or, in the opposite situation, by tripartite synergies (perfect

triad), i.e., by an emerging property across the three pair-wise

independent variables (e.g., a triangle of lovers who meet to-

gether only in pairs and in an equitable way). In that situa-

tion, the MII is reduced to the interaction information (IT),

which in general measures the synergy level between vari-

ables, after excluding information coming from proper sets

of those variables. Perfect triads are impossible in the Gaus-

sian world, since pair-wise non-correlation is sufficient for

global independence.

Y1

Y2

Y3

Figure 12. Iso-surface 0.001 of the PDF of triad components for the

optimized triad with set 9 of PCs. Marginals are Gaussianized.

An example of a perfect triad between binary random vari-

ables (Y1,Y2,Y3) occurs when any of the variables is the re-

sult of a Boolean exclusive disjunction and/or a logic equiv-

alence of the two others. In both cases, the look-up table of

results is a Latin square (in which categories are all used but

repeated, either in rows or in columns) under which IT is

maximal.

For continuous uncorrelated variables, used in the paper,

IT expands as a function of cross-cumulants of order greater

than 3 (vanishing for Gaussian PDFs), and mixes the three

variables together. The occurrence of perfect triads is quite

extreme and difficult to observe in nature because of the con-

straints of total pair-wise independence, especially in sys-

tems of high dimensionality where time averages or interac-

tion averaging tends to render variables more Gaussian due

to the central limit theorem. Consequently, nonlinear correla-

tions, non-Gaussianity and triadic interactions are somehow

hidden in a multi-dimensional system; hence, they can only

be put into evidence by variable transformations and projec-

tions.

Therefore, in order to optimize triads and to maximize

their IT, we develop and test a methodology of finding

highly synergetic non-Gaussian triads (Y1,Y2,Y3) in the

space of orthogonal rotations of uncorrelated spherized vari-

ables (e.g., normalized PCs). Uncorrelatedness and total ne-

gentropy are kept invariant over that rotation space (Theo-

rem 1). The direct estimation of IT for arbitrary rotated vari-

ables issued from a high-dimensional space is quite difficult

to write and to estimate due to the “curse of dimensionality”.

Therefore, instead of directly maximizing IT, we maximize

a proxy of that relying on cross-cumulants mixing the three
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variables, here, the square of the cumulant E(Y1Y2Y3). This

has the advantage of being proportional to a geometrically

intuitive triadic correlation cor3(Y1,Y2,Y3) between uncor-

related variables and of satisfying the Schwartz inequality.

Maximization of the control function is performed by op-

timization through gradient-descent-based methods in the

space of orthogonal rotations, totally spanned by generalized

Euler angles of rotation and used as control variables.

In the application, we have estimated and optimized tri-

ads for the output of the Lorenz-95 minimal fluid motion

model. It is a one-dimensional model with nonlinear advec-

tion, linear dissipation and constant forcing, integrated along

a latitude circle. Circular symmetry of statistics leads to a set

of twice-degenerated empirical orthogonal functions that are

sinusoids, each one with a certain associated wave number.

Therefore, PCs are discrete Fourier transforms (DFTs). Non-

null statistically significant values of E(Y1Y2Y3) and esti-

mated IT are obtained when the integer zonal wave numbers

k1, k2, and k3 satisfy the wave resonance condition (WRC)

k1± k2± k3 = 0, thus providing a physical meaning to the

non-Gaussian statistical triads in the studied case. For the

studied model, high IT values are quite closely approximated

by an exclusive function of cor3(Y1,Y2,Y3).

Enhanced triads, issued from sets of rotated PCs satis-

fying WRC, are thus obtained using optimization methods.

Triad components are obtained as the inner product of load-

ing fields of sinusoidal type, locally confined to the segments

of the latitude circle and also satisfying WRC between the

corresponding number of oscillations (the local wave num-

bers). Consequently, triadic interaction corresponds here to

a generalized criterion and diagnostic of triadic wave-train

resonance, which comes totally out of the classical approach

of the resonance interaction theory (RIT) (Hammack, 1993),

issued from the theory of linear and quasi-linear waves in

fluids. The statistically based triad optimization method is

therefore able to extract spells of triadic wave resonance be-

havior from a fully chaotic regime and the modes where that

behavior is more intense on average. This aspect is particu-

larly relevant for the use of triadic components or functions

of them (e.g., the triadic product Y1Y2Y3) and their tempo-

ral memory in schemes to potentially improve predictability.

This is because resonance can be seen as a source of pre-

dictability of a certain oscillatory behavior, coming either

from an external forcing with an appropriate resonance fre-

quency or from the interaction between internal field waves.

Moreover, triads’ components can be used for better describ-

ing non-Gaussian distortions of the PDF of a system’s attrac-

tor with respect to the fitting multivariate Gaussian ellipsoid

with the leading EOFs as axes, and where the bulk of prob-

ability lies. Therefore, nonlinear data explanatory variables

(e.g., climatic and large-scale indices), given as a function

of triadic components, like Y1+ c1Y2Y3, where c are appro-

priate constants, can potentially be useful in forecasting and

downscaling schemes, which deserves to be tested in further

studies.

Finally, the method of triads’ optimization is quite general

and applies to any multivariate random vector. In particular,

for climatic fields over the globe, triads generalize the classi-

cal concept of teleconnections relying on far-distant correla-

tions with the new concept of non-Gaussian triadic telecon-

nections where three far-distant uncorrelated variables play,

which is reserved for works in preparation.
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Appendix A: Proof of Theorem 1

For any N -dimensional RVecs A,B = RA, both with iden-

tity correlation matrices and R an orthogonal matrix, the fol-

lowing equality holds:

J (A)= J (B) (A1a)

= Ii(A)+ Ji(A) (A1b)

= Ii(B)+ Ji(B). (A1c)

It comes from immediate application of definitions. For the

concatenation A=A1||A2, we also get

Ii(A)= Ii(A1)+ Ii(A2)+ Ii(A1,A2); (A2a)

Ji(A)= Ji(A1)+ Ji(A2). (A2b)

Theorem 1 (2) follows from application of Eq. (A2a)

to Y rot = Y proj||Y comp and Eq. (A2b) to J (Y rot). Then,

Eq. (A1) is applied to Y rot = RXu, signal to expand Ii(Y rot).

Appendix B: Multi-information and interaction

information estimators

Many MII estimators have been tested in the literature (e.g.,

histogram-based, kernel-based, adaptative grids, next nearest

neighbors, maximum-entropy-based) (see Walters-Williams

and Li, 2009, for a thorough review). Here, we use a kernel-

based PDF estimator where single variables of the original

working vector U ∈ RD (e.g., the Y proj vector introduced in

Sect. 2 andD = 3 for triads) have been subjected to Gaussian

anamorphoses, converting them into standard Gaussians N

(0,1) collected in the transformed vector Ug ≡G(U) ∈ RD .

In practice and for a multivariate sample of Ndof iid realiza-

tions and a generic component U of U , we take the discrete

anamorphosis of the lth increasing sorted term U(l) as

Ug,(l) =8
−1
[l/(Ndof+ 1)]; l = 1, . . .,Ndof (B1a)

=G(U(l)); l = 1, . . .,Ndof, (B1b)

where 8−1 is the inverse of the mass probability function

of the standard Gaussian. Then, thanks to the MII equal-

ity Ii(U)= Ii(Ug), we estimate it directly from Gaussian-

ized data. This procedure regularizes the effect of marginal

outliers in the MII estimation. Since marginal PDFs are

Gaussian, i.e., ρYg(Ug)= ϕ(Ug)≡ (2π)
−1/2 exp(−U2

g /2),

the MII formula (1) becomes

Ii(U)= Ii(Ug) (B2a)

=

∫
RD

ρUg(Ug) ln[ρUg(Ug)]dUg+ (D/2)[ln(2π)+ 1]. (B2b)

The above formula has the advantage of uniquely using the

joint PDF, while marginals are kept fixed, thus reducing the

MII estimator’s variance.

Figure B1. Bias (circles) and 95 % quantile (triangles) of the es-

timators of the dyadic MII (open symbols) and of the triadic MII

(solid symbols).

Figure B2. Bias (circles) and 95 % quantile (triangles) of the esti-

mator of the triadic IT.

Now, the PDF ρUg(Ug) is estimated using a kernel-based

method (Silverman, 1986). Then, the integral of MII is com-

puted by the Gauss quadrature rule of integration with Her-

mite weights. The joint PDF of Gaussianized variables is

written as an average of localized Gaussian kernel functions
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ρUg(Ug)=N
−1
dof

∑Ndof

l=1 K(Ug,Ug,l), with

K(Ug,Ug,l)=
1

(2π)D/2hD[det(Sg)]1/2
exp[

−
(Ug−Ug,l)

′S−1
g (Ug−Ug,l)

2h2

]
, (B3)

satisfying the normalization
∫

RD
K(Ug,Ug,l)dUg,l = 1,

where Ug,l = (Ug,1l,Ug,2l, . . .,Ug,Dl)
′, l = 1, . . .,Ndof are

the Ndof realizations of Gaussianized vectors expanded in

terms of theD components, Sg is theD×D estimated covari-

ance matrix of Ug and h= {4/[Ndof(D+ 2)]}[1/(D+4)] is the

optimal Gaussian bandwidth. The MII is a D-dimensional

multiple integral that is evaluated here through the Gauss

quadrature integration formula using the Hermite weight

function. This is written for a generic integrable function

F(Ug)≡ F(Ug,1, . . .,Ug,D) as

∞∫
−∞

. . .

+∞∫
−∞

F(Ug,1, . . .,Ug,D)dUg ≈

Q∑
i1=1

. . .

Q∑
iD=1

F(Qi1 , . . .,QiD )exp
(
Q2
i1
+ . . .+Q2

iD

)
Wi1 . . .WiD , (B4)

where Q is the number of quadrature points, Q1, . . .,QQ ∈

R, and W1, . . .,WQ are the weights. The formula is exact

for F(Ug)exp(−‖Ug‖
2), being a multivariate polynomial

of degree less than 2Q. For the MII estimation, F(Ug)=

ρUg(Ug) ln[ρUg(Ug)] is used in the quadrature formula

where the PDF was previously estimated. Thus, the used es-

timator is written as

I (Ug)≈ IQuad(Ug) (B5a)

≡

Q∑
i1=1

. . .

Q∑
iD=1

ρUg(Q) log
[
ρUg(Q)

]
exp(‖Q‖2)

Wi1 . . .WiD + (D/2) [ln(2π)+ 1] , (B5b)

whereQ≡ (Qi1 , . . .,QiD )
′ (Eq. B5) is aD-dimensional sum

indexed by D indices i1, . . ., iD . For this kind of integrand

discrimination, we have taken Q= 20.

In the paper, the dimension is D = 2 or 3. This estimator

has shown fairly good convergence speed for PDFs close to

multivariate Gaussians or that do not have sharp gradients or

discontinuities. Furthermore, the estimator’s performance is

better under small values of compactness (i.e., data concen-

tration along a manifold), since it leads to smoother PDFs.

The biases of IQuad are evaluated here for the case where the

standardized rotated vector (of uncorrelated components) U

follows a multivariate isotropic standard Gaussian N(0,ID)

leading to the vanishing of MII. Biases shall not differ much

when the true PDF is close to Gaussian. For that purpose,

we have used the Monte Carlo methodology by generating

an ensemble of 1000 samples of Ndof iid realizations of U .

Then, statistics (95 %-quantile Q95 and the average or bias

B) of IQuad at dimension D = 2 and 3 were computed from

the ensemble. Those statistics are obtained for the multiplica-

tive sequenceNdof = 25, 50, 100, 200, 400, 800, 1600, 3200,

6400 and 12 800, collected altogether in the log–log graphic

of Fig. B1. The 95 % quantile gives the 5 % significance-level

uni-directional threshold of rejection of the null hypothesis

H0 supposing that the standardized rotated vector (of uncor-

related components) U is composed of totally independent

components. Then, only the values above are considered sta-

tistically significant. Apparently there is a good linear loga-

rithmic fit both for B and Q95 of the type C/Nm
dof where C

and m are positive constants. The bias B of the interaction

information (IT) I3(U3), U3 ∈ R3 is also computed, along

with the quantile Q95 appearing in Fig. B2. It is interesting

to note that, for small (large) Ndof, the bias of IT is negative

(positive), overestimating redundancy (synergy).
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