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Abstract. It has long been known that verification of a fore-

cast against the sequence of analyses used to produce those

forecasts can under-estimate the magnitude of forecast er-

rors. Here we show that under certain conditions the verifi-

cation of a short-range forecast against a perturbed analysis

coming from an ensemble data assimilation scheme can give

the same root-mean-square error as verification against the

truth. This means that a perturbed analysis can be used as a

reliable proxy for the truth. However, the conditions required

for this result to hold are rather restrictive: the analysis must

be optimal, the ensemble spread must be equal to the error in

the mean, the ensemble size must be large and the forecast

being verified must be the background forecast used in the

data assimilation. Although these criteria are unlikely to be

met exactly it becomes clear that for most cases verification

against a perturbed analysis gives better results than verifica-

tion against an unperturbed analysis.

We demonstrate the application of these results in a ide-

alised model framework and a numerical weather predic-

tion context. In deriving this result we recall that an optimal

(Kalman) analysis is one for which the analysis increments

are uncorrelated with the analysis errors.

1 Introduction

Verification of forecasts is an important aspect in the devel-

opment of those forecasts. Any improvement in the forecast-

ing system should be tested to demonstrate that the forecasts

are genuinely improved. Each forecast is typically launched

from an analysis state which is a combination of observa-

tions with a previous short-range forecast from the system.

A common practice is to use the analysis from such a system

as the truth against which to verify (for instance see Buizza

et al., 2005). Since each analysis depends on the forecasts

from previous cycles this is a dangerous practice, particu-

larly at short forecast lead times (Bowler, 2008). Nonethe-

less the convenience of performing verification against a state

which is available on the model grid means that this remains

a common practice with its attendant problems (as observed

in Clayton et al., 2013).

One solution to the problem of verification against anal-

yses is to verify forecasts against observations. The obser-

vations do not depend on the forecast, and so provide an

independent measurement of the true state of the system1.

However, observations themselves are contaminated by er-

rors. Methods exist to account for the effect of these errors

on verification statistics (Ciach and Krajewski, 1999; Saetra

et al., 2004; Bowler, 2006; Candille and Talagrand, 2008).

However, these errors are often poorly known, so accounting

for their effect is difficult. Additionally, there are often few

conventional observations over the oceans, which means that

verification statistics can be blind to these areas.

As an alternative solution to these problems, we offer the

idea of performing the verification against a perturbed anal-

ysis.

2 Verification against perturbed analysis

We are looking to verify a forecast xf using the root-mean-

square (RMS) error. This forecast is a single realisation, and

so could either be a forecast from a deterministic system or

an ensemble mean forecast. Ideally one would verify this

forecast against the true state of the system xt, but this state

is generally unknown. Given that the truth is unknown we

choose to verify instead some other state, in this case an anal-

ysis. We consider that rather than having a single analysis we

have an ensemble of analyses and verify against a randomly

chosen analysis ensemble member. We assume that the anal-

1Although any time correlation in observation errors can create

a correlation between forecast and observation errors.
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ysis ensemble represents its own errors correctly. Since we

are considering mean-square errors, then we only need this

last statement to hold to second order; that is, we require that

< |xa
− xt
|
2>=< |xa

i − x
a
|
2 >, (1)

where |x|2= xT x denotes the inner product where T indi-

cates the matrix transpose, and the angle brackets< . > indi-

cate the average over a large number of cases. The ensemble

states are denoted by xa
i where i is the ensemble member

number and the overbar (x) indicates the ensemble mean.

Given the above definitions we consider the RMS error

calculated against a perturbed analysis, that is a randomly

chosen member of the analysis ensemble. The mean-square

error of the forecast against this analysis is

< |xf
− xa

i |
2 >=< |

(
xf
− xa

)
−
(
xa
i − x

a
)
|
2 >

=< |xf
− xa
|
2 >+< |xa

i − x
a
|
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− 2<
(
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− xa

)T(
xa
i − x

a
)
> . (2)

In this case we are considering the verification against a

given, chosen ensemble member i, not against each ensem-

ble member in turn. However, since all ensemble members

are typically exchangeable, this distinction is not important.

We do not include a time index in this notation since all quan-

tities are valid at the same time.

To continue the analysis, we consider that there exists the

truth state, xt, against which we would ideally conduct the

verification. Using this we expand one of the terms appearing

on the right-hand side of Eq. (2):
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> . (3)

Combining Eqs. (2) and (3), we find that
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− xa

i |
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|
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The last term in this equation can be further re-arranged:

<
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)T(
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+
(
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We have previously assumed that the ensemble of analy-

ses is ideal (Eq. 1). Using this assumption and substituting

Eq. (5) into Eq. (4), various terms cancel and we find

< |xf
− xa

i |
2 >=< |xf

− xt
|
2 >

− 2<
(
xf
− xa

)T(
xa
i − x

a
)
>

− 2<
(
xf
− xa

)T(
xa
− xt

)
> . (6)

So, if the last two terms in this equation are zero (or can-

cel), then we would expect that verifying against a perturbed

analysis would give the same result as verification against the

truth.

In the second to last term, the second bracket is the dif-

ference between a random analysis ensemble member and

the ensemble mean. If this term were averaged over all the

choices of the random member, then it is easy to see that this

term is zero, since the mean of the second bracket would be

precisely zero. If all the ensemble members are equivalent to

each other, then this term should disappear if the number of

cases is large enough.

If the final term also vanishes, then we can consider that

the data-assimilation system is in some sense optimal. If

the final term were not zero, then it would be possible to

make the ensemble mean analysis closer to the truth by post-

processing it using the difference xf
− xa. A statistically op-

timal analysis will not benefit from post-processing in this

way because it is by design as close to the truth as possible,

and so the final term must also be zero. This is a somewhat

different definition of an “optimal” data assimilation scheme

from the usual. This difference is explored in more detail in

Sect. 4.

Therefore, we conclude that verification against a per-

turbed analysis will give the same RMS error as verifica-

tion against the truth if the analysis ensemble is ideal (the

spread equals the error of the mean analysis) and the analy-

sis is statistically optimal (could not be improved by simple

post-processing). In a sense Eq. (6) is a simple result, since

we have assumed that the analysis ensemble correctly rep-

resents the errors in the ensemble mean analysis. However,

this re-arrangement allows us to see that all that is required

for perturbed analysis to be a good proxy for the truth is for

two cross-terms to be zero. The first of these is straightfor-

wardly zero; the condition for the second to be zero is more

challenging, as will be seen below.

3 Verification against perturbed observations

It might be thought that, since a true observation is statisti-

cally indistinguishable from a random member of a set of

perturbed observations, then verification against perturbed

observations would also be equivalent to verification against

the truth. However, we show that this is not the case.

Consider the final term in Eq. (6). If we replace the ref-

erences to the analysis with the observations, then this term

becomes < (Hxf
− y)T (y − Hxt) > where y are the ob-

servations and H is the observation operator, which we will

assume to be linear for simplicity. Now, we choose to define
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the observation using εo, its departure from the truth

y =Hxt
+ εo. (7)

Using this definition, we find

<
(
Hxf
− y

)T(
y−Hxt

)
>=<

(
H
(
xf
− xt

)
− εo

)T(
εo
)
> . (8)

If we assume that forecast and observation errors are uncor-

related, then this reduces to

<
(
Hxf
− y

)T(
y−Hxt

)
>=−<

(
εo
)T
εo>=− T r(R), (9)

which is the trace of the observation error covariance matrix.

Therefore verification against perturbed observations will not

give the same result as verification against the truth.

Although the use of perturbed observations is unhelpful, it

is possible to subtract the estimated observation error from

the RMSE calculated using unperturbed observations. This

has been used successfully by some authors (for instance see

Bowler et al., 2008), but retains the limitation that observa-

tions do not universally cover the globe.

4 Definitions of an optimal analysis

Earlier we indicated that an analysis for which < (xf
−

xa)T(xa
− xt) >= 0 should be considered an optimal anal-

ysis, since it would not be possible to improve this analysis

by a simple post-processing. This is the same as saying that

the analysis increments are orthogonal to the analysis errors.

However, a more usual definition of an optimal analysis is

one which uses the Kalman gain in calculating the analysis

state. In the following we will demonstrate that these two

definitions of an optimal analysis are equivalent. The orthog-

onality of analysis increments and errors for an optimal filter

has been known for many years (see for instance Kailath,

1968). We include a derivation of this fact here as it high-

lights certain assumptions which need to be made.

To calculate an analysis state we use the following for-

mula:

xa
= xf
+K

(
y−Hxf

)
. (10)

In this equation and the following paragraphs we refer to xa

and xf without an overbar because this derivation can apply

to any forecast and analysis and not simply one coming from

an ensemble system. K is the gain matrix applied to the inno-

vations – this does not need to be the optimal (Kalman) gain.

As in Eq. (7) the observation is defined by its departure from

the truth, εo. This allows us to re-arrange Eq. (10) as

KH
(
xa
− xt

)
=
(
I−KH

)(
xf
− xa

)
+Kεo. (11)

We post-multiply this equation by (xf
− xa)T and take the

average over a large number of cases. This yields

KH<
(
xa
− xt

)(
xf
− xa

)T
>

= (I−KH) <
(
xf
− xa

)(
xf
− xa

)T
>

+K< εo
(
xf
− xa

)T
>, (12)

where we have assumed that K and H are constant in time.

Note that in this equation the terms appear as < x xT >,

which is the outer product where previously we have been

dealing with terms like < xT x >, which is the inner prod-

uct. Now, to deal with the terms on the right-hand side of this

equation, we re-arrange the analysis Eq. (10) to be

xf
− xa
=KH

(
xf
− xt

)
−Kεo. (13)

We can square this equation, and take the average over a long

time series to give

<
(
xf
− xa

)(
xf
− xa

)T
>=KH<

(
xf
− xt

)(
xf
− xt

)T
>

HTKT
+K< εo

(
εo
)T
>KT, (14)

where we have assumed that the forecast and observation er-

rors are uncorrelated. We re-write the forecast and observa-

tion covariance matrices using their usual terms B and R to

give

<
(
xf
− xa

)(
xf
− xa

)T
>=KHBHTKT

+KRKT. (15)

Returning to Eq. (13) we may multiply this by εo to get the

estimate of the second term as

< εo
(
xf
− xa

)T
>=< εo

(
xf
− xt

)T
>HTKT

−< εo
(
εo
)T
>KT. (16)

If we assume that forecast and observation errors are uncor-

related, then we find that

< εo
(
xf
− xa

)T
>=−RKT. (17)

Substituting Eqs. (15) and (17) into Eq. (12) we find that

KH<
(
xa
− xt

)(
xf
− xa

)T
>

= (I−KH)
(
KHBHTKT

+KRKT
)
−KRKT. (18)

Expanding the right-hand side and cancelling terms, we get

<
(
xa
− xt

)(
xf
− xa

)T
>=BHTKT

−KHBHTKT
−KRKT. (19)

In Eq. (19) we have not made any assumption about the form

of K, and the terms labelled B and R are the true forecast- and

observation-error covariance matrices. Previously we argued

that Eq. (19) is zero if the gain matrix is equal to the Kalman
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gain. So, we substitute the Kalman gain K=BHT (HBHT
+

R)−1 for some of the terms in Eq. (19) to give

<
(
xa
− xt

)(
xf
− xa

)T
>=

[
BHT

−BHT(HBHT
+R)−1HBHT

−BHT
(
HBHT

+R
)−1

R
]

KT

= 0. (20)

So, if we assume that the gain used in the data assimilation is

optimal, then the key cross-term in Eq. (6) is zero. This is one

of the conditions required for verification against a perturbed

analysis to give the same RMS error as verification against

the truth.

Now, Eq. (20) states that the outer product of the analysis

errors with the analysis increment is zero. However, for the

verification against a perturbed analysis to be a suitable sub-

stitute for verification against the truth we require the inner

product of these two terms to be zero. If we have two vec-

tors y and x then stating that the average of the outer product

of these vectors is zero, < y xT >= 0, is the same as stating

that

< yixj>=0 for all i,j. (21)

If the inner product is to be zero, then we require that

< yTx>=<

N∑
i=1

yixi>=0. (22)

This demonstrates that Eq. (20) implies that < (xf
−

xa)T (xa
− xt) >= 0.

In this calculation the forecast xf is the one used in calcu-

lating the new analysis. Given that the analysis referred to in

the last term of Eq. (6) is an ensemble mean, then xf should

be the ensemble mean background forecast to the data assim-

ilation. That is, we must re-write Eq. (6) as

< |xf
− xa

i |
2 >=< |xf

− xt
|
2 >

− 2<
(
xf
− xa

)T(
xa
i − x

a
)
>

− 2<
(
xf
− xa

)T(
xa
− xt

)
>

≈< |xf
− xt
|
2 >, (23)

where xf is the ensemble-mean background for the ensemble

data assimilation. Thus the above argument does not apply

to deterministic forecasts or longer lead time forecasts. The

issue of longer lead times is discussed further in Sect. 7.

This derivation also informs how the analysis ensemble is

created. Following Eq. (10) the update of the ensemble mean

will follow

xa
= xf
+K

(
y−Hxf

)
, (24)

where K is the optimal (Kalman) gain matrix. In Sect. 2 we

assumed that the analysis ensemble perturbations are drawn

from the same distribution as the analysis errors. One way

to ensure this (Berre et al., 2006) is to update each ensemble

member according to

xa
i = x

f
i +K

(
y+ yi −Hxf

i

)
, (25)

where yi is a perturbation to the observations created using

the (true) observation error covariance matrix, R. Note that

in both the above equations K is the Kalman gain calculated

using the true (unknown) background and observation error

covariance matrices. This matrix is approximated in the en-

semble Kalman filter and ensemble-variational methods used

with geophysical models (Houtekamer et al., 1996; Evensen,

1994). In the following tests we use K=BKT (HBHT
+

R)−1 with B and R fixed.

5 Testing using a simple model

A toy-model data assimilation system was created to test

whether the above assumptions can hold in an idealised con-

text. For this, the logistic map was used (see for instance Peit-

gen et al., 1992). The logistic map is a single-variable chaotic

map, iterated according to

xn+1 = Cxn
(
1− xn

)
, (26)

where C is a constant. The basin of attraction for this map

is the range (0, 1), and states x > 1 will diverge towards in-

finity. The map is chaotic when C > 3.57 (approx.) and has

a Hausdorff dimension of about 0.538 (Grassberger and Pro-

caccia, 1983). In our experiments we choose C= 3.7 as for

this value the map exhibits chaotic behaviour.

We initialise an ensemble by randomly choosing states

in the interval (0, 1). The logistic map is applied to each

member to create a forecast ensemble. The forecast en-

semble is transformed into an analysis ensemble by each

member assimilating a perturbed observation. The observa-

tions are created by adding a perturbation to the run of the

truth model. These perturbations are distributed according to

∼N (0, 0.001). The perturbed observations are created from

the observations by adding a perturbation sampled from the

same distribution. The assimilation always uses a fixed back-

ground error variance, B, and we test the formulas derived

above by varying the value of B. A fixed B is a poor approx-

imation to the true background errors. This assimilation will

not be optimal and we may find that< (xf
−xa)T (xa

−xt) >

is non-zero. We examine this later. Observations are assimi-

lated every time step and Eq. (26) is used to iterate both the

ensemble members and the truth run. The first 2000 assimi-

lation cycles are rejected as a spin-up period. Analysis states

which fall outside the basin of attraction are reset to lie within
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it. The assimilation is run for a further 200 000 assimilation

cycles and 400 ensemble members are used. Confidence in-

tervals were calculated using the bootstrap method assuming

each of the assimilation cycles gives an independent sam-

ple of the analysis error. Since we use a long run the esti-

mated confidence intervals are very narrow, and correspond

approximately to the line width in the plots. Therefore these

are not shown in order to aid clarity. In order to be consistent

with the results of the previous section the only forecasts ver-

ified are the ensemble mean background forecasts. All results

shown here have used the logistic map. Similar results have

also been found with the models of Lorenz (1963, 1995).

Figure 1 shows the RMS background-forecast and analysis

errors as a function of B. When B is small the forecast and

analysis errors (dark blue line and red line, respectively) are

large and the system is sub-optimal for these values. Verifica-

tion against a perturbed analysis gives a systematically lower

RMS error (RMSE) than verification against the truth (dark

blue line) for small values of B, since insufficient weight

is given to the observations. The RMS error for verification

against a perturbed analysis becomes equal to that when ver-

ifying against the truth for moderate values of B (∼ 0.049).

This point is also where the RMS error crosses the diagonal,

indicating that the background errors used in the assimilation

are equal to the actual background errors, and the assimila-

tion is optimal. Verification against observations gives RMS

errors which are systematically higher than all the other es-

timates. If observation errors are accounted for, then verifi-

cation against observations becomes very similar to verifi-

cation against the truth (not shown). Verification against un-

perturbed analyses gives smaller RMSEs than all the other

methods.

The circles in Fig. 1 indicate the point at which the RMS

errors are minimised for each curve. The minimum RMSE

for verification against analysis (purple line) is a value of B

around 0.026 which is much lower than the optimal value of

B for verification against the truth. The black line shows ver-

ification against perturbed analyses and the minimum RMS

error for this curve is when B is around 0.03. This is much

larger than the value of B for the minimum RMS error for

verification against (unperturbed) analyses. However, this

value of B, around 0.03, is much lower than the optimal

(Kalman) value of around 0.049. When verifying forecasts

against the truth (dark blue line) the minimum value of the

forecast error is found for B around 0.036, lower than the

optimal (Kalman) value. This statement may seem counter-

intuitive – the lowest forecast error is found when the value

of B used in the analysis is not equal to the forecast error.

However, recall that the logistic map is a non-linear map and

that the Kalman filter is only optimal for linear models. We

have found a similar result with other models (the models of

Lorenz, 1963, 1995). For both these models the forecast error

is minimised when the value of B used is larger than the ac-

tual forecast error (the value given for the Kalman filter). For

the logistic map the value of B which minimises the analysis
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Figure 1. RMS error of the forecast and analysis using the logis-

tic model as a function of the background error standard devia-

tion used in calculating the analysis. The red and blue lines show

the RMSE for the analysis and forecast measured against the truth

state. The other lines show the RMSE of the forecast, when verified

against a different proxy for the truth. Verification is calculated over

200 000 analysis and forecast cycles.

error is around 0.044, closer to the Kalman value than for the

forecast error – this appears to be a result consistent across

the different models.

The vertical line in Fig. 1 is the point at which the cross-

term < (xf
− xa)T (xa

− xt) > (last term of Eq. 23) is zero.

We can see that this vertical line is at approximately the

same value of B where the forecast and background errors

are equal. This cross-term is plotted in Fig. 2, as the solid

green line, as a function of B. Also plotted is the correlation

between the forecast and analysis errors < (xf
− xt)T (xa

−

xt) > (blue dashed line). This is non-zero for all the values of

B run in these experiments. This demonstrates the problem

in verifying against an unperturbed analysis that for all the

values of B used here the errors in the forecast are correlated

with the errors in the analysis.

One of the conditions required for verification against per-

turbed analyses to give similar results to verification against

the truth is for the analysis ensemble spread to equal the RMS

analysis errors (Eq. 1). The analysis and forecast ensemble

spread and error is plotted in Fig. 3. The ensembles appear to

be well calibrated for most values of B. This may change if

model error were introduced into the system.

6 Considering the effects of ensemble size

Next, we consider whether these results change substantially

if fewer ensemble members are used. Results with a 10 mem-

ber ensemble are shown in Fig. 4. This figure is rather similar

to Fig. 1, with the most notable difference being that the ver-

tical line no longer meets where the other lines cross.

www.nonlin-processes-geophys.net/22/403/2015/ Nonlin. Processes Geophys., 22, 403–411, 2015
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Figure 2. Important cross-terms calculated from a long analysis cy-

cle using the logistic model, as a function of the background er-

ror standard deviation used in calculating the analysis. These are

< (xf
− xt) (xa

− xt) > (blue dashed) and< (xf
− xa) (xa

− xt) >

(green solid).
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Figure 3. RMS error and ensemble spread of the forecast and anal-

ysis using the logistic model, as a function of the background error

standard deviation used in calculating the analysis. The ensembles

were created by each ensemble member using the same assimilation

method, assimilating perturbed observations.

To understand how ensemble size can affect the results, we

need to return to estimates of the analysis error and spread. In

Eq. (1) we relied on a cancellation of the analysis ensemble

spread with the error of the ensemble mean. For a limited-

size ensemble this cancellation does not hold precisely. As

has been shown by Weigel (2011) the RMS error of an en-

semble mean is slightly increased by effects related to the

limited ensemble size. To show the limitations consider that

the true state and each ensemble member are a random draw

from the same distribution which has mean µ and variance

σ 2. We can thus write the truth as the mean of this distribu-

tion plus a deviation from the mean
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Figure 4. RMS error of the forecast and analysis as plotted in Fig. 1,

but using an ensemble with only 10 members.

xt
= µ+ s, (27)

where< s >= 0 and< s2 >= σ 2. For an analysis ensemble

member we would have

xa
i = µ+wi, (28)

where wi is a random draw from the same distribution as s.

Thus we may write the ensemble mean as

xa
= µ+w

= µ+
1

N

N∑
i=1

wi . (29)

We see that w has mean zero and variance σ 2/N where N is

the ensemble size. Using this Weigel (2011) showed that the

mean-square error of the ensemble mean is

<
(
xa
− xt

)2
>=<w2

− 2ws+ s2 >

= σ 2
(
1+

1

N

)
, (30)

since <ws >= 0. Due to the fact that the ensemble mean

is not exactly equal to the mean of the distribution, the error

of the ensemble mean is slightly larger than the variance of

the distribution. This is a standard mathematical result (for

instance see Hoel, 1984, p. 128). Using a similar argument

lets us now consider the ensemble perturbations

<
(
xa
i − x

a
)2
>=<w2

i − 2wiw+w
2 > . (31)

From the definition of w and recalling that the wi’s are inde-

pendent samples we see that
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<wiw>=
1

N
<w2

i>=
σ 2

N
(32)

and so

<
(
xa
i − x

a
)2
>=σ 2

(
1−

1

N

)
. (33)

So, the ensemble spread is slightly smaller than the variance

of the distribution due to correlations between deviations of

the ensemble mean from the distribution mean and the per-

turbations. This is often accounted for by using the unbiased

estimator of the ensemble spread. Putting all this together,

we find that for a well-calibrated ensemble

<
(
xa
− xt

)2
>

<
(
xa
i − x

a
)2
>
=
N + 1

N − 1
. (34)

As the ensemble size goes to infinity this ratio tends to 1

and Eq. (1) holds. However, for a limited ensemble size these

differences mean that verification against analysis is not the

same as verification against the truth, even when the other

conditions hold. This could be corrected for if the analysis

spread is known.

7 Longer lead times

As was discussed in Sect. 4 the argument that the final term

in Eq. (6) is zero requires the forecast being verified to be

the background for the analysis. However, we might expect

that this term is zero for longer lead times, since otherwise

it should be possible to produce a superior analysis. To in-

vestigate this further we turn to the simple model tests used

earlier.

Verification for longer lead times using the system de-

scribed in Sect. 5 are given in Fig. 5. This shows the ra-

tio of the RMSE measured against truth to the RMSE mea-

sured against perturbed analyses. This line is plotted for

two choices of B. When the Kalman value of B is used

the two verifications give the same RMS error at the first

lead time (i.e. where the forecast is the background for the

analysis). At longer lead times the RMS error when verify-

ing against a perturbed analysis becomes larger than when

verifying against the truth. This is caused by the final term

in Eq. (6) giving a positive contribution to the verification

against perturbed analysis. The interpretation is that xt
− xa

and xf
− xa are positively correlated – errors in the analysis

are anti-correlated with differences between the forecast and

the analysis. The correlation of analysis errors with forecast-

analysis differences may be related to the use of a nonlinear

model. The nonlinearity can lead to non-randomness of the

errors which leads to the correlation.

Also shown in Fig. 5 is the ratio when B is chosen to be

the value which gives the minimum forecast error – for the

logistic map this value is lower than the Kalman value for
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Figure 5. Ratio of the RMS errors of forecasts verified against truth

and perturbed analyses using the logistic map for various lead times.

For the solid line the background error was taken as the approximate

Kalman value. For the dashed line B was taken for the value which

minimises the short-period forecast error.

B. In this case verification against perturbed analysis gives

smaller RMSEs than verification against the truth at short

lead times. At longer lead times the verifications cross over

and the RMSE against perturbed analyses is greater than the

RMSE against the truth.

This behaviour at long lead times suggests that verifica-

tion against a perturbed analysis is most useful at short lead

times. Nonetheless it avoids the worst problems of verifi-

cation against an unperturbed analysis. Therefore, we argue

that it is still a useful replacement for that method of verifi-

cation.

8 Verification of NWP forecasts

In order to understand whether this method can be applied to

numerical weather prediction (NWP) systems we calculated

the RMS error of a forecast ensemble mean against observa-

tions and perturbed analyses. The RMS error against analy-

ses was calculated at observation locations so that the quan-

tities are directly comparable.

Figure 6 shows the RMS error of the forecast ensem-

ble mean as a function of lead time for 500 hPa geopoten-

tial height for the Met Office Global and Regional Ensem-

ble Prediction System, MOGREPS (Bowler et al., 2008). At

the time the forecasts were taken the MOGREPS ensemble

consisted of a random sample of 11 members selected from

22 perturbed members used to cycle the ETKF every 6 h,

plus the control member. The time average has been taken

over 1 month of data. The different panels in Fig. 6 represent

means over different geographical areas: Northern Hemi-

sphere, tropics, Southern Hemisphere and the whole globe.

Each panel shows the RMS error of the ensemble mean

against the unperturbed analysis in red, the perturbed anal-
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Figure 6. RMS errors of MOGREPS ensemble mean as a function of forecast lead time for forecasts of 500 hPa geopotential height. The

forecast errors are reported for verification against observations and perturbed and unperturbed analyses.

yses in black, and the observations in blue, in green against

the observations when the observation errors are accounted

for. An observation error of 9.4 m (RMS) has been assumed.

Verification against observations gives RMS errors which

are systematically higher than all other estimates, while veri-

fication against unperturbed analyses provides smaller RMS

error than verification against observations and perturbed

analyses. This is in agreement with Fig. 1. The exception

is for the Southern Hemisphere, where the error against ob-

servations becomes smaller than the estimates against anal-

yses after T + 60 h. When observation errors are accounted

for, the verification against the observations is very similar

to the verification against perturbed analyses from T + 0 h to

T + 36 h for the Northern and Southern hemispheres, while

for longer lead times it gives lower RMS errors. This does

not happen in the tropics since it is likely that verification

includes the contribution of systematic errors which are not

accounted for in the analysis perturbations. This is expected

since 500 hPa geopotential height does not provide a good

representation of what happens in the tropics.

The consistency of the RMS errors for short lead times

in the northern and southern extra-tropics when calculated

against perturbed analyses and observations (when subtract-

ing observation error) suggests that this ensemble meets

many of the required criteria. At longer lead times the RMS

error against perturbed and unperturbed analyses gives larger

errors than for verification against observations, when sub-

tracting observation error. This is consistent with the results

in Fig. 5 – when analysis and forecast errors are no longer

correlated the effect of analysis error is to over-estimate the

RMSE.

9 Conclusions

We have shown that verification against a perturbed analysis

gives the same RMS errors as verification against the truth,

under certain conditions. These conditions require that the

analysis ensemble is ideal (its RMS spread matches the RMS

error in the mean analysis), that the analysis is optimal and

that the ensemble size is large. Although NWP data assimi-

lation systems are typically well tuned (to maximise forecast

performance), none of these conditions is likely to hold ex-

actly in practice. Additionally, the above results only apply

to a forecast which is the background for the analysis against

which it is verified.

In spite of these limitations we believe that this may be a

useful approach to verification. Firstly it will give more re-

alistic results than verification against an unperturbed anal-

ysis in most situations. Secondly the alternative is to verify

against observations and explicitly account for the effect of

observation error. Given the difficulty in estimating obser-

vation error and the fact that many parts of the world are

Nonlin. Processes Geophys., 22, 403–411, 2015 www.nonlin-processes-geophys.net/22/403/2015/



N. E. Bowler et al.: Verification against perturbed analyses and observations 411

sparsely observed, this has its own limitations. The verifi-

cation results for NWP forecasts indicate it gives very simi-

lar results to verification against observations, when observa-

tion error is accounted for, for short lead times in the extra-

tropics. Given that the problems of verification against unper-

turbed analyses are most pronounced at short lead times, our

method is potentially valuable for verification of short-term

NWP forecasts.

It would be interesting to further explore some of the as-

pects of this method. For instance, what is the effect of using

an analysis ensemble which is over-spread in some areas and

under-spread in others? This study also demonstrated that for

a non-linear model the Kalman filter solution may not min-

imise the system’s forecast error. We feel that a better under-

standing of this result would be beneficial.
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