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Abstract. Superparameterization (SP) is a multiscale com-

putational approach wherein a large scale atmosphere or

ocean model is coupled to an array of simulations of small

scale dynamics on periodic domains embedded into the com-

putational grid of the large scale model. SP has been success-

fully developed in global atmosphere and climate models,

and is a promising approach for new applications, but there

is currently no practical data assimilation framework that can

be used with these models. The authors develop a 3D-Var

variational data assimilation framework for use with SP; the

relatively low cost and simplicity of 3D-Var in comparison

with ensemble approaches makes it a natural fit for relatively

expensive multiscale SP models. To demonstrate the assim-

ilation framework in a simple model, the authors develop a

new system of ordinary differential equations similar to the

two-scale Lorenz-’96 model. The system has one set of vari-

ables denoted {Yi}, with large and small scale parts, and the

SP approximation to the system is straightforward. With the

new assimilation framework the SP model approximates the

large scale dynamics of the true system accurately.

1 Introduction

Superparameterization (SP) is a multiscale computational

method for parameterizing small scale effects in large scale

atmosphere and ocean models. It was originally developed

and has been particularly effective as a cloud parameteriza-

tion in atmosphere models (Grabowski and Smolarkiewicz,

1999; Randall et al., 2003), and has been implemented in

global atmosphere and climate models (Khairoutdinov and

Randall, 2001; Tao et al., 2009; Randall et al., 2013). SP cou-

ples a large scale, low resolution model to an array of local

small scale, high resolution simulations embedded within the

computational grid of the large scale model. The computa-

tional cost is kept down through a variety of methods, most

prominently by reducing the dimensionality of the small

scale simulations, e.g., using one vertical and one horizontal

coordinate in the aforementioned atmospheric applications.

Although atmosphere and climate models with SP are partic-

ularly successful at producing a realistic Madden-Julian os-

cillation and diurnal cycle of convection over land (Khairout-

dinov et al., 2005), there are as yet no data assimilation sys-

tems designed for use with these models. Instead, the large

scale variables are initialized from state estimates generated

with non-SP models and the small scale variables are initial-

ized with small-amplitude noise (Khairoutdinov et al., 2005).

Once the SP model has been initialized, there is no practical

framework for combining observational data with the multi-

scale model forecast to produce a new initial condition.

The authors recently developed an ensemble Kalman fil-

ter framework for data assimilation with SP (Grooms et al.,

2014, hereafter GLM14). This framework was developed in

the context of stochastic SP, a variant of SP that reduces

computational cost by replacing the small scale simulations

of SP with quasilinear stochastic models (Grooms and Ma-

jda, 2013; Majda and Grooms, 2014). Stochastic SP has only

been developed for idealized turbulence models (Grooms and

Majda, 2013, 2014a, b; Grooms et al., 2015), and is not yet

implemented in global atmosphere, ocean, or climate mod-

els. The relatively high cost and computational complexity

of global atmosphere and climate models with SP and the

extra cost associated with an ensemble-based data assimila-

tion system makes it unlikely that it will be possible to use
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these models with the framework of GLM14 in the near fu-

ture. Here we develop a 3D-Var variational data assimilation

framework for SP that builds on and modifies the framework

of GLM14.

Observations of physical variables have large scale and

small scale parts, the former of which is equated with the

large scale model variables, and the latter with the variables

of the small scale embedded simulations. A key feature of SP

is that the small scale simulations are periodic, so a location

on the small scale computational grid does not correspond

precisely to any location in the real physical domain; as a

result, the small scale simulations provide only statistical in-

formation about the small scales, and this information can be

used as a prior in the data assimilation context. In GLM14

an ensemble of SP simulations provides prior information

on the large scale variables, but in the present approach the

prior information on the large scales comes from a single

SP simulation and a time-independent “background” covari-

ance matrix for the large scale variables. When the observa-

tion operator is linear the analysis estimates of the large and

small scale variables can be computed independently of each

other, and the small scale covariance information effectively

provides a time- and state-dependent estimate of represen-

tation error. When the observation operator is nonlinear the

large and small scale analysis must be computed simultane-

ously by minimizing an objective function. Although anal-

ysis estimates of the small scale variables can be computed

with linear observations, and must be computed with nonlin-

ear observations, our framework does not at this time use the

small scale analysis estimate to update any of the small scale

SP variables because the latter cannot be unambiguously as-

sociated with any real physical location. A key update of the

GLM14 framework is that we here compute a small scale

analysis estimate at locations where observations are avail-

able, rather than at every coarse grid point. This can result in

significant computational savings in the case of a nonlinear

observation operator. We also update the GLM14 framework

to better handle observations at locations off the coarse grid.

The complex superparameterized atmosphere and climate

models mentioned above are not particularly convenient for

the development of a new data assimilation framework, and

existing toy models of SP are of limited utility for this pur-

pose. In Sect. 2 we develop a new system of ordinary dif-

ferential equations based on the two-scale Lorenz-’96 (L96)

model (Lorenz, 1996, 2006), and an SP approximation to

that system. This new model serves as a test bed in which

to demonstrate our new SP 3D-Var framework. The 3D-Var

framework with SP is presented in Sect. 3, and assimilation

experiments using the new framework and the new system

are described in Sect. 4, followed by conclusions.

2 A multiscale Lorenz-’96 model with

superparameterization

In this section we develop a new simple model for SP in

which to demonstrate our data assimilation framework. Ma-

jda and Grote (2009) developed an idealized model of SP,

but the system suffers from one major drawback: it does not

consist of an SP approximation to an idealized system, but

rather consists only of an idealized SP model. Harlim and

Majda (2013) used the model of Majda and Grote (2009) to

develop a data assimilation strategy for SP, but with the as-

sumption that direct observations of the large scale variables

were available, rather than having both large and small scale

contributions to the observations. Lee and Majda (2015) have

recently investigated a range of multiscale assimilation meth-

ods in a highly condensed model where the “large scale” con-

sists of a single scalar with no spatial extent.

Wilks (2012) developed an SP approximation for the

two-scale Lorenz-’96 system, which has the following form

(Lorenz, 1996, 2006):

Ẋk =−Xk−1 (Xk−2−Xk+1)−Xk −
hc

b

J∑
j=1

Yj,k +F (1)

Ẏj,k = c

[
−bYj+1,k

(
Yj+2,k −Yj−1,k

)
−Yj,k +

h

b
Xk

]
. (2)

The Xk variables have periodicity Xk =Xk+K , and

the Yj,k variables have periodicity Yj+J,k =Yj,k+1 and

Yj,k+K =Yj,k , where j = 1, . . . , J and k= 1, . . . , K . The

combined index j + J (k− 1) is naturally associated with

spatial location along a latitude circle, and the local aver-

age J−1
J∑
j=1

serves to separate large and small spatial scales.

This system is primarily useful as a two-timescale model,

since for large c the Yj,k variables are faster than the Xk
variables. Wilks’s SP approximation to this system reflects

this fact by treating the Yj,k variables as purely small-scale;

also, in his SP approximation the periodicity of the Yj,k vari-

ables is replaced by defining Y0,k =YJ+1,k =YJ+2,k , which

are set to a constant value. Considering that the multiscale

nature of SP is primarily based on spatial scale separation

rather than timescale separation, a more natural SP approx-

imation to the two-scale Lorenz-’96 system might make the

Yj,k variables locally periodic: Yj+J,k =Yj,k . Nevertheless,

there would still be two sets of large scale variables (Xk , and

the j -average of Yj,k) but only one set of small scale vari-

ables (Yj,k minus its j average). Rather than bend the two-

timescale Lorenz-’96 model to our two-space-scale purpose,

we develop a new two-space-scale version of the Lorenz-’96

model that is more naturally suited to an SP approximation.

The new model is defined by the following equation:

Ẏ = hNY (Y )+ JTTNX(TY )−Y +F1JK , (3)

where Y ={Yi}
JK
i=1, where 1JK is a vector of length JK with

all elements equal to 1, T is a matrix in RK×JK , and the
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index i, which is periodic Yi+JK =Yi , is analogous to spatial

location on a latitude circle, similar to the original L96 model

(Lorenz, 1996, 2006). The nonlinear functions NY and NX

are defined as

{NY (Y )}i =−Yi+1 (Yi+2−Yi−1) , (4)

{NX(X)}k =−Xk−1 (Xk−2−Xk+1) , (5)

where Eqs. (4) and (5) are evaluated assuming periodic-

ity for the vectors X={Xk}
K
k=1 and Y : Xk+K =Xk and

Yi+JK =Yi . The matrix T extracts the large scale part of Y ;

we choose to let T be defined as the projection onto the first

K discrete Fourier modes, followed by evaluation on an eq-

uispaced grid of K points. The large scale dynamics are ob-

tained by applying T to Eq. (3) from the left:

Ẋ = hTNY (Y )+NX(X)−X+F1K , (6)

where we define the large scale component X=TY , and

use that J TTT is the identity matrix and that T 1JK = 1K
(these are true for our choice of a Fourier projection, but

other choices of T are possible). Note that when h= 0 the

dynamics are those of the single-scale Lorenz-’96 model

with K modes, and when h 6= 0 the nonlinearity NY (Y )

couples large and small scales. Energy conservation for

the nonlinear terms in Eq. (3) is obtained by noting that

Eq. (4) implies Y T NY (Y )= 0, and that Eq. (5) implies

Y T TT NX(TY )=X
T NX(X)= 0. The matrix JTT inter-

polates from RK to RJK , and it is convenient to define nota-

tion for the small scale part of Y :

y = {yi}
JK
i=1 = Y − JTTTY . (7)

The superparameterization approximation is governed by

Ẏj,k =−hYj+1,k

(
Yj+2,k −Yj−1,k

)
−Xk−1 (Xk−2−Xk+1)−Yj,k +F, (8)

where Xk = J
−1

J∑
j=1

Yj,k , and there is local as well as

global periodicity: Yj+J,k =Yj,k and Xk+K =Xk . The large

scale dynamics in the SP approximation are obtained by j -

averaging Eq. (8), which gives

Ẋk =−
h

J

J∑
j=1

Yj+1,k

(
Yj+2,k −Yj−1,k

)
−Xk−1 (Xk−2−Xk+1)−Xk +F. (9)

When h= 0 the large scale dynamics of the SP approxima-

tion and the true system are equivalent. As in more complex

SP applications, the small scale variables (here Yj,k −Xk)

are locally periodic, and are coupled to the large scale using

a local average over a periodic domain in a manner analogous

to the coupling in more complex SP models (e.g., Grabowski,

2004). The Xk variables in the SP model attempt to accu-

rately model the dynamics of X in the true system, but the

small scale variables of the SP approximation are only statis-

tically related to the small scale variables of the true system;

i.e., one does not expect an SP variable Yj,k to be a direct

approximation of any of the true system variables Yi .

The purpose of this research is not to study the SP ap-

proximation in this system, but rather to use the system as

a test bed for our data assimilation framework. We therefore

choose to focus on parameter regimes where the SP approxi-

mation is reasonably accurate, setting J = 128 so that there is

a good scale separation (the SP approximation should break

down for small J ). The number of large scale modes is set to

K = 41; we choose 41 rather than the usual 40 so that the dis-

crete Fourier modes associated with the large scale variables

are 0, ±1, . . . , ±20, and the twentieth mode is not split be-

tween large and small scales. It remains to choose F and h. In

general, for fixed nonzero h the small scale variables become

more chaotic and larger amplitude as F increases, and simi-

larly for fixed F as h increases. As the small scales become

more chaotic and larger amplitude, the large scale variables

become less chaotic. This behavior is perhaps counterintu-

itive, but similar behavior has been observed in the two-scale

Lorenz-’96 system by Abramov (2012). Balancing the desire

for complex large scale dynamics and turbulent small scale

dynamics, we choose to focus on two parameter regimes:

I. F = 30, h= 0.4;

II. F = 21, h= 0.35.

Some characteristics of the dynamics in regimes I and II

are presented in Figs. 1 and 2, respectively. In regime I the

large scale dynamics consist of a train of eight propagating

and nonlinearly interacting “waves”, as seen in the time se-

ries of the X variables in Fig. 1a. The large scale dynamics

of the SP approximation are qualitatively similar, as shown

in Fig. 1b. The time-lagged autocorrelation function of the

Xk variables (averaged over k) is shown in Fig. 1e, and dis-

plays an oscillatory structure associated with the wave train.

The initial decay of the time-lagged autocorrelation is ap-

proximated by an exponential of the form exp{−(λ+ iω)t}

with decorrelation time λ−1
= 0.84 and oscillation period

2π/ω= 0.71; the resurgence of correlation between 6 and

8 time units is associated with the time it takes a single wave

to propagate once around the domain. The regularity of the

wave train is also reflected in the space-lagged autocorrela-

tion function for the Xk variables shown in Fig. 1f, which is

well approximated by the SP dynamics. Figure 1c shows the

Yi variables at an instant of time (blue), along with the large

scale part (red; the projection onto the first 41 Fourier modes)

and the Xk variables (yellow circles). There is clearly strong

small scale variability, but not so strong that it completely ob-

scures the large scale pattern, and the amplitude of the small

scale variability varies over the domain. Figure 1d shows the

time-averaged energy spectrum |Ŷκ |
2, where Ŷκ is the dis-

crete Fourier coefficient of Yi with wave number κ . There

is a clear separation in amplitude between the large scale
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Figure 1. Climatological statistics in regime I. (a) Time series of the Xk variables. (b) Time series of the Xk variables from the SP approx-

imation. (c) A snapshot showing Yi (blue), the large scale part of Yi defined by projection onto the first 41 discrete Fourier modes (red),

and the Xk variables (yellow circles). (d) Time-averaged energy spectrum |Ŷκ |
2 where Ŷκ is the discrete Fourier coefficient of Yi with wave

number κ . (e) Time-lagged autocorrelation functions for Xk (blue) and the small scale part of Yi (red), defined by projecting out the first

41 Fourier modes. (f) Space-lagged autocorrelation functions for Xk from the true dynamics (blue) and the SP approximation (red).

Nonlin. Processes Geophys., 22, 601–611, 2015 www.nonlin-processes-geophys.net/22/601/2015/
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Figure 2. Climatological statistics in regime II. Panels are the same as Fig. 1.
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Fourier modes (κ ≤ 20) and the small scale modes, showing

that the large scale energy is concentrated near wave numbers

κ = 7 and 8, while the small scale energy is more broadly

distributed among Fourier modes. The broad distribution of

small scale energy among Fourier modes is indicative of the

strongly chaotic small scale dynamics, as is the rapid tem-

poral decorrelation of the small scale variables yi shown in

Fig. 1e. The decorrelation time of the small scale variables

yi is estimated as 0.2 using the integral of the time-lagged

autocorrelation function.

In regime II the large scale dynamics are more chaotic,

though wave trains are still evident in the time series of X

in Fig. 2a. The large scale dynamics of the SP approxima-

tion are again qualitatively similar, as shown in Fig. 2b. The

time-lagged autocorrelation function of the Xk variables in

Fig. 2e decays much more rapidly than in regime I. The ini-

tial decay of the time-lagged autocorrelation is approximated

by an exponential of the form exp{−(λ+ iω)t} with decor-

relation time λ−1
= 0.38 and oscillation period 2π/ω= 0.95,

and there is no resurgence of correlations at long lag times.

The decreased regularity of the wave train is reflected in the

space-lagged autocorrelation function for the Xk variables

shown in Fig. 2f, which is again well approximated by the

SP dynamics. The snapshot of the Yi variables in Fig. 2c

shows a diminished level of small scale variability overall,

with some regions having almost no small scale activity and

others having strong small scale variability. The energy spec-

trum in Fig. 2d shows that the energy is more broadly dis-

tributed among large scale Fourier modes, though there is

still a peak at wave number κ = 8. The broad distribution of

small scale energy among Fourier modes is again indicative

of the strongly chaotic small scale dynamics, as is the rapid

temporal decorrelation of the small scale variables yi shown

in Fig. 2e. The decorrelation time of the small scale variables

yi is estimated as 0.23 using the integral of the time-lagged

autocorrelation function.

The Yi variables have a uniform time mean of 3.8 and 3.6

in regimes I and II, respectively, which is accurately repro-

duced by the SP approximation. The Xk variables have vari-

ance 31 and 32 in regimes I and II, respectively, and their SP

counterparts have slightly higher variances of 33 and 34. The

small scale variables yi have climatological variance of 70 in

regime I and 29 in regime II, though Figs. 1c and 2c show

that this variability is unevenly distributed over the physical

domain at any given instant.

3 Variational data assimilation with

superparameterization

The primary difficulty in developing a data assimilation

framework for an SP model is that observations of the true

system include contributions from large and small scales, and

it is necessary to relate the observations to the large and small

scale variables of the SP model. GLM14 provided a frame-

work for relating observations to SP model variables, and we

improve on this framework below.

Let the large scale variables of the SP simulation be de-

noted u (the overbar does not denote a statistical mean), and

let the small scale variables be denoted ũ. In the context of

the new Lorenz-’96 model, u=X and ũ={Yj,k −Xk}j,k . In

most SP applications there is a set of small scale variables at

every point of the large scale computational grid. The small

scale variables exist on local periodic domains so that the

small scale variables at each coarse grid point are discon-

nected from those at surrounding coarse grid points, and the

small scale variables have zero average across the periodic

directions. Each location in the small scale periodic domains

does not correspond to a different location in the real phys-

ical domain. Instead, all points in a given periodic domain

are best thought of as existing at one physical location: the

associated coarse grid point.

In GLM14, observations are related to the SP model vari-

ables using the following observation model

v =H (L(u+u′))+ ε, (10)

whereH is the observation operator and ε is a vector of zero-

mean normal random variables associated with observation

error. The vector u′ has the same size as u, and models the

small scale contribution to physical variables at the coarse

grid points; i.e., u=u+u′ is the vector of real physical vari-

ables at the coarse model grid points. The physical variables

u are interpolated to the location of the observations by L.

The vector u′ is not the same as the small scale SP variables

ũ. Instead, the mean and covariance of u′ are computed from

the statistics of the small scale SP variables ũ. Although the

true small scale variables u′ can in principle have nonzero

statistical mean, the small scale SP variables ũ always have

zero mean because their average over the local periodic do-

mains is always zero by definition. For example, in the con-

text of the new Lorenz-’96 model the GLM14 version of the

vector u′ has length K , has zero mean, and has a diagonal

covariance with entries

Var
[
u′k
]
=

1

J − 1

J∑
j=1

(
Yj,k −Xk

)2
. (11)

As noted in GLM14, it is unrealistic to use the same in-

terpolation operator for both the large and small scale vari-

ables because it assumes that the small scale variables vary

smoothly between the coarse grid points, whereas the small

scale variables should by definition vary over shorter dis-

tances. (Observations in GLM14 were taken only on the

coarse grid points, avoiding the issue.) Instead of specify-

ing an alternative interpolation operator for the small scales,

we update the framework by altering the definition of u′ to

include small scale variables only at the points where obser-

vations are taken. We also assume that the statistics of the

small scale variables vary on large scales and can therefore
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be smoothly interpolated from the coarse grid points, where

small scale SP statistics are available, to the locations of the

observations.

Let P denote the number of different physical locations

where observations are available (for simplicity of exposi-

tion, we assume that there is only one observation per lo-

cation, i.e., v ∈RP ). The updated observation model for the

pth location is

vp =Hp

(
Lp(u)+u

′
p

)
+ εp, (12)

where Lp interpolates the large scale model variables u to the

observation location and εp is a zero-mean Gaussian random

variable. There is thus one vector u′p of small scale variables

per observation location. The updated observation model for

all P observations can be written in vector form as

v =H (L(u)+u′)+ ε, (13)

where u′ is no longer defined as in GLM14, but according to

the discussion above.

The covariance of the small scale variables P′ is com-

puted from the small scale variables of the SP model, and

thus changes from one assimilation cycle to the next. Specif-

ically, it is first assumed that the small scale variables at dif-

ferent observation locations are uncorrelated from each other

so that one needs only compute the covariance matrices P′p of

the u′p variables. This assumption is reasonable as long as the

observations are taken at locations reasonably well separated

compared to the correlation length of the small scale vari-

ables. (The framework could be updated for situations where

the observations are closer than this, e.g., by using spatial

correlation information for the small scale variables com-

puted from the SP simulation, but this is beyond the scope

of the present investigation.) To compute P′p we begin by

computing auxiliary small scale sample covariance matrices

P̃k using the small scale SP variables ũ at each coarse grid

point. Let {̃uk,j }
J
j=1 be the small scale SP variables located

in a periodic domain at the kth coarse grid point, where there

are J grid points in the periodic embedded domain. Then, re-

calling that their average over J is zero, the auxiliary small

scale sample covariance matrix is

P̃k =
1

J − 1

J∑
j=1

ũj,kũ
T
j,k, (14)

where the superscript T denotes a vector transpose. It is typ-

ically the case that J is large enough that P̃k is full rank,

and we do not consider exceptions here. In the context of

the new Lorenz-’96 model the auxiliary small scale sample

covariances are given by Eq. (11). Finally, the small scale

covariance matrices at the observation locations P′p are ob-

tained by interpolating the elements of the matrices P̃k from

the coarse grid to the locations of the observations, which

assumes that the small scale statistics vary smoothly on the

large scale. The interpolation method used to interpolate the

small scale covariance matrices need not be the same as L,

and should have positive coefficients in order to ensure that

the small scale covariance matrices remain positive definite.

(It may not be necessary to compute sample covariance ma-

trices P̃k at every coarse grid point; one only needs to com-

pute them at points needed in the interpolation.) For compar-

ison, in GLM14 the covariance of the small scale variables P′

is the same size as the large scale background covariance B,

and consists of the auxiliary small scale sample covariance

matrices P̃k arranged in block-diagonal form. When obser-

vations are taken at every coarse grid location the GLM14

formulation is equivalent to the new one.

To complete the specification of the 3D-Var framework we

specify a prior joint distribution for u and u′ with mean

E[u] = µ, E[u′] = 0 (15)

and covariance[
B 0

0 P′

]
. (16)

As typical in a 3D-Var setting, the background covariance

matrix B for the large scale variables is independent of time,

and the prior mean for the large scales is given by a single

forecast of the large scale part of the SP model. The small

scale variable u′ is assumed to be uncorrelated with the large

scale variable. In practice, the large and small scale variables

are certainly not independent, but as shown in GLM14 the

assumption that they are uncorrelated is reasonable within

the context of an SP model where the small scale variables

have zero mean. To wit, the joint probability distribution of

large and small scale variables can be factored into the large

scale marginal and the small scale conditional distributions

p(u, u′)=pM(u)pC(u
′
|u). The cross-covariance between

large and small scale variables is∫∫
(u−µ)u′

T
pM(u)pC(u

′
|u)dudu′

=

∫
(u−µ)pM(u)

[∫
u′
T
pC(u

′
|u)du′

]
du= 0, (17)

where the term in square brackets is zero because the small

scale variables are assumed to have zero mean regardless of

the state of the large scale variables.

Having thus specified the observation model and prior

mean and covariance, the 3D-Var analysis estimate of the

system state minimizes the following objective function (Ta-

lagrand, 2010):

ϒ(u,u′)= (u−µ)TB
−1
(u−µ)+u′

T
P′
−1
u′

+ (v−H (L(u)+u′))TR−1(v−H (L(u)+u′)), (18)

where R is the covariance matrix of the observation error

vector ε.
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When the observation operator is linear, H =H, the anal-

ysis can be computed from the Kalman filter formulas (Tala-

grand, 2010), which in this case gives

ua
= µ+K(v−HLµ), (19)

K= B(HL)T
(
HLB(HL)T +HP′HT

+R
)−1

, (20)

u′
a
=K′(v−HLµ), (21)

K′ = P′HT
(
HLB(HL)T +HP′HT

+R
)−1

, (22)

where the superscript “a” denotes the analysis estimate. A

key feature of these formulas is that the large scale and small

scale estimates can be computed independently. In particular,

the large scale estimate can also be computed as the mini-

mizer of the following objective function:

ϒ(u)= (u−µ)TB
−1
(u−µ)

+ (v−HLu)T
(
HP′HT

+R
)−1

(v−HLu). (23)

In cases where the small scale estimate is not used and the ob-

servation operator is linear, the small scale estimate does not

need to be computed. It can be seen from Eqs. (20) and (23)

that the observed small scale covariance matrix HP′HT acts

as a time-varying estimate of the representation error since it

inflates the measurement error covariance R.

In GLM14 the small scale covariance matrix P′ is defined

differently (as described above) and the small scale vector u′

is the same size as the large scale vector u. In the GLM14

formulation the final term in the objective function Eq. (18)

is replaced by

(v−H (L(u+u′)))TR−1(v−H (L(u+u′))). (24)

For linear observations the GLM14 versions of the Kalman

filter formulas are

ua
= µ+K(v−HLµ) (25)

K= B(HL)T
(
HL(B+P′)(HL)T +R

)−1

(26)

u′
a
=K′(v−HLµ) (27)

K′ = P′(HL)T
(
HL(B+P′)(HL)T +R

)−1

. (28)

In the new approach there is one set of small scale variables

for each location where observations are available, whereas

in GLM14 there are small scale variables at each coarse grid

point. In global atmosphere and climate models there are

typically fewer observations than coarse grid points; when

the observation operator is nonlinear the new formulation is

more efficient because the objective function has fewer de-

grees of freedom. Another key difference is in the assump-

tions that go into the specification of the small scale back-

ground covariance: in GLM14 the small scale variables are

tacitly assumed to vary smoothly over the physical domain,

since they are smoothly interpolated between coarse grid

points, whereas in the present approach only the small scale

covariance is assumed to vary smoothly over the domain.

4 Assimilation experiments

In this section we describe data assimilation experiments in

both regimes of the test model using the 3D-Var framework

from Sect. 3.

Observations are taken at P =MK equispaced points

with M = 1, 2, and 4; specifically, observations are

taken at ip = 1+pJ/M for p= 1, . . . , P . Observations

are either linear, with vp =Yip + εp, or nonlinear, with

vp = (Yip + 30)2/50+ εp. In both cases the observation er-

rors εp are iid Gaussians with zero mean and variance 0.1.

Observations are assimilated every1t time units. In regime I

we test 1t = 0.2 and 0.6; for comparison the decorrela-

tion times of the small scale and large scale variables in

this regime are 0.2 and 0.84. In regime II we test 1t = 0.2

and 0.4, which are close to the decorrelation times of the

small scale and large scale variables, respectively.

Specification of the background covariance matrix is a cru-

cial aspect of any 3D-Var assimilation system. We consider

the simplest possible estimate B= σ 2 IK where IK is the

K×K identity matrix and σ 2 is a tunable parameter. Assimi-

lation experiments are run over a range of σ 2 and the optimal

value is chosen based on rms (root mean square) errors; the

results are very weakly sensitive to σ 2 as long as it is within a

factor of 2 of the diagnosed forecast error variance. Since our

observing system includes at least one observation for every

Xk variable, it is less important to build a background covari-

ance matrix with correlations between the Xk variables.

A single assimilation experiment consists of 1000 cycles,

where the SP variables for the first forecast are initialized

directly from the true model variables. Although the assim-

ilation system provides estimates of the small scale part of

the true system at the location of the observations, this infor-

mation is far from sufficient to provide an estimate of the full

state Y of the true system. We view the 3D-Var assimilation

as primarily aimed at estimating the large scale model vari-

ables Xk , and error statistics are tracked only for the large

scale variables. We track two performance metrics for the

large scale variables, the time averaged rms error

rms error= |X−XSP
|2 (29)

and the time averaged pattern correlation

Pattern correlation=
XTXSP

|X|2|X
SP
|2

(30)

both for the forecast and for the analysis.

As a point of comparison for the performance of the fore-

cast in the assimilation experiments, we consider climatolog-

ical values of rms error and pattern correlation defined using
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Table 1. Results of the assimilation experiments for regime I. There

are P =MK equispaced observations, assimilated at time intervals

of1t , and σ 2 is the amplitude of the background covariance matrix.

For comparison, the climatological rms error and pattern correlation

are 5.6 and 0.57.

1t M Observation σ 2 rms error Smoothed Pattern

type observation correlation

error

0.2 1 Linear 15 4.9→ 4.3 8.2 0.73→ 0.79

0.2 1 Nonlinear 20 4.7→ 4.1 8.1 0.74→ 0.80

0.2 2 Linear 10 4.1→ 3.4 5.7 0.81→ 0.87

0.2 2 Nonlinear 20 4.2→ 3.4 5.7 0.80→ 0.87

0.2 4 Linear 10 3.4→ 2.6 4.1 0.87→ 0.92

0.2 4 Nonlinear 15 3.8→ 2.8 4.0 0.83→ 0.91

0.6 1 Linear 35 6.1→ 5.1 8.2 0.60→ 0.72

0.6 1 Nonlinear 40 5.6→ 4.8 8.2 0.63→ 0.74

0.6 2 Linear 30 5.5→ 4.2 5.7 0.66→ 0.82

0.6 2 Nonlinear 30 5.2→ 4.0 5.7 0.68→ 0.82

0.6 4 Linear 25 5.0→ 3.3 4.1 0.72→ 0.89

0.6 4 Nonlinear 30 4.8→ 3.2 4.0 0.73→ 0.89

the uniform climatological mean value of Xk as a prediction:

Xk = 3.8 in regime I and Xk = 3.6 in regime II. The clima-

tological rms error is simply the square root of the climato-

logical variance: 5.6 in regime I and 5.7 in regime II. The

climatological pattern correlation is the time averaged pat-

tern correlation between Xk and its uniform climatological

mean value: the climatological pattern correlation is 0.57 in

regime I and 0.53 in regime II. If the forecast has a larger

rms error or smaller pattern correlation than the climatologi-

cal values, then the forecast is of very limited utility.

As a point of comparison for the performance of the

analysis estimate in the assimilation experiments we take

a “smoothed observation” estimate that is obtained by pro-

jecting the observations onto the largest K Fourier modes.

For example, when M = 1 there are K observations and the

“smoothed observation” estimate of the Xk variables is sim-

ply Xk ≈ vp for the linear case and Xk ≈
√

50vp − 30 for

the nonlinear case. The rms errors in the smoothed obser-

vation estimate are tracked over the course of each assimi-

lation experiment, rather than computing climatological val-

ues. The 3D-Var should at a minimum perform better than the

smoothed observations. The results for both regimes are pre-

sented in Tables 1 and 2 in the format Forecast→Analysis. In

all cases the errors decrease as M increases, and the analysis

significantly improves over the forecast.

We also compare to the performance of an ensemble

adjustment Kalman filter using the true system dynamics.

These experiments and their results are described in Section

“Comparison to EAKF”.

The large scale dynamics are more predictable in regime I

than in regime II, but the small scale variance is larger as

well, making it harder to obtain an accurate estimate of the

large scales. With a short observation time1t = 0.2, the fore-

cast and analysis for linear and nonlinear observations both

have rms errors smaller than both the climatological error

Table 2. Results of the assimilation experiments for regime II.

There are P =MK equispaced observations, assimilated at time in-

tervals of1t , and σ 2 is the amplitude of the background covariance

matrix. For comparison, the climatological rms error and pattern

correlation are 5.7 and 0.53.

1t M Observation σ 2 rms error Smoothed Pattern

type observation correlation

error

0.2 1 Linear 50 5.2→ 3.8 5.5 0.66→ 0.83

0.2 1 Nonlinear 30 5.2→ 3.8 5.5 0.66→ 0.83

0.2 2 Linear 30 4.8→ 3.0 3.8 0.70→ 0.89

0.2 2 Nonlinear 30 4.9→ 3.1 3.8 0.70→ 0.89

0.2 4 Linear 15 4.6→ 2.4 2.7 0.73→ 0.93

0.2 4 Nonlinear 30 4.6→ 2.4 2.7 0.74→ 0.94

0.4 1 Linear 40 6.2→ 4.2 5.5 0.53→ 0.79

0.4 1 Nonlinear 50 6.1→ 4.2 5.5 0.53→ 0.80

0.4 2 Linear 40 5.9→ 3.3 3.8 0.57→ 0.87

0.4 2 Nonlinear 50 5.9→ 3.4 3.8 0.56→ 0.87

0.4 4 Linear 40 5.7→ 2.6 2.7 0.59→ 0.92

0.4 4 Nonlinear 50 5.8→ 2.5 2.7 0.59→ 0.93

of 5.6 and the error in the smoothed observation estimate.

The nonlinear observations generate slightly more accurate

results than the linear observations when M = 1, and the lin-

ear observations generate slightly more accurate results for

M = 4, but overall the results are similar. With a longer ob-

servation time 1t = 0.6 the results are, naturally, less accu-

rate. In every case the analysis is more accurate than both

the climatological error and the smoothed observations, but

the forecasts are more accurate than the climatological mean

only with M = 4. With M = 1 and 2, the rms forecast errors

are worse than the climatological error, but the forecast pat-

tern correlations are still a bit better than the climatological

pattern correlation. As with the shorter observation time, the

results are more accurate with the nonlinear observations.

In regime II the results with the linear and nonlinear obser-

vations are very similar in all cases. With a short observation

time 1t = 0.2, the forecast is always more accurate than the

climatological mean, and the analysis is always more accu-

rate than the smoothed observations. With a longer observa-

tion time 1t = 0.4 the forecasts are no more accurate than

climatology, but the analysis is still more accurate than the

smoothed observations, though at M = 4 the analysis is only

slightly more accurate.

Comparison to EAKF

To put the foregoing results into perspective we compare to

the results of an ensemble adjustment Kalman filter (EAKF;

Anderson, 2001) using an ensemble of 100 simulations of

the true, non-SP model dynamics. The experiments were

run with relatively frequent (1t = 0.2), relatively plentiful

(M = 4), linear observations in an effort to obtain the best

possible results. Experiments were run with multiplicative

covariance inflation factors from 0 to 20 % and covariance

localization radii of two, four, and six grid points (Gaspari
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and Cohn, 1999), and optimal results were obtained with 5 %

inflation and a localization radius of four grid points.

In regime I the rms forecast errors of the Xk variables

were 5.1, decreasing to 4.6 after the analysis; the rms forecast

pattern correlation was 0.61, improving to 0.69 after the anal-

ysis. In regime II the rms forecast errors of the Xk variables

were 5.9, decreasing to 5.6 after the analysis; the rms fore-

cast pattern correlation was 0.53, and remained essentially

unchanged at 0.52 after the analysis.

In both regimes the EAKF estimates the large scale part

of the solution very poorly, much worse than the SP 3D-Var.

This poor performance is presumably associated with the fact

that the EAKF is attempting to estimate the full system state

Y , whereas the SP 3D-Var is only estimating the large scale

part. From the point of view of the EAKF the observations

are very sparse, since there is only one observation for every

32 variables, whereas from the point of view of the SP 3D-

Var there are four observations for every large scale Xk vari-

able. The significant improvement in both cost and accuracy

of using the SP 3D-Var instead of a perfect-model ensemble

Kalman filter underscores the utility of the present approach,

though it bears noting that one should be very hesitant to ex-

trapolate results such as these to the far more complex setting

of SP atmosphere models. Furthermore, whether or not SP

3D-Var will be more accurate than a state of the art ensemble

Kalman filter in an atmospheric model context is somewhat

beside the point since the goal here is to provide a practical

framework for data assimilation with SP models where no

such framework currently exists.

5 Conclusions

Superparameterization (SP) is a multiscale computational

approach that has been successfully applied to modeling at-

mospheric dynamics, and that shows promise for more gen-

eral applications (Tao et al., 2009; Randall et al., 2013; Ma-

jda and Grooms, 2014). Grooms et al. (2014) have devel-

oped an ensemble Kalman filter framework for use with SP.

However, the standard approach to SP in global atmosphere

and climate models, where small scale nonlinear dynamics

are simulated on an array of periodic domains embedded in

the computational grid of a large scale model, is too com-

putationally demanding for use in an ensemble framework.

As a result, there is at present no practical framework for

data assimilation with SP models. We here develop a 3D-Var

variational data assimilation framework for SP that builds

on and modifies the framework of GLM14. The main up-

date to the GLM14 framework, in addition to using a vari-

ational as opposed to ensemble Kalman filter setting, is that

small scale estimates are computed at locations where ob-

servations are taken, rather than at every point of the large

scale model’s computational grid. The computational costs

of the new framework are such that it could be used with

computationally demanding global atmosphere and climate

SP models.

The data assimilation framework is demonstrated in a new

system of ordinary differential equations based on the two-

scale Lorenz-’96 model (Lorenz, 1996, 2006). Unlike the

two-scale Lorenz-’96 model the new model has only one

set of variables, Yi , and these variables have large and small

scale parts. An SP approximation to the new system is devel-

oped, which is perhaps the simplest idealized model of SP.

The new data assimilation framework is tested in two regimes

of the new model, with both linear and nonlinear observation

operators. In regime I the large scale dynamics consist of a

weakly chaotic wave train, with relatively strong small scale

variability superposed. In regime II the large scale dynam-

ics are more strongly chaotic, and there is less small scale

variability. In both regimes the data assimilation performs as

expected (and better than an ensemble Kalman filter using

100 simulations of the true dynamics), with increased accu-

racy as the number of observations increases.

Our work lays a foundation for 3D-Var data assimilation

with existing SP models. In order to implement our frame-

work with an SP atmosphere or climate model, it would be

necessary to specify an appropriate background covariance

matrix for the large scale model, but this should be straight-

forward given the extensive use of the 3D-Var approach in

atmosphere and ocean data assimilation (e.g., Kalnay, 2002;

Kleist et al., 2009). In addition, the new framework removes

one of the difficulties associated with development of a 3D-

Var framework for large scale models: the small scale sim-

ulations in the multiscale SP computation provide direct in-

formation on the small scale statistics, obviating, or at least

simplifying, the need to develop models of representation er-

ror.
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