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Abstract. In order to refine our understanding of how

fluid inclusions were trapped in the host minerals, we non-

destructively observed mercury inclusions (liquid Hg0) in

quartz samples using X-ray computed tomography (CT)

technique. The X-ray CT apparatus can observe internal

structures of the samples and give cross-sectional images

from the transmission of the X-rays through the sam-

ples. From the cross-sectional images, we obtained three-

dimensional spatial distributions of mercury inclusions, and

quantitatively analyzed them using fractal and multifractal

methods. Although the samples were from different geolog-

ical settings, the resultant fractal dimensions were 1.70 and

1.71 for the San Benito and Itomuka samples, respectively.

The fractal dimensions were also close to those predicted by

diffusion-limited aggregation models and percolation theory,

which are controlled by the irreversible kinetics. Given the

fractal dimension and its implied mechanism, we conclude

that the mercury-bearing fluids were not primary fluid in-

clusions, but migrated into the pre-existing cracks of quartz

crystals by diffusion processes.

1 Introduction

Fluid inclusions in minerals record important clues to past

geologic processes that the host minerals were subjected

to. We can obtain information on physical and chemi-

cal factors, such as the pressure, temperature, density and

composition of the fluids, from the fluid inclusions in

minerals (e.g., Takeuchi, 1975; Roedder, 1984). However,

studying fluid inclusions poses many difficulties for precise

analysis because of the high mobility and evaporation in-

volved. Therefore, non-destructive analytical methods, such

as micro-Raman spectroscopy (Burke, 2001; Frezzotti et al.,

2012), synchrotron-radiation X-ray fluorescence (SR-XRF)

(Schmidt and Rickers, 2003; Tsuchiyama et al., 2009) and

proton-induced X-ray emission (PIXE) (Kurosawa et al.,

2003), have been developed for the chemical analysis of indi-

vidual fluid inclusions in minerals. It is also necessary to ob-

serve the spatial distribution of different fluid inclusion pop-

ulations within a mineral grain to establish their paragenetic

succession relative to the mineral formation (i.e., primary,

secondary and pseudo-secondary inclusions) (e.g., Takeuchi,

1975; Roedder, 1984). X-ray computed tomography (CT) is

a non-destructive analytical method, and is one of the effec-

tive methods for observing the spatial distribution of fluid

inclusions.

The X-ray CT technique, which was originally devel-

oped to obtain cross-sectional images, has recently been

applied to minerals and rocks, and has opened up a new

approach for resolving their internal and three-dimensional

structures (Martínez et al., 2010). Although the internal

structures of rocks are generally heterogeneous and com-

plex, they have been successfully characterized using frac-

tal geometry (Posadas et al., 2009; Martínez et al., 2010).

In particular, fractal and multifractal analysis, described by
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Mandelbrot (1982) and Takayasu (1986), was developed for

the quantitative analysis of the patterns of irregular shapes

and complicated phenomena. Fractal and multifractal anal-

ysis has been used in several geochemical studies to under-

stand structures observed in sediments and soils, such as pore

shapes and water distribution (Bird et al., 2006; Posadas et

al., 2009; Ferreiro and Vázquez, 2010; Martínez et al., 2010;

Xie et al., 2010).

Here we observed mercury inclusions (liquid Hg0) in

quartz by the X-ray CT, and quantitatively analyzed their

three-dimensional distribution using fractal and multifractal

methods in order to elucidate how the mercury inclusions

were trapped in the host rocks. The mercury ores in this

study were formed by hydrothermal activities, and mercury

precipitated from the hydrothermal fluids in the late stage of

ore forming processes (Peabody and Einaudy, 1992; Dunning

et al., 2005). Quantitative analyses of spatial distribution of

mercury inclusions should give an insight into the detailed

physical behavior of mercury during their migration and pre-

cipitation.

2 Materials and methods

X-ray CT can be used for non-destructively analyzing the

internal structures of materials. Therefore, it is suitable for

samples, including fluids, that disappear if a destructive

method is used. We examined a quartz crystal from San Ben-

ito, California, USA, and another from Itomuka, Hokkaido,

Japan (sized 2× 5× 7 cm and 4× 5× 6 cm, respectively). In

these mines, native mercury (liquid Hg0) occurs as droplets

in the quartz crystals, formed by hydrothermal fluids associ-

ated with Neogene/Quaternary volcanic activities (Sugimoto

et al., 1972; Harada and Haritani, 1984; Peabody and Ein-

audy, 1992; Dunning et al., 2005). The samples examined

are idiomorphic and polycrystalline quartz, and contain visi-

ble clusters and/or films of 1–2 mm mercury inclusions.

We used a microfocus X-ray CT system (SMX-225CT;

Shimazu Corp., Kyoto, Japan), which can distinguish fluid

inclusion of mercury (13.59 g cm−3) from the quartz ma-

trix (2.65 g cm−3) based on the difference between their den-

sities. This apparatus forms cross-sectional images by the

transmission of the X-ray through the samples. The nomi-

nal resolution of the cross-section thickness and the inter-

val between the cross-sections were 0.120 and 0.073 mm,

respectively. The cross-sectional images were composed of

a 512× 512 pixel array that corresponded to an area of

9.88× 9.88 cm2 (therefore, one pixel corresponds to an area

of 0.193× 0.193 mm2). One of the cross-sectional images is

shown in Fig. 1. The grey circle in Fig. 1a represents the

field of view for the X-ray CT system, and the irregular re-

gion marked in the center of the field of view represents the

quartz. The region outside of the quartz is air, containing no

solid matter. The white dots represent mercury inclusions in

the quartz.

(a)

(b) (c)

20.0mm

Figure 1. Two-dimensional (2-D) slice image of the San Ben-

ito quartz sample obtained with a microfocus X-ray CT system.

(a) Original grayscale image. The circular dark gray region is the

measurable area, the irregular central region is the quartz sample,

and the white points are mercury inclusions; (b) binarized image

of the quartz crystal; and (c) binarized image of the mercury inclu-

sions. The quartz area is edged with a dotted line.

The sequenced cross-sectional images were reconstructed

and incorporated onto the images of each quartz crystal using

the Image Processing and Analysis software in Java-ImageJ

(Rasband, 1997–2011; Abramoff et al., 2004). Areas of mer-

cury inclusions in the quartz were extracted from the images

using threshold filtering. The spatial distributions of mercury

inclusions were analyzed by fractal and multifractal theory.

3 Fractal and multifractal analysis

Fractal and multifractal behavior is common in nature, and

often the spatial distributions of mercury inclusions have

fractal and multifractal properties. Because a fractal typically

has a self-similar structure and scale-free properties, the de-

gree of distribution of the inclusions follows a power law in

the form

N(r)∝ r−D, (1)

where N(r) is the number of boxes in a box-counting tech-

nique, r is the scale andD is the capacity (fractal) dimension.

The capacity dimension,D, which is generally estimated us-

ing the box-counting technique, is defined by the relationship

between the scaling properties of the distribution by covering

it with boxes of size, r , and counting the number of boxes

containing N(r), as follows:

D =− lim
r→0

logN(r)

logr
. (2)
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Then, the capacity dimension can be approximately de-

termined as the negative slope of logN(r) versus log r .

Although the capacity dimension is a fundamental and

quantitative parameter of the fractal, the dimension cannot

completely describe complex and heterogeneous structures.

Therefore, we applied multifractal theory to analyze the spa-

tial distribution of the mercury inclusions, as described be-

low.

Multifractal theory can be characterized on the basis of the

generalized dimensions of the qth order moment of a distri-

bution, Dq . The generalized dimensions, Dq , can be defined

by the function

Dq = lim
r→0

log
∑
i

Pi(r)
q

(q − 1) logr
, (3)

where Pi(r) is the probability of being in the ith box, and is

defined as the measure of the ith box of its size r , when the

measure of the whole space is normalized to 1 (Takayasu,

1986). The generalized dimension,Dq , can be rewritten with

the singularity exponent, α, and the generalized fractal di-

mension, f (α), as the equation

Dq =
qα(q)− f (α(q))

(q − 1)
. (4)

When we can obtain the generalized dimension, Dq , from

experiments, then the singularity exponent, α, and the gen-

eralized fractal dimension, f (α), can be estimated using the

following relationships:

α(q)=
d

dq
(q − 1)Dq (5)

and

f (α(q))= qα(q)− (q − 1)Dq . (6)

The singularity exponent, α, is characterized by scaling in

the local region, and quantifies the degree of regularity in

the region. The sub-sets with a local scaling exponent of α

form the fractal distribution, and its fractal dimension can

be viewed as the generalized fractal dimension, f (α). Mul-

tifractal theory allows the characterization of complex phe-

nomena in a fully quantitative manner for both temporal and

spatial variations.

4 Results and discussion

The mercury inclusions in the host quartz crystals seemed to

be clustered, and were ramified peripherally and randomly

so that the clusters resembled dendritic structures. There was

no natural scale length in the structures at scales much larger

than the particle size, and a self-similar structure was formed.

We analyzed the mercury inclusion clusters in the quartz

samples using the above equations in order to understand

N
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San Benito
Itomuka

N(r) ∝ r–D

Figure 2. Box counting plot for mercury inclusions in the San Ben-

ito and Itomuka quartz samples. To obtain the capacity dimensions,

D, only the middle portions of the sequence, from 4 times the length

of the minimal box size to 9/10 of the length of the maximal box

size, were analyzed to avoid edge effects.

how the inclusions were incorporated into the quartz sam-

ples. We estimated the relationship between the logarithm

of the number of objects, logN(r), and the logarithm of the

box size, log r , using the box-counting technique (Fig. 2).

The capacity dimensions, D, were found to be 1.70 and 1.71

for the San Benito and Itomuka samples, respectively, from

the slopes of the relationships shown in Fig. 2. The capacity

dimensions generally indicate major cluster shapes. For ex-

ample lines and surfaces have the values D = 1 and D = 2,

respectively. The obtained dimensions show that the mercury

inclusion clusters found in the quartz samples were more

complex than lines but were not entirely surfaces. Several

studies have been performed using fractal geometry, which

is controlled by the irreversible kinetic processes such as dif-

fusion, aggregation and percolation (e.g., Zheng et al., 1998;

Hunt and Ewing, 2009).

The San Benito and Itomuka mercury deposits occurred

in hydrothermally altered rocks, which would have been

formed by repeated hydrothermal activity in the Neo-

gene/Quaternary age (Dunning et al., 2005; Sugimoto et al.,

1972), and it is difficult to distinguish whether the mercury

inclusions were primary, secondary or pseudo-secondary in-

clusions. However, as spatial distributions of mercury inclu-

sions have fractal geometry, the mercury inclusions could not

be trapped in growing crystal faces but controlled by diffu-

sive processes. This result suggests that the fluids of mercury

inclusions would be captured into quartz after its crystalliza-

tion process. Hence the mercury-bearing fluids were not the

primary fluid inclusions, but were trapped in cracks that al-

ready existed in the quartz samples.

In this condition, the fractal dimension of the mer-

cury inclusion could be constrained by the available pores,

pore alteration by metamorphism, and migration of mer-

cury into the pore. These processes have been described

by the diffusion-limited aggregation (DLA) and percolation
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Figure 3. Distribution image of the mercury inclusions in the San

Benito quartz sample obtained with a micro-focus X-ray CT system.

Mercury inclusions are lightened and the quartz area is edged with

a dotted line.

mechanism, which involves Brownian particle motion (e.g.,

Witten and Sander, 1983; Meakin, 1985; Zheng et al., 1998;

Stauffer, 1979; Hunt and Ewing, 2009). Based on the DLA

models, the fractal dimension, D, is predicted to be equal

to (d2
+ 1)/(d + 1), where d is the spatial dimensionality

(Muthukumar, 1983). For a two- and three-dimensional sys-

temD should be 5/3 (1.66) and 5/2 (2.5), respectively. Also,

percolation theory shows that the fractal dimensions are 1.89

and 2.54 in two- and three-dimensional systems, respectively.

Estimated fractal dimensions of the mercury inclusions in

our quartz samples from San Benito and Itomuka are simi-

lar to those obtained by DLA models and percolation theory

for a two-dimensional system. The mercury inclusion could

be constrained by DLA models or percolation mechanism,

which could lead to different structures. The DLA models

and percolation mechanism result in dendritic and percola-

tion structures, respectively (e.g., Zheng et al., 1998; Hunt

and Ewing, 2009). Consequently, mercury inclusions were

ramified like a dendritic structure, but not like a loop struc-

ture as illustrated in Fig. 3. Therefore, we assume that the

mercury inclusions could migrate into the quartz by the DLA

models rather than by percolation mechanism.

Multifractal analysis allowed us to examine the complex

signature of the mercury inclusion clusters more quantita-

tively. We obtained three sets of multifractal parameters: α,

f (α) and Dq . Figure 4 shows multifractal spectra in which

the generalized fractal dimensions, f (α), are plotted against

the singularity exponent, α. Multifractal spectra generally

show parabolic curves that are concave downwards, and the

curve maxima occur at q = 0, at which point f (α) in the San

Benito and Itomuka samples corresponded to the capacity di-

mensions of 1.70 and 1.71, respectively. The parabola of both

samples had similar curves, but the width of the parabola was

larger for the San Benito sample than for the Itomuka sample.
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Figure 4. Multifractal spectrum for the mercury inclusions in the

San Benito and Itomuka quartz samples. The spectrum is the shape

of a downward concave parabola. A wide opening parabola indi-

cates heterogeneous distribution structures in the mercury inclu-

sions. The opening size of parabola in the San Benito sample is

larger than that of Itomuka sample, suggesting that mercury inclu-

sions in the San Benito distribute the more heterogeneous structures

than those in Itomuka.
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Figure 5. Generalized dimension, Dq , versus the order moment, q,

from q =−15 to q =+15 for the mercury inclusion distribution

in the San Benito and Itomuka quartz samples. The q moment is a

measure of the probability density, low q is low density and high q

is high density. The generalized dimension, Dq , indicates the geo-

metrical shape of the mercury inclusion at the q density.

The San Benito sample had more fractal structure patterns

than the Itomuka sample, because wider curves reflect more

heterogeneous structures in the mercury inclusion distribu-

tions.

Figure 5 shows the difference between the fractal dimen-

sion distributions in the samples, and the relationships be-

tween the generalized dimensions, Dq , and the order mo-

ments, q. In general, Dq dimensions increase with decreas-

ing q moments. In Fig. 5, the curves for both quartz samples

are similar. The q moments are interpreted as a parameter

of the inclusion distribution probability densities (i.e., low q

implies a low distribution density and high q implies a high
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density). The Dq dimensions at low q moments in the sam-

ples were 2.3–2.7, indicating that the distributions of surface

and spatial structures were scarce. However, the Dq dimen-

sions at high-q moments were 1.0–1.3, indicating that lin-

ear configurations were common. This implies that mercury-

bearing fluids migrated linearly into the quartz sample cracks

and then expanded to form surface plane and spatial figura-

tions.

5 Conclusions

We analyzed mercury inclusions in quartz samples using in

situ X-ray computed tomography (CT). The X-ray CT appa-

ratus allows the internal structures of the quartz samples to

be analyzed non-destructively, and therefore mercury inclu-

sions are to be retained in the quartz throughout the experi-

ment. We performed X-ray CT measurements on two quartz

samples – one from San Benito, California, USA, and one

from Itomuka, Hokkaido, Japan – both of which contain vis-

ible mercury inclusions. We obtained the spatial distributions

of the mercury inclusions based on sequenced X-ray cross-

sectional images. Spatial distributions can be explored quan-

titatively using fractal and multifractal theory. We showed

the fractal dimensions, α− f (α), multifractal spectra and

the relationship between q and Dq . The mercury inclusions

trapped in the quartz samples had similar distribution sig-

natures, even though the quartz samples were from differ-

ent geological settings. In addition, the fractal dimensions

were close to those obtained by diffusion-limited aggregation

DLA models and percolation theory for a two-dimensional

system. The similar mercury inclusion signatures correspond

to the samples being formed during a process of diffusion

into pre-existing cracks in the quartz. After the formation of

crystalline quartz, the mercury-bearing fluids probably mi-

grated into pre-existing cracks in the quartz crystals, and na-

tive mercury was lodged in the cavities.
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