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Abstract. A new type of ensemble Kalman filter is devel-

oped, which is based on replacing the sample covariance

in the analysis step by its diagonal in a spectral basis. It is

proved that this technique improves the approximation of

the covariance when the covariance itself is diagonal in the

spectral basis, as is the case, e.g., for a second-order station-

ary random field and the Fourier basis. The method is ex-

tended by wavelets to the case when the state variables are

random fields which are not spatially homogeneous. Effi-

cient implementations by the fast Fourier transform (FFT)

and discrete wavelet transform (DWT) are presented for sev-

eral types of observations, including high-dimensional data

given on a part of the domain, such as radar and satellite

images. Computational experiments confirm that the method

performs well on the Lorenz 96 problem and the shallow wa-

ter equations with very small ensembles and over multiple

analysis cycles.

1 Introduction

Data assimilation consists of incorporating new data peri-

odically into computations in progress, which is of interest

in many fields, including weather forecasting (e.g., Kalnay,

2003; Lahoz et al., 2010). One data assimilation method is

filtering (e.g., Anderson and Moore, 1979), which is a se-

quential Bayesian estimation of the state at a given time given

the data received up to that time. The probability distribu-

tion of the system state is advanced in time by a computa-

tional model, and modified using the Bayes theorem. In the

methods considered here, data is assimilated in discrete time

steps, called analysis cycles, and the probability distribution

of the state is represented by an ensemble. The analysis is

based on the state covariance, thus making a tacit assump-

tion that the state probability distribution is at least close

to Gaussian. When the state covariance is given externally,

Bayesian estimation becomes the classical optimal statistical

interpolation (OSI). The Kalman filter (KF) uses the same

computation as OSI in the analysis, but it evolves the covari-

ance matrix of the state in time along with the model state.

Since the covariance matrix can be large, the KF is not suit-

able for high-dimensional systems. The ensemble Kalman

filter (EnKF) (Evensen, 2009) replaces the state covariance

by the sample covariance computed from an ensemble of

simulations, which represent the state probability distribu-

tion. It can be proved that the EnKF converges to the KF

in the large ensemble limit (Kwiatkowski and Mandel, 2015;

Le Gland et al., 2011; Mandel et al., 2011) in the linear and

Gaussian case, but an acceptable approximation may require

hundreds of ensemble members (Evensen, 2009), because of

spurious long-distance correlations in the sample covariance

due to its low rank. Localization techniques (e.g., Ander-

son, 2001; Furrer and Bengtsson, 2007; Hunt et al., 2007)

essentially suppress long-distance covariance terms (Sakov

and Bertino, 2011), which improves EnKF performance for

small ensembles.

The fast Fourier transform (FFT) EnKF (Mandel et al.,

2010a, b) was proposed as an alternative approach to lo-

calization, based on replacing the sample covariance in the

EnKF by its diagonal in the Fourier space. This approach

is motivated by the fact that a random field in cartesian ge-

ometry is second-order stationary (i.e., the covariance be-

tween the values at two points depends only on their distance

vector) if and only if its covariance in the Fourier space is

diagonal (e.g., Pannekoucke et al., 2007). On a sphere, an

isotropic random field has diagonal covariance in the basis

of spherical harmonics (Boer, 1983), so similar algorithms

can be developed there as well. However, the stationarity as-
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sumption does not allow the covariance to vary spatially. For

this reason, the FFT EnKF was extended to wavelet EnKF

(Beezley et al., 2011). The use of wavelets results in an au-

tomatic localization, which varies in space adaptively. For

wavelets, the effect of the diagonal spectral model is equiva-

lent to a weighted spatial averaging of local covariance func-

tions (Pannekoucke et al., 2007). Diagonal matrices are in-

expensive to manipulate computationally, but implementing

the multivariate case and general observation functions is not

straightforward.

Spectral diagonal covariance models and their estimation

from an ensemble of realizations are not new. Diagonal spec-

tral modeling and, more generally, sparse spectral covariance

modeling, have been used for the background covariance in

data assimilation in meteorology for some time. The opti-

mal statistical interpolation system from Parrish and Derber

(1992) was based on a diagonal covariance model in spher-

ical harmonics, which were already used as horizontal ba-

sis functions in the numerical weather prediction code with

a change of state variables into physically balanced analy-

sis variables, and it has been used in operational weather

forecasting for a long time. Estimates of background co-

variance from an ensemble, called flow-dependent covari-

ance, in combinations with spectral covariance models have

been used in variational data assimilation (e.g., Buehner,

2005; Buehner and Charron, 2007; Berre et al., 2007; Varella

et al., 2011), leading to hybrid EnKF–3DVAR (3-D varia-

tional) methods. Another hybrid formulation in EnKF was

proposed in Hamill and Snyder (2000, Eq. 4), who pro-

posed a linear combination of sample covariance, different

in every analysis cycle, and background spectral diagonal

covariance from Parrish and Derber (1992), which does not

change over analysis cycles. The ECMWF 3DVAR system

(Courtier et al., 1998) also used diagonal covariance in spher-

ical harmonics for the background covariance. A diagonal

model in the Fourier space for homogeneous 2-D error fields,

with physically balanced cross-covariances, was proposed in

Berre (2000). The Fourier diagonalization approach was ex-

tended by Pannekoucke et al. (2007) to sparse representation

of the background covariance by thresholding wavelet coef-

ficients, and into a combined spatial and spectral localization

by Buehner and Charron (2007). The balanced update and

localization in the EnKF using the stream function-velocity

potential representation were studied in Kepert (2009).

Further developments in the history of background covari-

ance modeling in variational algorithms include construction

of non-separable formulation (Courtier et al., 1998; Fisher

and Andersson, 2001; Pannekoucke, 2009), representation of

balances between variables in order to obtain a more realistic

multivariate formulation (Derber and Bouttier, 1999; Fisher,

2003; Weaver et al., 2005), representation of heterogene-

ity using a physically/spectrally localized formulation (non-

separable wavelet formulation (Deckmyn and Berre, 2005;

Fisher and Andersson, 2001), separable formulation based

on diffusion operator (Weaver and Courtier, 2001) or recur-

sive filters (Purser et al., 2003), and a non-separable formu-

lation based on hybridization of diffusion and wavelets (Pan-

nekoucke, 2009). Formulations such as the diffusion operator

or the recursive filter are related to the diagonal assumption

here, they involve covariance models with a relatively small

number of parameters and thus free of sampling noise but es-

timated from an ensemble directly (Pannekoucke and Mas-

sart, 2008; Michel, 2013; Pannekoucke et al., 2014). Simi-

lar filtering strategies can be employed to improve the esti-

mation and the design of covariance formulations using re-

sults on the estimation of variances and length scales (Berre

et al., 2007; Raynaud et al., 2009; Raynaud and Pannek-

oucke, 2013; Ménétrier et al., 2015). The formulation of the

background error covariance model using the diagonal as-

sumption and a product of linear operator (such as the dis-

crete Fourier or wavelet transform here) is widely used in

variational literature to build covariance models in high di-

mension (e.g., Courtier et al., 1998; Fisher and Andersson,

2001; Weaver and Courtier, 2001).

The idea of using a covariance model to benefit sample

noise reduction is known; however, as far as we know no ref-

erence has been published to document the real advantage

of this method in improvements to the performance of the

EnKF. The paper provides a preliminary test, within an aca-

demic setting, of the techniques of employing parametric co-

variance in the EnKF, while the existing literature is focused

on the opposite direction, the use of ensembles to provide es-

timates for the variational framework, known as “hybrid for-

mulation”. Specifically, the use of spectral covariance mod-

eling in each EnKF analysis cycle to reduce the ensemble

size seems to be new. The main reason could be that it re-

quires building a covariance matrix parameterization, which

represents a real cost in terms of technology investment for

numerical weather prediction codes.

While modeling background covariances typically uses

multiple sources including historical data, the EnKF builds

the covariance in every analysis cycle from the ensemble it-

self. In this paper, we prove that replacing the sample co-

variance by its spectral diagonal improves the approximation

when the covariance itself is diagonal in the spectral space,

as is the case, e.g., when the state is a second-order stationary

random field and a Fourier basis is used. The result, however,

is general and it applies to an arbitrary orthogonal basis, in-

cluding wavelets. We also develop computationally efficient

spectral EnKF algorithms, which take advantage of the diag-

onal form of the covariance, in the multivariate case and for

several important classes of observations. We demonstrate

the methods on computational examples with the Lorenz 96

system and shallow water equations, which show that good

performance can be achieved with very small ensembles.
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2 Notation

Vectors in Rn or Cn are typeset as u and understood to be

columns. Random vectors are typeset as X. The entry i of

X is denoted by (X)i or xi . Matrices (random or determin-

istic) are typeset as A, and A∗ is the transpose or conjugate

transpose in the complex case. The entry i, j of matrix A is

denoted by (A)i,j or ai,j , and A= [a1, . . . , an] is the writing

of a matrix as a collection of columns. Nonlinear operators

are typeset asM. The mean value is denoted by E[·], and

Var is the variance. N (0, 1) is the normal (Gaussian) distri-

bution with zero mean and unit variance, and N(m, C) is the

multivariate normal distribution with meanm and covariance

C. The Euclidean norm of a vector is |u| = (
n∑
i=1

|ui |
2)1/2. The

Frobenius norm of a matrix, also known as Hilbert–Schmidt

norm, is |A|F= (
m∑
i=1

n∑
j=1

|ai,j |
2)1/2.

3 Kalman filter and ensemble Kalman filter

The state of the system at time t is described by a random

vector Xt of length n. The system evolution between two

times t1 and t2 is given by a functionM(·, t1, t2), so that

Xf
t2
=M

(
Xa
t1
, t1, t2

)
. (1)

The goal of the KF (Kalman, 1960) is to correct the forecast

state of the system Xf
t to obtain the analysis estimate Xa

t of

the true state Xt , given noisy observations Y t =Ht Xt + εt ,

where Ht is an observation operator, i.e., a mapping from

state space to a data space, and εt ∼N(0, Rt ). When the dis-

tributions of the state Xt and the data error are Gaussian, the

analysis satisfies

Xa
t =X

f
t −Kt

(
HtX

f
t −Y t

)
,

Kt = CtH
∗
t

(
HtCtH

∗
t +Rt

)−1
, (2)

where Ct is the covariance of the forecastXf
t , and Kt is called

the Kalman gain. In the KF, the state is represented by its

mean and covariance, and the mean is transformed also by

Eqs. (1) and (2). In the rest of the paper, we will drop the

time index t and the superscript f, unless there is a danger of

confusion.

In the EnKF, the analysis formulas (Eqs. 1, 2) are applied

to each ensemble member, with the covariance replaced by

the sample covariance from the ensemble. The resulting en-

semble, however, would underestimate the analysis covari-

ance, which is corrected by a data perturbation by sampling

from the data error distribution (Burgers et al., 1998). De-

note by X1, . . . , XN the forecast ensemble, created either

by a perturbation of a background state or by evolving each

analysis ensemble member from the previous time step inde-

pendently by Eq. (1). Then, the analysis ensemble members

are

Xa,j
=Xj −CNH∗

(
HCNH∗+R

)−1(
HXj −Y j

)
, (3)

where the sample covariance matrix is

CN =
1

N − 1

N∑
j=1

(
Xj −X

)(
Xj −X

)∗
,

X =
1

N

N∑
j=1

Xj , (4)

and Y j =Y + τ j are the perturbed observations, with

τ j ∼N(0, R) independent.

The advantage of the EnKF update (Eqs. 3, 4) is that it

can be implemented efficiently without forming the sample

covariance matrix CN explicitly (e.g., Mandel et al., 2009,

Eq. 15). On the other hand, the rank of the matrix CN is at

most N − 1, while the number of significant modes can be

higher. In the usual case, whenN is small, the low rank of the

approximation CN of the true forecast covariance C causes

spurious long-range correlations, which are the biggest draw-

back of the EnKF.

4 Spectral diagonal EnKF

Let F be an orthonormal transformation matrix, which trans-

forms each ensemble member to spectral space, and de-

note each transformed ensemble member by the additional

subscript F, X
j
F=FXj , j = 1, . . . , N . Since the transfor-

mation is orthonormal, the inverse transformation is F∗, so

F∗X
j
F=X

j for each j = 1, . . . , N . The columns of the in-

verse transform matrix F∗ are the spectral basis elements

u1, . . . , un, i.e., F= [u1, . . . , un]
∗. We will also denote the

sample covariance of the transformed ensemble with the ad-

ditional subscript F,

CNF =
1

N − 1

N∑
j=1

(
X
j
F−XF

)(
X
j
F−XF

)∗
= FCNF∗,

XF =
1

N

N∑
j=1

X
j
F. (5)

The idea of the spectral diagonal Kalman filter is to replace

the sample covariance in the analysis formula (Eq. 3) by only

the diagonal elements of sample covariance in spectral space:

DNF = CNF ◦ I=


c1,1 0 · · · 0

0 c2,2

...
...

. . . 0

0 · · · 0 cn,n

 ,

ci,i =
1

N − 1

N∑
j=1

∣∣∣(XjF)
i
−
(
XF

)
i

∣∣∣2, (6)

where ◦ stands for the Schur product, i.e., element-wise mul-

tiplication. The entries ci,i are the sample variances, com-
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puted without forming the whole matrix CNF . The diagonal

model is transformed back to physical space as

DN = F∗DNF F, (7)

and the proposed analysis update is then

Xa,j
=Xj −DNH

(
HDNH∗+R

)−1(
HXj −Y j

)
. (8)

5 Error analysis

We will now compare the expected errors of the sample co-

variance and its spectral diagonal model (Eq. 7). The analysis

extends results for a sample covariance formula with known

zero mean (Furrer and Bengtsson, 2007; Mallat, 1998) by

taking into account the sample mean in Eq. (4). This exten-

sion is important because the mean of the ensemble mem-

bers is not known in practice and an estimate must be used

instead.

Assume that the ensemble members Xi ∼N(µ, C) are

i.i.d. (independent and identically distributed). (In the EnKF,

the ensemble members after the first analysis cycle are not

independent, because the sample covariance in the analysis

step ties them together, but they converge to independent ran-

dom vectors as the ensemble size N→∞ (Le Gland et al.,

2011; Mandel et al., 2011).)

Using Lemma 1 from the Appendix and the fact that the

Frobenius norm is invariant to orthogonal transformations,

we have in any case,

E
[
|C−CN |2F

]
= E

[∣∣∣CF−CNF

∣∣∣2
F

]
=

1

N − 1

n∑
i,j=1

(∣∣(CF)i,j
∣∣2+ (CF)i,i(CF)j,j

)
=

2

N − 1

n∑
i,j=1

∣∣(CF)i,j
∣∣2

+
1

N − 1

n∑
i,j=1
i 6=j

(CF)i,i(CF)j,j . (9)

The purpose of the spectral transformation is to bring the

covariance to a diagonal form CF=FCF∗, where F is or-

thogonal transformation. Specifically, the rows of the spec-

tral transformation matrix F∗ are orthonormal eigenvectors

of the covariance C. This is the situation, e.g., when the en-

semble members Xi are sampled from a second-order sta-

tionary random field on a rectangular mesh and the Fourier

basis is used. Then, using (CF)i,j = 0 for i 6= j , we get that

the expected error of the spectral diagonal model consists of

the diagonal terms in the frequency domain only:

E
[
|C−DN |2F

]
= E

[∣∣∣CF−CNF ◦ I

∣∣∣2
F

]
=

1

N − 1

n∑
i=1

(∣∣(CF)i,i
∣∣2+ (CF)i,i(CF)i,i

)
=

2

N − 1

n∑
i=1

∣∣(CF)i,i
∣∣2. (10)

Consequently,

E
[
|C−DN |2F

]
≤ E

[
|C−CN |2F

]
(11)

with equality only if (CF)i,i (CF)j,j = 0, for all i 6= j , i.e.,

only in the degenerate case when the covariance CF and thus

C have a rank of at most one.

To assess the improvement gained by the spectral diag-

onal model in Eq. (11), denote the eigenvalues of C by

λi = (CF)i,i , and without loss of generality assume that

0≤ λ1≤ λ2≤ ·· · ≤ λn. The error estimates (Eqs. 9, 10) can

be now written as

E
[
|C−CN |2F

]
=

2

N − 1

n∑
i=1

λ2
i +

1

N − 1

n∑
i,j=1
i 6=j

λiλj , (12)

and

E
[
|C−DN |2F

]
=

2

N − 1

n∑
i=1

λ2
i . (13)

Note that(
n∑
i=1

λi

)2

=

n∑
i,j=1

λiλj =

n∑
i,j=1,i 6=j

λiλj

+

n∑
i=1

λ2
i ≥

n∑
i=1

λ2
i , (14)

which shows that the error of the sample covariance depends

on the `1 norm of the eigenvalues sequence,

E
[
|C−CN |2F

]
=

1

N − 1

 n∑
k=1

λ2
k +

(
n∑
k=1

λk

)2


=
1

N − 1

(∣∣{λk}nk=1

∣∣2
`2 +

∣∣{λk}nk=1

∣∣2
`1

)
,

while the error of the spectral diagonal model depends only

on the `2 norm,

E
[
|C−DN |2F

]
=

2

N − 1

∣∣{λk}nk=1

∣∣2
`2 ,

which is weaker than the `1 norm as the state space dimen-

sion n→∞. The improvement depends on the rate of de-

cay of the eigenvalues as the index k→∞. Note that the
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eigenvalues of the covariance (if it exists) of a random ele-

ment in an infinitely dimensional Hilbert space must satisfy

the trace condition
∑
∞

k=1 λk <∞ (e.g., Da Prato, 2006). The

eigenvalues of the covariance in many physical systems obey

a power law, λk ≈ k
−α with α > 1 (e.g., Gaspari and Cohn,

1999). Suppose that λk = c k
−α and n→∞. Then,

∣∣{λk}nk=1

∣∣2
`2 →

∞∑
k=1

k−2α
≈

∞∫
1

x−2αdx =
1

2α− 1
,

∣∣{λk}nk=1

∣∣2
`1 →

∞∑
k=1

k−α ≈

∞∫
1

x−αdx =
1

α− 1
,

which gives the error ratio E[|C−DN |2F]/E[|C−CN |2F]

→ 0 as α→ 1+, i.e., when the eigenvalues decay slowly.

Other considerations of similar ratios can be found in Fur-

rer and Bengtsson (2007).

Several concluding remarks are in order. Furrer and

Bengtsson (2007) consider tapering to the diagonal in the

physical space, but diagonal covariance in the physical space

is never used in applications. The present method is EnKF

with diagonal model in a spectral domain, where it is rea-

sonable to expect that the covariance will be approximately

diagonal.

While the spectral diagonal formulation improves the ap-

proximation for small ensembles, the spectral diagonal does

not converge to the covariance as N→∞, unless the covari-

ance is diagonal in the spectral basis.

Equations (9) and (10), respectively Eqs. (12) and (13),

can be written in the form

E
[
|C−CN |2F

]
=

1

N − 1
Tr
(

C2
)
+

1

N − 1
(Tr(C))2, (15)

E
[
|C−DN |2F

]
=

2

N − 1
Tr
(

C2
)
, (16)

using the fact that the trace of a matrix is invariant to simi-

larity transformation. The comparison (Eq. 11) also follows

from Eqs. (15) and (16) by noting that Tr(C2)≤ (Tr(C))2 for

all positive semidefinite C, which can be seen, e.g., from

Eq. (14).

6 Spectral EnKF algorithms

We will show that the analysis step can be implemented very

efficiently in cases of practical interest. We drop the ensem-

ble members index in all analysis formulas to make them

more readable. Note that when using all the following for-

mulas, it is necessary to perturb the observations.

6.1 State consisting of only one gridded variable,

completely observed

Assume that the state consists of one gridded variable,

e.g.,X ∈Rn, and that we can observe the whole system state,

i.e., the observation function is the identity, H= I, and obser-

vations are Y ∈Rn. Assume also that the observation noise

covariance matrix is c I, where c > 0 is a constant. In this spe-

cial case we can do the whole update in the spectral space,

since it is possible to transform the innovation to the spectral

space, and the analysis step (Eq. 8) becomes

Xa
=X−F∗DNF

(
DNF + cI

)−1

F(X−Y ) .

Note that the matrices DNF and DNF + cI are diagonal, so

any operation with them, such as inversion or multiplica-

tion, is very cheap. The matrix F is never formed explicitly.

Rather, the multiplications of F and F∗ times a vector are im-

plemented by the FFT or discrete wavelet transform (DWT).

This is the base case of both the FFT EnKF (Mandel et al.,

2010a, b) and the wavelet EnKF (Beezley et al., 2011).

6.2 Multiple variables on the same grid, one variable

completely observed

In a typical model, such as numerical weather prediction, the

state consists usually of more than one variable. Assume the

state consists of m different variables all based on the same

grid of length n. Then, each variable can be transformed to

the spectral space independently, and we have the state vector

X ∈Rn·m and the transformation matrix in the block form

X =


X1

X2

...

Xm

 , F=


F̃ 0 · · · 0

0 F̃
...

...
. . . 0

0 · · · 0 F̃

 , (17)

where each block X1 is a vector of length n and F̃ is an n by

n transformation matrix.

Assume also that the whole state of the first variable X1

is observed and, again, that the covariance of observation er-

ror is c I. In this case, the observation operator is the one by

m block matrix of the form H= [I 0 · · · 0]. In the proposed

method, we approximate the cross-covariances between the

variables also by the diagonal of the sample covariance in

spectral space, DNF = [D
N
i,j ]

m
i,j=1, where Di,j is the matrix

containing only diagonal elements from the sample covari-

ance matrix between transformed variables F̃Xi and F̃Xj .

With this notation, the analysis step (Eq. 8) becomes

Xa
=

 Xa
1
...

Xa
m

=
 X1

...

Xm

−
 F̃∗DN1,1

...

F̃∗DNm,1


(

DN1,1+ cI
)−1

F̃(X1−Y ) . (18)

Note that again the matrix to be inverted is diagonal and full

rank, and the transformation F̃ is implemented by a call to

FFT or DWT, so the operations are computationally very ef-

ficient. A related method using interpolation and projection
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was proposed for the case when the model variables are de-

fined on non-matching grids (Beezley et al., 2011).

6.3 Multiple variables on the same grid, one variable

observed at a small number of points

This situation occurs, e.g., when assimilated observations are

from discrete stations. In this case, the observation matrix is

H= [H1 0 · · · 0], where H1 has a small number of rows, one

for each data point, and X and F are the same as in Eq. (17).

We substitute the diagonal spectral approximation into the

analysis step (Eq. 8) directly,

Xa
=

 X1

...

Xm

−
 F̃∗DN1,1

...

F̃∗DNm,1

 F̃
(

H1F̃∗DN1,1F̃H∗1+R
)−1

(H1X1−Y ) . (19)

The solution of a system of linear equations with the ma-

trix H1 F̃∗DN1,1 F̃H∗1+R in Eq. (19) does not present a prob-

lem, because its dimension is small by assumption, and F̃H∗1
is easy to compute explicitly by the action of FFT on the

columns of H∗1. Note that in this case, the data noise covari-

ance R may be arbitrary.

6.4 State consisting of more variables, one partly

observed

Consider the situation when the number of observation points

is too large for the method of Sect. 6.3 to be feasible but only

one variable on a part of the mesh is observed. The typical

example of this type may be radar images, which cover typ-

ically only a part of the domain of the numerical weather

prediction model.

The method will go through for any observed subset of en-

tries of the gridded variable X1 but the performance will vary.

The performance tends to be better when the observed and

unobserved entries of X1 fill two subdomains of the physi-

cal domain with a relatively small boundary between them.

A detailed investigation, however, is planned for elsewhere.

Suppose that observations (Y )j of the values of the first

variable (X1)j are available only for a subset of indices

j ∈M ⊂{1, . . . , n}. Augment the forecast state by an ad-

ditional variable X0. For j = 1, . . . , n, set (X0)j = (X1)j
if j ∈M , (X0)j = (Y )j = 0 if j 6∈M . We can now use the

analysis update (Eq. 18) with the augmented state X̃= (X0,

X1, . . . , Xm) and observation Ỹ = (Y , 0, . . . , 0), to get the

augmented analysis X̃
a
= (Xa

0, Xa
1, . . . , Xa

m) and drop Xa
0.

Note that the innovations to the original variables are prop-

agated through the spectral diagonal approximation of cross-

covariance between the original and augmented variables.

Since this covariance is not spatially homogeneous, a Fourier

basis will not be appropriate, and computational experiments

in Sect. 7 confirm that wavelets indeed perform better.

7 Computational experiments

In all experiments, we use the usual twin experiment ap-

proach. A run of the model from one set of initial condi-

tions is used to generate a sequence of states, which plays

the role of the truth. Data values were obtained by applying

the observation operator to the truth; the data perturbation

was done only for ensemble members within the assimila-

tion algorithm. A second set of initial conditions is used for

data assimilation and for a free run, with no data assimila-

tion, for comparison. The error of the free run should be an

upper bound on the error of a reasonable data assimilation

method.

We evaluate the filter by the root mean square error

(RMSE),

RMSE=

(
1

n

n∑
i=1

∣∣(X)i − (X)i∣∣2)1/2

,

where X is the ensemble mean, forecast or analysis, X is the

true state, and n is the number of the grid points xi . In the

case when the state consists of more than one variable, such

as in the shallow water equations, we evaluate the error of

each variable independently.

When the true state and the model in the KF evolve follow-

ing the same mapping (Eq. 1) and the mapping is linear, then

the estimate provided by the KF is unbiased and it minimizes

the RMSE over all possible gain matrices Kt in Eq. (2). This

statistical optimality of the RMSE motivates its use to evalu-

ate how well the data assimilation fulfills its overall purpose

to track the truth in the general case when the model is non-

linear and the KF is replaced by the EnKF, with the covari-

ance replaced by an approximation from an ensemble.

We evaluate the RMSE of the standard EnKF, marked

as EnKF in the legend of the figures, and the spectral di-

agonal EnKF with the discrete sine transform, discrete co-

sine transform, and the Coiflet 2,4 discrete wavelet transform

(Daubechies, 1992), marked as DST, DCT, and DWT, respec-

tively.

7.1 Lorenz 96

In the Lorenz 96 model (Lorenz, 2006), the state consists of

one variable Xt ∈RK , Xt = (x1, . . . , xK ), governed by the

differential equations

dxj

dt
= xj−1xj+1− xj−1xj−2− xj +F, j = 1, . . ., K,

where the values of xj−K and xj+K are defined to be equal

to xj for each j = 1, . . . , K , and F is a parameter.

Our experiments’ setup follows the one used in Lorenz and

Emanuel (1998). We set the parameter F = 8, which causes

the model to be strongly chaotic. The time step of the model

was set to 0.01 time units with assimilation every 0.05 time

units, which is equivalent to assimilation into a climatologi-

cal model every 6 h. The data covariance was diagonal, and
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the standard deviation of observation error was set to F/40.

The ensemble and the initial conditions for the truth were

generated by sampling from N(F/4, F 2/4), and spinup for

18 time units (equivalent to 90 days) was performed. Addi-

tionally, while the true state was advanced using the true val-

ues of F = 8, the ensemble members were advanced using

the value 0.95F in the Lorenz model.

The only difference from the experiment in Lorenz and

Emanuel (1998) was the dimension of the model, where we

used 256 instead of 40. We chose 256 because the dyadic

length of the state vector is required when using wavelet

transformation, because we wanted to test the proposed aug-

mented algorithm with a significant number of observations

and because we wanted to have a significant difference be-

tween ensemble size and state dimension. To test the chaotic

properties of this model we performed two independent sim-

ulations with very close initial conditions and measured the

difference in each time step between the states using maxi-

mum norm. Initial values for the first simulation were gener-

ated as i.i.d. random variables from N(F/4, F 2/4), and the

initial values for the second simulation were created by per-

turbing the first set of initial values with white noise with

variance of 0.0001. We performed this experiment for both

state dimensions, 40 and 256. The results (Fig. 1a) show that

the change of the state dimension does not affect the rate of

divergence of two initially close solutions. Figure 1b and c

show one solution of the Lorenz 96 model with state dimen-

sions 40 and 256, respectively, after 50 time units for illus-

tration of the chaotic character of the state.

In the case when the whole state is observed, spectral fil-

ters with ensemble size N = 4 (Fig. 2a) already decrease the

error significantly compared to a run with no assimilation,

while the standard EnKF actually increases the error. For

all filters, the error eventually decreases with the ensemble

size at the standard rate N−1/2; however, the spectral EnKF

shows the error decrease from the start, while the EnKF lags

until the ensemble size is comparable to the state dimension

and even then its RMSE is significantly higher (Fig. 2b).

Next, consider the case when only the first m points

of a grid are observed. In the legend, DCT-S and DWT-S

are the methods with the discrete cosine transform and the

Coiflet 2,4 discrete wavelet transform, respectively, with the

standard analysis update (Eq. 8), while DCT-A and DWT-

A use the augmented state methods from Sect. 6.4. Fig-

ure 3 shows that the spectral diagonal method decreases the

RMSE, while the standard EnKF is unstable. This observa-

tion is consistent with the result of Kelly et al. (2014), which

shows that, for a class of dynamical systems, the EnKF re-

mains within a bounded distance of truth if sufficiently large

covariance inflation is used and if the whole state is observed.

The augmented state method DWT-A with wavelet transfor-

mation gave almost the same analysis error as DCT-S, which

is using the spectral diagonal filter with the exact observation

matrix, while the cosine basis, which implies a homogeneous

random field, resulted in a much larger error (method DCT-

A). A similar behavior was seen with a smaller number of

observed points as well, but the error reduction in the spec-

tral diagonal EnKF was smaller (not shown).

7.2 Shallow water equations

The shallow water equations can serve as a simplified model

of atmospheric flow. The state Y = (h, u, v) consists of water

level height h and velocities u and v in the x and y direc-

tions, governed by the differential equations of conservation

of mass and momentum:

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0,

∂(hu)

∂t
+
∂

∂x

(
hu2
+

1

2
gh2

)
+
∂(huv)

∂y
= 0,

∂(hv)

∂t
+
∂(huv)

∂x
+
∂

∂y

(
hv2
+

1

2
gh2

)
= 0,

where g is gravity acceleration, with reflective boundary con-

ditions and without Coriolis force or viscosity. The equations

were discretized on a rectangular grid size of 64× 64 with a

horizontal distance between grid points of 150 km and ad-

vanced by the Lax–Wendroff method with the time step 1 s.

The initial values were water level h= 10 km, plus Gaussian

drop with height of 1 km, width of 32 nodes, in the center of

the domain, and u= v= 0. See Moler (2011, Chapter 18) for

details.

We have used two independent initial conditions, one used

for the truth and another for the ensemble and the free run.

The only difference was the location of the initial wave. Both

states were moved forward for 3 h. Then the ensemble was

created by adding random noise (with prescribed background

covariance). Then, all states were moved forward for another

3 h and assimilation starts 6 h after the model initialization.

All assimilation methods start with the same forecast in the

first assimilation cycle. The 2-D tensor products FFT and

DWT were used in the diagonal spectral EnKF. The obser-

vation error was assumed to have zero mean and variance of

1000 m2 in h and 1000 kg m s−1 in u and v.

The background covariance for initial ensemble perturba-

tion was estimated using samples taken every minute, from

time tstart= 3 h to time tend= 6 h, and modified by tapering

the sample covariance matrix CN as B=CN ◦ T, where the

tapering matrix T had the block structure

T=

 A 0 0

0 A 0

0 0 A

+ 0.9

 0 A A

A 0 A

A A 0

 ,
where the entry between nodes (ia , ja) and (ib, jb) is

(A)a,b= exp(−|ia − ib|) exp (−|ja − jb|). Note that matrix

T could be also rewritten using the Kronecker product as

T=K⊗ (M⊗M), where K is a 3× 3 square matrix with el-

ements (K)i,i = 1, (K)i,j = 0.9 if i 6= j and M is a 64× 64

square matrix with elements (M)i,j = exp (|i− j |). Since
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Figure 1. (a) Growth of the difference in the maximum norm | · |∞ of two initially close solutions of the Lorenz 96 model. The initial

states differ by white noise with variance of 10−4. The growth of the difference is shown for the state dimensions of 40 and for the state

dimension 256. (b) A solution of the Lorenz 96 model with state dimension 40 after 50 time units. (c) A solution of the Lorenz 96 model

with state dimension 256 after 50 time units.
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Figure 2. Mean RMSE from 10 realizations for the Lorenz 96 problem, the whole state observed (a) increasing analysis cycles with ensemble

size 4, state dimension 256 and (b) increasing ensemble size, analysis cycle 1, state dimension 64.

both matrices K and M are positive definite, matrix T is also

positive definite.

When the full state is observed, the spectral diagonal

method decreased the RMSE in all variables dramatically

(Fig. 4), unlike the standard EnKF. When only the water level

is observed, the RMSE in spectral diagonal EnKF decreases

less but is still much more than that in the standard EnKF

(Fig. 5).

8 Conclusions

A version of the ensemble Kalman filter was presented, based

on replacing the sample covariance by its diagonal in the

spectral space, which provides a simple, efficient, and au-

tomatic localization. We have demonstrated efficient imple-

mentations for several classes of observation operators and

data important in applications, including high-dimensional

data defined on a part of the domain, such as radar or satellite

images. The spectral diagonal was proved rigorously to give

a lower mean square error than the sample covariance. Com-

putational experiments with the Lorenz 96 problem and the
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Figure 4. RMSE of ensemble mean of one realization of three assimilation cycles. Full state was observed. The length of assimilation cycle

is 60 min, ensemble size 20. (a) Water height, (b) velocity in the x direction and (c) velocity in the y direction.

shallow water equations have shown that the analysis error

drops very fast for small ensembles, and the method is stable

over multiple analysis cycles. The paper provides a technique

for data assimilation which can work with minimal compu-

tational resources because an implementation needs only an

orthogonal transformation, such as the fast Fourier or discrete

wavelet transform, and manipulation of vectors and diagonal

matrices. Therefore, it should be of interest in applications.

The present method uses orthogonal transformation, but

orthogonality is not a necessary condition for a diagonal as-

sumption in general; diagonal approximation with frames

was proposed in Pannekoucke et al. (2007). The question of

further reducing the number of parameters and thus sampling

noise as in, e.g., functions of the Laplace operator, is also of

interest. When a different spectral diagonalization is used for

each horizontal plane, the question is how to connect hori-

zontal sheets along the vertical dimension. In Pannekoucke

(2008, their Appendix D), wavelet packets are used to take

advantage of the orthogonal basis dictionary they provide.

These issues will be studied elsewhere.

The method described in Sect. 6.2 is general and it al-

lows for arbitrary linear observation operators, but an inverse

(i.e., solving a system) in the observation space is required.

The computational cost then grows as the cube of data di-

mension. This issue is well known in spectral variational

methods; techniques used in the literature include aggregat-
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Figure 5. Mean RMSE of ensemble mean from five independent repetitions. Ensemble size 20, only water height observed. (a) Water height,

(b) velocity in the x direction and (c) velocity in the y direction.

ing and interpolating observations to create “super observa-

tions” as gridded arrays (Parrish and Derber, 1992).
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Appendix A: Error estimate of sample covariance

matrix

We prove an extension of Mallat (1998, Prop. 10.14) to sam-

ple covariance of a random vector with unknown mean.

A1 Lemma 1

Let U k ∼N(µ, C), k= 1, . . . , N , be i.i.d. vectors in Rn or

Cn, and

(
CN

)
i,j
=

1

N − 1

(
N∑
k=1

((
U k
)
i
−

1

N

N∑
l=1

(
U k
)
i

)
((
U k
)
j
−

1

N

N∑
l=1

(
U l
)
j

)∗)
(A1)

their sample covariance. Then,

E

[∣∣∣∣(CN
)
i,j
− (C)i,j

∣∣∣∣2
]
=

1

N − 1

(∣∣(C)i,j ∣∣2+ (C)i,i(C)j,j) .
A2 Proof

The proof follows that of Mallat (1998, Prop. 10.14) with

adjustments for the presence of the sample mean in Eq. (A1).

Each element of the sample covariance cNi,j =
(
CN

)
i,j

is an

unbiased estimate of the covariance ci,j = (C)i,j , so

E

[∣∣∣cNi,j − ci,j ∣∣∣2]= E[∣∣∣cNi,j ∣∣∣2]− ∣∣ci,j ∣∣2.
Without loss of generality, assume µ= 0, subtracting the

constant µ if necessary, and compute

E

[∣∣∣cNi,j ∣∣∣2]= E [

. . .

N∑
m=1

(
umj

)∗2 1

(N − 1)2
E

∣∣∣∣∣ N∑
k=1

uki

(
ukj

)∗∣∣∣∣∣
2


−
1

N(N − 1)2
E

[
N∑

k,l,m=1

uki

(
ukj

)∗(
uli

)∗
umj

]

−
1

N(N − 1)2
E

[
N∑

k,l,m=1

(
uki

)∗
ukju

l
i

(
umj

)∗]

+
1

N2(N − 1)2
E

∣∣∣∣∣ N∑
l,m=1

uli

(
umj

)∗∣∣∣∣∣
2
 . (A2)

Now we utilize the Isserlis theorem, also known as Wick’s

formula, which states that if A1, A2, A3, and A4 have a joint-

centered Gaussian distribution, then

E [A1A2A3A4]= E [A1A2]E [A3A4]+E [A1A3]E [A2A4]

+E [A1A4]E [A2A3] ;

cf. Isserlis (1918). Since our samples are independent and

E[uki ] = 0, we know that

E
[
uki

(
ukj

)∗]
= cij , E

[
uki u

l
j

]
= 0 if k 6= l,

and we get

E
[
uki

(
ulj

)∗(
umi

)∗
unj

]
=
∣∣ci,j ∣∣21{k=l,m=n}+ ci,icj,j1{k=m,l=n}

+E
[
uiuj

]
E
[(
uj
)∗
(ui)
∗
]

1{k=n,l=m}.

Applying this equation in Eq. (A2), we get

E

[∣∣∣cNi,j ∣∣∣2]= 1

N − 1

(
ci,icj,j +N

∣∣ci,j ∣∣2) ,
and the final result follows

E

[∣∣∣cNi,j − ci,j ∣∣∣2]= 1

N − 1

(
ci,icj,j +N

∣∣ci,j ∣∣2)− ∣∣ci,j ∣∣2
=

1

N − 1

(
ci,icj,j +

∣∣ci,j ∣∣2) .
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